
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'podman-create.1' command

$ man podman-create.1

podman-create(1) General Commands Manual podman-create(1)

NAME

 podman-create - Create a new container

SYNOPSIS

 podman create [options] image [command [arg ...]]

 podman container create [options] image [command [arg ...]]

DESCRIPTION

 Creates a writable container layer over the specified image and pre?

 pares it for running the specified command. The container ID is then

 printed to STDOUT. This is similar to podman run -d except the con?

 tainer is never started. Use the podman start container command to

 start the container at any point.

 The initial status of the container created with podman create is 'cre?

 ated'.

 Default settings for flags are defined in containers.conf. Most set?

 tings for remote connections use the server's containers.conf, except

 when documented in man pages.

IMAGE

 The image is specified using transport:path format. If no transport is

 specified, the docker (container registry) transport will be used by

 default. For remote Podman, including Mac and Windows (excluding WSL2)

 machines, docker is the only allowed transport.

 dir:path Page 1/52

 An existing local directory path storing the manifest, layer tarballs

 and signatures as individual files. This is a non-standardized format,

 primarily useful for debugging or noninvasive container inspection.

 $ podman save --format docker-dir fedora -o /tmp/fedora

 $ podman create dir:/tmp/fedora echo hello

 docker://docker-reference (Default)

 An image reference stored in a remote container image registry. Ex?

 ample: "quay.io/podman/stable:latest". The reference can include a

 path to a specific registry; if it does not, the registries listed in

 registries.conf will be queried to find a matching image. By default,

 credentials from podman login (stored at $XDG_RUNTIME_DIR/contain?

 ers/auth.json by default) will be used to authenticate; otherwise it

 falls back to using credentials in $HOME/.docker/config.json.

 $ podman create registry.fedoraproject.org/fedora:latest echo hello

 docker-archive:path[:docker-reference] An image stored in the docker

 save formatted file. docker-reference is only used when creating such a

 file, and it must not contain a digest.

 $ podman save --format docker-archive fedora -o /tmp/fedora

 $ podman create docker-archive:/tmp/fedora echo hello

 docker-daemon:docker-reference

 An image in docker-reference format stored in the docker daemon in?

 ternal storage. The docker-reference can also be an image ID (docker-

 daemon:algo:digest).

 $ sudo docker pull fedora

 $ sudo podman create docker-daemon:docker.io/library/fedora echo hello

 oci-archive:path:tag

 An image in a directory compliant with the "Open Container Image Lay?

 out Specification" at the specified path and specified with a tag.

 $ podman save --format oci-archive fedora -o /tmp/fedora

 $ podman create oci-archive:/tmp/fedora echo hello

OPTIONS

 --add-host=host:ip

 Add a custom host-to-IP mapping (host:ip) Page 2/52

 Add a line to /etc/hosts. The format is hostname:ip. The --add-host op?

 tion can be set multiple times. Conflicts with the --no-hosts option.

 --annotation=key=value

 Add an annotation to the container. This option can be set multiple

 times.

 --arch=ARCH

 Override the architecture, defaults to hosts, of the image to be

 pulled. For example, arm. Unless overridden, subsequent lookups of the

 same image in the local storage will match this architecture, regard?

 less of the host.

 --attach, -a=stdin | stdout | stderr

 Attach to STDIN, STDOUT or STDERR.

 In foreground mode (the default when -d is not specified), podman run

 can start the process in the container and attach the console to the

 process's standard input, output, and error. It can even pretend to be

 a TTY (this is what most command-line executables expect) and pass

 along signals. The -a option can be set for each of stdin, stdout, and

 stderr.

 --authfile=path

 Path of the authentication file. Default is ${XDG_RUNTIME_DIR}/contain?

 ers/auth.json, which is set using podman login. If the authorization

 state is not found there, $HOME/.docker/config.json is checked, which

 is set using docker login.

 Note: There is also the option to override the default path of the au?

 thentication file by setting the REGISTRY_AUTH_FILE environment vari?

 able. This can be done with export REGISTRY_AUTH_FILE=path.

 --blkio-weight=weight

 Block IO relative weight. The weight is a value between 10 and 1000.

 This option is not supported on cgroups V1 rootless systems.

 --blkio-weight-device=device:weight

 Block IO relative device weight.

 --cap-add=capability

 Add Linux capabilities. Page 3/52

 --cap-drop=capability

 Drop Linux capabilities.

