
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ppoll.2' command

$ man ppoll.2

POLL(2) Linux Programmer's Manual POLL(2)

NAME

 poll, ppoll - wait for some event on a file descriptor

SYNOPSIS

 #include <poll.h>

 int poll(struct pollfd *fds, nfds_t nfds, int timeout);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <signal.h>

 #include <poll.h>

 int ppoll(struct pollfd *fds, nfds_t nfds,

 const struct timespec *tmo_p, const sigset_t *sigmask);

DESCRIPTION

 poll() performs a similar task to select(2): it waits for one of a set

 of file descriptors to become ready to perform I/O. The Linux-specific

 epoll(7) API performs a similar task, but offers features beyond those

 found in poll().

 The set of file descriptors to be monitored is specified in the fds ar?

 gument, which is an array of structures of the following form:

 struct pollfd {

 int fd; /* file descriptor */

 short events; /* requested events */

 short revents; /* returned events */

 }; Page 1/10

 The caller should specify the number of items in the fds array in nfds.

 The field fd contains a file descriptor for an open file. If this

 field is negative, then the corresponding events field is ignored and

 the revents field returns zero. (This provides an easy way of ignoring

 a file descriptor for a single poll() call: simply negate the fd field.

 Note, however, that this technique can't be used to ignore file de?

 scriptor 0.)

 The field events is an input parameter, a bit mask specifying the

 events the application is interested in for the file descriptor fd.

 This field may be specified as zero, in which case the only events that

 can be returned in revents are POLLHUP, POLLERR, and POLLNVAL (see be?

 low).

 The field revents is an output parameter, filled by the kernel with the

 events that actually occurred. The bits returned in revents can in?

 clude any of those specified in events, or one of the values POLLERR,

 POLLHUP, or POLLNVAL. (These three bits are meaningless in the events

 field, and will be set in the revents field whenever the corresponding

 condition is true.)

 If none of the events requested (and no error) has occurred for any of

 the file descriptors, then poll() blocks until one of the events oc?

 curs.

 The timeout argument specifies the number of milliseconds that poll()

 should block waiting for a file descriptor to become ready. The call

 will block until either:

 ? a file descriptor becomes ready;

 ? the call is interrupted by a signal handler; or

 ? the timeout expires.

 Note that the timeout interval will be rounded up to the system clock

 granularity, and kernel scheduling delays mean that the blocking inter?

 val may overrun by a small amount. Specifying a negative value in

 timeout means an infinite timeout. Specifying a timeout of zero causes

 poll() to return immediately, even if no file descriptors are ready.

 The bits that may be set/returned in events and revents are defined in Page 2/10

 <poll.h>:

 POLLIN There is data to read.

 POLLPRI

 There is some exceptional condition on the file descriptor.

 Possibilities include:

 ? There is out-of-band data on a TCP socket (see tcp(7)).

 ? A pseudoterminal master in packet mode has seen a state change

 on the slave (see ioctl_tty(2)).

 ? A cgroup.events file has been modified (see cgroups(7)).

 POLLOUT

 Writing is now possible, though a write larger than the avail?

 able space in a socket or pipe will still block (unless O_NON?

 BLOCK is set).

 POLLRDHUP (since Linux 2.6.17)

 Stream socket peer closed connection, or shut down writing half

 of connection. The _GNU_SOURCE feature test macro must be de?

 fined (before including any header files) in order to obtain

 this definition.

 POLLERR

 Error condition (only returned in revents; ignored in events).

 This bit is also set for a file descriptor referring to the

 write end of a pipe when the read end has been closed.

 POLLHUP

 Hang up (only returned in revents; ignored in events). Note

 that when reading from a channel such as a pipe or a stream

 socket, this event merely indicates that the peer closed its end

 of the channel. Subsequent reads from the channel will return 0

 (end of file) only after all outstanding data in the channel has

 been consumed.

 POLLNVAL

 Invalid request: fd not open (only returned in revents; ignored

 in events).

 When compiling with _XOPEN_SOURCE defined, one also has the following, Page 3/10

 which convey no further information beyond the bits listed above:

 POLLRDNORM

 Equivalent to POLLIN.

 POLLRDBAND

 Priority band data can be read (generally unused on Linux).

