
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'powf.3' command

$ man powf.3

POW(3) Linux Programmer's Manual POW(3)

NAME

 pow, powf, powl - power functions

SYNOPSIS

 #include <math.h>

 double pow(double x, double y);

 float powf(float x, float y);

 long double powl(long double x, long double y);

 Link with -lm.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 powf(), powl():

 _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 These functions return the value of x raised to the power of y.

RETURN VALUE

 On success, these functions return the value of x to the power of y.

 If x is a finite value less than 0, and y is a finite noninteger, a do?

 main error occurs, and a NaN is returned.

 If the result overflows, a range error occurs, and the functions return

 HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the mathemati?

 cally correct sign. Page 1/4

 If result underflows, and is not representable, a range error occurs,

 and 0.0 is returned.

 Except as specified below, if x or y is a NaN, the result is a NaN.

 If x is +1, the result is 1.0 (even if y is a NaN).

 If y is 0, the result is 1.0 (even if x is a NaN).

 If x is +0 (-0), and y is an odd integer greater than 0, the result is

 +0 (-0).

 If x is 0, and y greater than 0 and not an odd integer, the result is

 +0.

 If x is -1, and y is positive infinity or negative infinity, the result

 is 1.0.

 If the absolute value of x is less than 1, and y is negative infinity,

 the result is positive infinity.

 If the absolute value of x is greater than 1, and y is negative infin?

 ity, the result is +0.

 If the absolute value of x is less than 1, and y is positive infinity,

 the result is +0.

 If the absolute value of x is greater than 1, and y is positive infin?

 ity, the result is positive infinity.

 If x is negative infinity, and y is an odd integer less than 0, the re?

 sult is -0.

 If x is negative infinity, and y less than 0 and not an odd integer,

 the result is +0.

 If x is negative infinity, and y is an odd integer greater than 0, the

 result is negative infinity.

 If x is negative infinity, and y greater than 0 and not an odd integer,

 the result is positive infinity.

 If x is positive infinity, and y less than 0, the result is +0.

 If x is positive infinity, and y greater than 0, the result is positive

 infinity.

 If x is +0 or -0, and y is an odd integer less than 0, a pole error oc?

 curs and HUGE_VAL, HUGE_VALF, or HUGE_VALL, is returned, with the same

 sign as x. Page 2/4

 If x is +0 or -0, and y is less than 0 and not an odd integer, a pole

 error occurs and +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.

ERRORS

 See math_error(7) for information on how to determine whether an error

 has occurred when calling these functions.

 The following errors can occur:

 Domain error: x is negative, and y is a finite noninteger

 errno is set to EDOM. An invalid floating-point exception

 (FE_INVALID) is raised.

 Pole error: x is zero, and y is negative

 errno is set to ERANGE (but see BUGS). A divide-by-zero float?

 ing-point exception (FE_DIVBYZERO) is raised.

 Range error: the result overflows

 errno is set to ERANGE. An overflow floating-point exception

 (FE_OVERFLOW) is raised.

 Range error: the result underflows

 errno is set to ERANGE. An underflow floating-point exception

 (FE_UNDERFLOW) is raised.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?pow(), powf(), powl() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 C99, POSIX.1-2001, POSIX.1-2008.

 The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS

 Historical bugs (now fixed)

 Before glibc 2.28, on some architectures (e.g., x86-64) pow() may be

 more than 10,000 times slower for some inputs than for other nearby in? Page 3/4

 puts. This affects only pow(), and not powf() nor powl(). This prob?

 lem was fixed in glibc 2.28.

 A number of bugs in the glibc implementation of pow() were fixed in

 glibc version 2.16.

 In glibc 2.9 and earlier, when a pole error occurs, errno is set to

 EDOM instead of the POSIX-mandated ERANGE. Since version 2.10, glibc

 does the right thing.

 In version 2.3.2 and earlier, when an overflow or underflow error oc?

 curs, glibc's pow() generates a bogus invalid floating-point exception

 (FE_INVALID) in addition to the overflow or underflow exception.

SEE ALSO

 cbrt(3), cpow(3), sqrt(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-06-09 POW(3)

Page 4/4