 --cgroup-conf=KEY=VALUE

 When running on cgroup v2, specify the cgroup file to write to and its

 value. For example --cgroup-conf=memory.high=1073741824 sets the mem?

 ory.high limit to 1GB.

 --cgroup-parent=path

 Path to cgroups under which the cgroup for the container will be cre?

 ated. If the path is not absolute, the path is considered to be rela?

 tive to the cgroups path of the init process. Cgroups will be created

 if they do not already exist.

 --cgroupns=mode

 Set the cgroup namespace mode for the container.

 ? host: use the host's cgroup namespace inside the container.

 ? container:id: join the namespace of the specified container.

 ? private: create a new cgroup namespace.

 ? ns:path: join the namespace at the specified path.

 If the host uses cgroups v1, the default is set to host. On cgroups v2,

 the default is private.

 --cgroups=how

 Determines whether the container will create CGroups.

 Default is enabled.

 The enabled option will create a new cgroup under the cgroup-parent.

 The disabled option will force the container to not create CGroups, and

 thus conflicts with CGroup options (--cgroupns and --cgroup-parent).

 The no-conmon option disables a new CGroup only for the conmon process.

 The split option splits the current CGroup in two sub-cgroups: one for

 conmon and one for the container payload. It is not possible to set

 --cgroup-parent with split.

 --chrootdirs=path

 Path to a directory inside the container that should be treated as a

 chroot directory. Any Podman managed file (e.g., /etc/resolv.conf,

 /etc/hosts, etc/hostname) that is mounted into the root directory will Page 4/52

 be mounted into that location as well. Multiple directories should be

 separated with a comma.

 --cidfile=file

 Write the container ID to file. The file will be removed along with

 the container.

 --conmon-pidfile=file

 Write the pid of the conmon process to a file. As conmon runs in a sep?

 arate process than Podman, this is necessary when using systemd to

 restart Podman containers. (This option is not available with the re?

 mote Podman client, including Mac and Windows (excluding WSL2) ma?

 chines)

 --cpu-period=limit

 Set the CPU period for the Completely Fair Scheduler (CFS), which is a

 duration in microseconds. Once the container's CPU quota is used up, it

 will not be scheduled to run until the current period ends. Defaults to

 100000 microseconds.

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --cpu-quota=limit

 Limit the CPU Completely Fair Scheduler (CFS) quota.

 Limit the container's CPU usage. By default, containers run with the

 full CPU resource. The limit is a number in microseconds. If a number

 is provided, the container will be allowed to use that much CPU time

 until the CPU period ends (controllable via --cpu-period).

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --cpu-rt-period=microseconds Page 5/52

 Limit the CPU real-time period in microseconds.

 Limit the container's Real Time CPU usage. This option tells the kernel

 to restrict the container's Real Time CPU usage to the period speci?

 fied.

 This option is only supported on cgroups V1 rootful systems.

 --cpu-rt-runtime=microseconds

 Limit the CPU real-time runtime in microseconds.

 Limit the containers Real Time CPU usage. This option tells the kernel

 to limit the amount of time in a given CPU period Real Time tasks may

 consume. Ex: Period of 1,000,000us and Runtime of 950,000us means that

 this container could consume 95% of available CPU and leave the remain?

 ing 5% to normal priority tasks.

 The sum of all runtimes across containers cannot exceed the amount al?

 lotted to the parent cgroup.

 This option is only supported on cgroups V1 rootful systems.

 --cpu-shares, -c=shares

 CPU shares (relative weight).

 By default, all containers get the same proportion of CPU cycles. This

 proportion can be modified by changing the container's CPU share

 weighting relative to the combined weight of all the running contain?

 ers. Default weight is 1024.

 The proportion will only apply when CPU-intensive processes are run?

 ning. When tasks in one container are idle, other containers can use

 the left-over CPU time. The actual amount of CPU time will vary depend?

 ing on the number of containers running on the system.

 For example, consider three containers, one has a cpu-share of 1024 and

 two others have a cpu-share setting of 512. When processes in all three

 containers attempt to use 100% of CPU, the first container would re?

 ceive 50% of the total CPU time. If a fourth container is added with a

 cpu-share of 1024, the first container only gets 33% of the CPU. The

 remaining containers receive 16.5%, 16.5% and 33% of the CPU.