 POLLWRNORM

 Equivalent to POLLOUT.

 POLLWRBAND

 Priority data may be written.

 Linux also knows about, but does not use POLLMSG.

 ppoll()

 The relationship between poll() and ppoll() is analogous to the rela?

 tionship between select(2) and pselect(2): like pselect(2), ppoll() al?

 lows an application to safely wait until either a file descriptor be?

 comes ready or until a signal is caught.

 Other than the difference in the precision of the timeout argument, the

 following ppoll() call:

 ready = ppoll(&fds, nfds, tmo_p, &sigmask);

 is nearly equivalent to atomically executing the following calls:

 sigset_t origmask;

 int timeout;

 timeout = (tmo_p == NULL) ? -1 :

 (tmo_p->tv_sec * 1000 + tmo_p->tv_nsec / 1000000);

 pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);

 ready = poll(&fds, nfds, timeout);

 pthread_sigmask(SIG_SETMASK, &origmask, NULL);

 The above code segment is described as nearly equivalent because

 whereas a negative timeout value for poll() is interpreted as an infi?

 nite timeout, a negative value expressed in *tmo_p results in an error

 from ppoll().

 See the description of pselect(2) for an explanation of why ppoll() is

 necessary.

 If the sigmask argument is specified as NULL, then no signal mask ma? Page 4/10

 nipulation is performed (and thus ppoll() differs from poll() only in

 the precision of the timeout argument).

 The tmo_p argument specifies an upper limit on the amount of time that

 ppoll() will block. This argument is a pointer to a structure of the

 following form:

 struct timespec {

 long tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

 If tmo_p is specified as NULL, then ppoll() can block indefinitely.

RETURN VALUE

 On success, poll() returns a nonnegative value which is the number of

 elements in the pollfds whose revents fields have been set to a nonzero

 value (indicating an event or an error). A return value of zero indi?

 cates that the system call timed out before any file descriptors became

 read.

 On error, -1 is returned, and errno is set to indicate the cause of the

 error.

ERRORS

 EFAULT fds points outside the process's accessible address space. The

 array given as argument was not contained in the calling pro?

 gram's address space.

 EINTR A signal occurred before any requested event; see signal(7).

 EINVAL The nfds value exceeds the RLIMIT_NOFILE value.

 EINVAL (ppoll()) The timeout value expressed in *ip is invalid (nega?

 tive).

 ENOMEM Unable to allocate memory for kernel data structures.

VERSIONS

 The poll() system call was introduced in Linux 2.1.23. On older ker?

 nels that lack this system call, the glibc poll() wrapper function pro?

 vides emulation using select(2).

 The ppoll() system call was added to Linux in kernel 2.6.16. The

 ppoll() library call was added in glibc 2.4. Page 5/10

CONFORMING TO

 poll() conforms to POSIX.1-2001 and POSIX.1-2008. ppoll() is Linux-

 specific.

NOTES

 The operation of poll() and ppoll() is not affected by the O_NONBLOCK

 flag.

 On some other UNIX systems, poll() can fail with the error EAGAIN if

 the system fails to allocate kernel-internal resources, rather than

 ENOMEM as Linux does. POSIX permits this behavior. Portable programs

 may wish to check for EAGAIN and loop, just as with EINTR.

 Some implementations define the nonstandard constant INFTIM with the

 value -1 for use as a timeout for poll(). This constant is not pro?

 vided in glibc.

 For a discussion of what may happen if a file descriptor being moni?

 tored by poll() is closed in another thread, see select(2).

 C library/kernel differences

 The Linux ppoll() system call modifies its tmo_p argument. However,

 the glibc wrapper function hides this behavior by using a local vari?

 able for the timeout argument that is passed to the system call. Thus,

 the glibc ppoll() function does not modify its tmo_p argument.

 The raw ppoll() system call has a fifth argument, size_t sigsetsize,

 which specifies the size in bytes of the sigmask argument. The glibc

 ppoll() wrapper function specifies this argument as a fixed value

 (equal to sizeof(kernel_sigset_t)). See sigprocmask(2) for a discus?

 sion on the differences between the kernel and the libc notion of the

 sigset.