 On a multi-core system, the shares of CPU time are distributed over all

 CPU cores. Even if a container is limited to less than 100% of CPU Page 6/52

 time, it can use 100% of each individual CPU core.

 For example, consider a system with more than three cores. If the con?

 tainer C0 is started with --cpu-shares=512 running one process, and an?

 other container C1 with --cpu-shares=1024 running two processes, this

 can result in the following division of CPU shares:

 ???????????????????????????????????????

 ?PID ? container ? CPU ? CPU share ?

 ???????????????????????????????????????

 ?100 ? C0 ? 0 ? 100% of CPU0 ?

 ???????????????????????????????????????

 ?101 ? C1 ? 1 ? 100% of CPU1 ?

 ???????????????????????????????????????

 ?102 ? C1 ? 2 ? 100% of CPU2 ?

 ???????????????????????????????????????

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --cpus=number

 Number of CPUs. The default is 0.0 which means no limit. This is short?

 hand for --cpu-period and --cpu-quota, therefore the option cannot be

 specified with --cpu-period or --cpu-quota.

 On some systems, changing the CPU limits may not be allowed for non-

 root users. For more details, see https://github.com/containers/pod?

 man/blob/main/troubleshooting.md#26-running-containers-with-resource-

 limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --cpuset-cpus=number

 CPUs in which to allow execution. Can be specified as a comma-separated

 list (e.g. 0,1), as a range (e.g. 0-3), or any combination thereof

 (e.g. 0-3,7,11-15).

 On some systems, changing the resource limits may not be allowed for Page 7/52

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --cpuset-mems=nodes

 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effec?

 tive on NUMA systems.

 If there are four memory nodes on the system (0-3), use --cpuset-

 mems=0,1 then processes in the container will only use memory from the

 first two memory nodes.

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --decryption-key=key[:passphrase]

 The [key[:passphrase]] to be used for decryption of images. Key can

 point to keys and/or certificates. Decryption will be tried with all

 keys. If the key is protected by a passphrase, it is required to be

 passed in the argument and omitted otherwise.

 --device=host-device[:container-device][:permissions]

 Add a host device to the container. Optional permissions parameter can

 be used to specify device permissions by combining r for read, w for

 write, and m for mknod(2).

 Example: --device=/dev/sdc:/dev/xvdc:rwm.

 Note: if host-device is a symbolic link then it will be resolved first.

 The container will only store the major and minor numbers of the host

 device.

 Podman may load kernel modules required for using the specified device.

 The devices that Podman will load modules for when necessary are:

 /dev/fuse.

 In rootless mode, the new device is bind mounted in the container from

 the host rather than Podman creating it within the container space. Be? Page 8/52

 cause the bind mount retains its SELinux label on SELinux systems, the

 container can get permission denied when accessing the mounted device.

 Modify SELinux settings to allow containers to use all device labels

 via the following command:

 $ sudo setsebool -P container_use_devices=true

 Note: if the user only has access rights via a group, accessing the de?

 vice from inside a rootless container will fail. Use the --group-add

 keep-groups flag to pass the user's supplementary group access into the

 container.

 --device-cgroup-rule="type major:minor mode"

 Add a rule to the cgroup allowed devices list. The rule is expected to

 be in the format specified in the Linux kernel documentation (Documen?

 tation/cgroup-v1/devices.txt):

 - type: a (all), c (char), or b (block);

 - major and minor: either a number, or * for all;

 - mode: a composition of r (read), w (write), and m (mknod(2)).

 --device-read-bps=path:rate

 Limit read rate (in bytes per second) from a device (e.g. --device-

 read-bps=/dev/sda:1mb).

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --device-read-iops=path:rate

 Limit read rate (in IO operations per second) from a device (e.g. --de?

 vice-read-iops=/dev/sda:1000).

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --device-write-bps=path:rate Page 9/52

 Limit write rate (in bytes per second) to a device (e.g. --device-

 write-bps=/dev/sda:1mb).

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --device-write-iops=path:rate

 Limit write rate (in IO operations per second) to a device (e.g. --de?

 vice-write-iops=/dev/sda:1000).

 On some systems, changing the resource limits may not be allowed for

 non-root users. For more details, see https://github.com/contain?

 ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

 source-limits-fails-with-a-permissions-error

 This option is not supported on cgroups V1 rootless systems.

 --disable-content-trust

 This is a Docker-specific option to disable image verification to a

 container registry and is not supported by Podman. This option is a

 NOOP and provided solely for scripting compatibility.

 --dns=ipaddr

 Set custom DNS servers.

 This option can be used to override the DNS configuration passed to the

 container. Typically this is necessary when the host DNS configuration

 is invalid for the container (e.g., 127.0.0.1). When this is the case

 the --dns flag is necessary for every run.

 The special value none can be specified to disable creation of /etc/re?

 solv.conf in the container by Podman. The /etc/resolv.conf file in the

 image will be used without changes.

 This option cannot be combined with --network that is set to none or

 container:id.

 --dns-option=option

 Set custom DNS options. Invalid if using --dns-option with --network

 that is set to none or container:id. Page 10/52

 --dns-search=domain

 Set custom DNS search domains. Invalid if using --dns-search with

 --network that is set to none or container:id. Use --dns-search=. to

 remove the search domain.

 --entrypoint="command" | '["command", arg1 , ...]'

 Override the default ENTRYPOINT from the image.

 The ENTRYPOINT of an image is similar to a COMMAND because it specifies

 what executable to run when the container starts, but it is (purposely)

 more difficult to override. The ENTRYPOINT gives a container its de?

 fault nature or behavior. When the ENTRYPOINT is set, the container

 runs as if it were that binary, complete with default options. More op?

 tions can be passed in via the COMMAND. But, if a user wants to run

 something else inside the container, the --entrypoint option allows a

 new ENTRYPOINT to be specified.

 Specify multi option commands in the form of a json string.

 --env, -e=env

 Set environment variables.

 This option allows arbitrary environment variables that are available

 for the process to be launched inside of the container. If an environ?

 ment variable is specified without a value, Podman will check the host

 environment for a value and set the variable only if it is set on the

 host. As a special case, if an environment variable ending in * is

 specified without a value, Podman will search the host environment for

 variables starting with the prefix and will add those variables to the

 container.

 See Environment ?#environment? note below for precedence and examples.

 --env-file=file

 Read in a line-delimited file of environment variables.

 See Environment ?#environment? note below for precedence and examples.

 --env-host

 Use host environment inside of the container. See Environment note be?

 low for precedence. (This option is not available with the remote Pod?

 man client, including Mac and Windows (excluding WSL2) machines) Page 11/52

 --env-merge=env

 Preprocess default environment variables for the containers. For exam?

 ple if image contains environment variable hello=world user can prepro?

 cess it using --env-merge hello=${hello}-some so new value will be

 hello=world-some.

 --expose=port

 Expose a port, or a range of ports (e.g. --expose=3300-3310) to set up

 port redirection on the host system.

 --gidmap=container_gid:host_gid:amount

 Run the container in a new user namespace using the supplied GID map?

 ping. This option conflicts with the --userns and --subgidname options.

 This option provides a way to map host GIDs to container GIDs in the

 same way as --uidmap maps host UIDs to container UIDs. For details see

 --uidmap.

 Note: the --gidmap flag cannot be called in conjunction with the --pod

 flag as a gidmap cannot be set on the container level when in a pod.

 --group-add=group | keep-groups

 Assign additional groups to the primary user running within the con?

 tainer process.

 ? keep-groups is a special flag that tells Podman to keep the

 supplementary group access.

 Allows container to use the user's supplementary group access. If file

 systems or devices are only accessible by the rootless user's group,

 this flag tells the OCI runtime to pass the group access into the con?

 tainer. Currently only available with the crun OCI runtime. Note: keep-

 groups is exclusive, other groups cannot be specified with this flag.

 (Not available for remote commands, including Mac and Windows (exclud?

 ing WSL2) machines)

 --health-cmd="command" | '["command", arg1 , ...]'

 Set or alter a healthcheck command for a container. The command is a

 command to be executed inside the container that determines the con?

 tainer health. The command is required for other healthcheck options to

 be applied. A value of none disables existing healthchecks. Page 12/52

 Multiple options can be passed in the form of a JSON array; otherwise,

 the command will be interpreted as an argument to /bin/sh -c.

 --health-interval=interval

 Set an interval for the healthchecks. An interval of disable results in

 no automatic timer setup. The default is 30s.

 --health-on-failure=action

 Action to take once the container transitions to an unhealthy state.

 The default is none.

 ? none: Take no action.

 ? kill: Kill the container.