BUGS

 See the discussion of spurious readiness notifications under the BUGS

 section of select(2).

EXAMPLES

 The program below opens each of the files named in its command-line ar?

 guments and monitors the resulting file descriptors for readiness to

 read (POLLIN). The program loops, repeatedly using poll() to monitor Page 6/10

 the file descriptors, printing the number of ready file descriptors on

 return. For each ready file descriptor, the program:

 ? displays the returned revents field in a human-readable form;

 ? if the file descriptor is readable, reads some data from it, and dis?

 plays that data on standard output; and

 ? if the file descriptors was not readable, but some other event oc?

 curred (presumably POLLHUP), closes the file descriptor.

 Suppose we run the program in one terminal, asking it to open a FIFO:

 $ mkfifo myfifo

 $./poll_input myfifo

 In a second terminal window, we then open the FIFO for writing, write

 some data to it, and close the FIFO:

 $ echo aaaaabbbbbccccc > myfifo

 In the terminal where we are running the program, we would then see:

 Opened "myfifo" on fd 3

 About to poll()

 Ready: 1

 fd=3; events: POLLIN POLLHUP

 read 10 bytes: aaaaabbbbb

 About to poll()

 Ready: 1

 fd=3; events: POLLIN POLLHUP

 read 6 bytes: ccccc

 About to poll()

 Ready: 1

 fd=3; events: POLLHUP

 closing fd 3

 All file descriptors closed; bye

 In the above output, we see that poll() returned three times:

 ? On the first return, the bits returned in the revents field were

 POLLIN, indicating that the file descriptor is readable, and POLLHUP,

 indicating that the other end of the FIFO has been closed. The pro?

 gram then consumed some of the available input. Page 7/10

 ? The second return from poll() also indicated POLLIN and POLLHUP; the

 program then consumed the last of the available input.

 ? On the final return, poll() indicated only POLLHUP on the FIFO, at

 which point the file descriptor was closed and the program termi?

 nated.

 Program source

 /* poll_input.c

 Licensed under GNU General Public License v2 or later.

 */

 #include <poll.h>

 #include <fcntl.h>

 #include <sys/types.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int nfds, num_open_fds;

 struct pollfd *pfds;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s file...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 num_open_fds = nfds = argc - 1;

 pfds = calloc(nfds, sizeof(struct pollfd));

 if (pfds == NULL)

 errExit("malloc");

 /* Open each file on command line, and add it 'pfds' array */

 for (int j = 0; j < nfds; j++) {

 pfds[j].fd = open(argv[j + 1], O_RDONLY); Page 8/10

 if (pfds[j].fd == -1)

 errExit("open");

 printf("Opened \"%s\" on fd %d\n", argv[j + 1], pfds[j].fd);

 pfds[j].events = POLLIN;

 }

 /* Keep calling poll() as long as at least one file descriptor is

 open */

 while (num_open_fds > 0) {

 int ready;

 printf("About to poll()\n");

 ready = poll(pfds, nfds, -1);

 if (ready == -1)

 errExit("poll");

 printf("Ready: %d\n", ready);

 /* Deal with array returned by poll() */

 for (int j = 0; j < nfds; j++) {

 char buf[10];

 if (pfds[j].revents != 0) {

 printf(" fd=%d; events: %s%s%s\n", pfds[j].fd,

 (pfds[j].revents & POLLIN) ? "POLLIN " : "",

 (pfds[j].revents & POLLHUP) ? "POLLHUP " : "",

 (pfds[j].revents & POLLERR) ? "POLLERR " : "");

 if (pfds[j].revents & POLLIN) {

 ssize_t s = read(pfds[j].fd, buf, sizeof(buf));

 if (s == -1)

 errExit("read");

 printf(" read %zd bytes: %.*s\n",

 s, (int) s, buf);

 } else { /* POLLERR | POLLHUP */

 printf(" closing fd %d\n", pfds[j].fd);

 if (close(pfds[j].fd) == -1)

 errExit("close");

 num_open_fds--; Page 9/10

 }

 }

 }

 }

 printf("All file descriptors closed; bye\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 restart_syscall(2), select(2), select_tut(2), epoll(7), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 POLL(2)

Page 10/10