 ? restart: Restart the container. Do not combine the restart

 action with the --restart flag. When running inside of a sys?

 temd unit, consider using the kill or stop action instead to

 make use of systemd's restart policy.

 ? stop: Stop the container.

 --health-retries=retries

 The number of retries allowed before a healthcheck is considered to be

 unhealthy. The default value is 3.

 --health-start-period=period

 The initialization time needed for a container to bootstrap. The value

 can be expressed in time format like 2m3s. The default value is 0s.

 --health-startup-cmd="command" | '["command", arg1 , ...]'

 Set a startup healthcheck command for a container. This command will be

 executed inside the container and is used to gate the regular

 healthcheck. When the startup command succeeds, the regular healthcheck

 will begin and the startup healthcheck will cease. Optionally, if the

 command fails for a set number of attempts, the container will be

 restarted. A startup healthcheck can be used to ensure that containers

 with an extended startup period are not marked as unhealthy until they

 are fully started. Startup healthchecks can only be used when a regular

 healthcheck (from the container's image or the --health-cmd option) is

 also set.

 --health-startup-interval=interval Page 13/52

 Set an interval for the startup healthcheck. An interval of disable re?

 sults in no automatic timer setup. The default is 30s.

 --health-startup-retries=retries

 The number of attempts allowed before the startup healthcheck restarts

 the container. If set to 0, the container will never be restarted. The

 default is 0.

 --health-startup-success=retries

 The number of successful runs required before the startup healthcheck

 will succeed and the regular healthcheck will begin. A value of 0 means

 that any success will begin the regular healthcheck. The default is 0.

 --health-startup-timeout=timeout

 The maximum time a startup healthcheck command has to complete before

 it is marked as failed. The value can be expressed in a time format

 like 2m3s. The default value is 30s.

 --health-timeout=timeout

 The maximum time allowed to complete the healthcheck before an interval

 is considered failed. Like start-period, the value can be expressed in

 a time format such as 1m22s. The default value is 30s.

 --help

 Print usage statement

 --hostname, -h=name

 Container host name

 Sets the container host name that is available inside the container.

 Can only be used with a private UTS namespace --uts=private (default).

 If --pod is specified and the pod shares the UTS namespace (default)

 the pod's hostname will be used.

 --hostuser=name

 Add a user account to /etc/passwd from the host to the container. The

 Username or UID must exist on the host system.

 --http-proxy

 By default proxy environment variables are passed into the container if

 set for the Podman process. This can be disabled by setting the value

 to false. The environment variables passed in include http_proxy, Page 14/52

 https_proxy, ftp_proxy, no_proxy, and also the upper case versions of

 those. This option is only needed when the host system must use a proxy

 but the container should not use any proxy. Proxy environment variables

 specified for the container in any other way will override the values

 that would have been passed through from the host. (Other ways to spec?

 ify the proxy for the container include passing the values with the

 --env flag, or hard coding the proxy environment at container build

 time.) When used with the remote client it will use the proxy environ?

 ment variables that are set on the server process.

 Defaults to true.

 --image-volume=bind | tmpfs | ignore

 Tells Podman how to handle the builtin image volumes. Default is bind.

 ? bind: An anonymous named volume will be created and mounted

 into the container.

 ? tmpfs: The volume is mounted onto the container as a tmpfs,

 which allows the users to create content that disappears when

 the container is stopped.

 ? ignore: All volumes are just ignored and no action is taken.

 --init

 Run an init inside the container that forwards signals and reaps pro?

 cesses. The container-init binary is mounted at /run/podman-init.

 Mounting over /run will hence break container execution.

 --init-ctr=type

 (Pods only). When using pods, create an init style container, which is

 run after the infra container is started but before regular pod con?

 tainers are started. Init containers are useful for running setup op?

 erations for the pod's applications.

 Valid values for init-ctr type are always or once. The always value

 means the container will run with each and every pod start, whereas the

 once value means the container will only run once when the pod is

 started and then the container is removed.

 Init containers are only run on pod start. Restarting a pod will not

 execute any init containers should they be present. Furthermore, init Page 15/52

 containers can only be created in a pod when that pod is not running.

 --init-path=path

 Path to the container-init binary.

 --interactive, -i

 When set to true, keep stdin open even if not attached. The default is

 false.

 --ip=ipv4

 Specify a static IPv4 address for the container, for example

 10.88.64.128. This option can only be used if the container is joined

 to only a single network - i.e., --network=network-name is used at most

 once - and if the container is not joining another container's network

 namespace via --network=container:id. The address must be within the

 network's IP address pool (default 10.88.0.0/16).

 To specify multiple static IP addresses per container, set multiple

 networks using the --network option with a static IP address specified

 for each using the ip mode for that option.

 --ip6=ipv6

 Specify a static IPv6 address for the container, for example

 fd46:db93:aa76:ac37::10. This option can only be used if the container

 is joined to only a single network - i.e., --network=network-name is

 used at most once - and if the container is not joining another con?

 tainer's network namespace via --network=container:id. The address

 must be within the network's IPv6 address pool.

 To specify multiple static IPv6 addresses per container, set multiple

 networks using the --network option with a static IPv6 address speci?

 fied for each using the ip6 mode for that option.

 --ipc=ipc

 Set the IPC namespace mode for a container. The default is to create a

 private IPC namespace.

 ? "": Use Podman's default, defined in containers.conf.

 ? container:id: reuses another container's shared memory, sema?

 phores, and message queues

 ? host: use the host's shared memory, semaphores, and message Page 16/52

 queues inside the container. Note: the host mode gives the

 container full access to local shared memory and is therefore

 considered insecure.

 ? none: private IPC namespace, with /dev/shm not mounted.

 ? ns:path: path to an IPC namespace to join.

 ? private: private IPC namespace.

 ? shareable: private IPC namespace with a possibility to share

 it with other containers.

 --label, -l=key=value

 Add metadata to a container.

 --label-file=file

 Read in a line-delimited file of labels.

 --link-local-ip=ip

 Not implemented.

 --log-driver=driver

 Logging driver for the container. Currently available options are k8s-

 file, journald, none and passthrough, with json-file aliased to k8s-

 file for scripting compatibility. (Default journald).

 The podman info command below will display the default log-driver for

 the system.

 $ podman info --format '{{ .Host.LogDriver }}'

 journald

 The passthrough driver passes down the standard streams (stdin, stdout,

 stderr) to the container. It is not allowed with the remote Podman

 client, including Mac and Windows (excluding WSL2) machines, and on a

 tty, since it is vulnerable to attacks via TIOCSTI.

 --log-opt=name=value

 Logging driver specific options.

 Set custom logging configuration. The following *name*s are supported:

 path: specify a path to the log file

 (e.g. --log-opt path=/var/log/container/mycontainer.json);

 max-size: specify a max size of the log file

 (e.g. --log-opt max-size=10mb); Page 17/52

 tag: specify a custom log tag for the container

 (e.g. --log-opt tag="{{.ImageName}}". It supports the same keys as

 podman inspect --format. This option is currently supported only by

 the journald log driver.

 --mac-address=address

 Container network interface MAC address (e.g. 92:d0:c6:0a:29:33) This

 option can only be used if the container is joined to only a single

 network - i.e., --network=network-name is used at most once - and if

 the container is not joining another container's network namespace via

 --network=container:id.

 Remember that the MAC address in an Ethernet network must be unique.

 The IPv6 link-local address will be based on the device's MAC address

 according to RFC4862.

 To specify multiple static MAC addresses per container, set multiple

 networks using the --network option with a static MAC address specified

 for each using the mac mode for that option.

 --memory, -m=number[unit]

 Memory limit. A unit can be b (bytes), k (kibibytes), m (mebibytes), or

 g (gibibytes).

 Allows the memory available to a container to be constrained. If the

 host supports swap memory, then the -m memory setting can be larger

 than physical RAM. If a limit of 0 is specified (not using -m), the

 container's memory is not limited. The actual limit may be rounded up

 to a multiple of the operating system's page size (the value would be

 very large, that's millions of trillions).

 This option is not supported on cgroups V1 rootless systems.

 --memory-reservation=number[unit]

 Memory soft limit. A unit can be b (bytes), k (kibibytes), m

 (mebibytes), or g (gibibytes).

 After setting memory reservation, when the system detects memory con?

 tention or low memory, containers are forced to restrict their consump?

 tion to their reservation. So always set the value below --memory, oth?

 erwise the hard limit will take precedence. By default, memory reserva? Page 18/52

 tion will be the same as memory limit.

 This option is not supported on cgroups V1 rootless systems.

 --memory-swap=number[unit]

 A limit value equal to memory plus swap. A unit can be b (bytes), k

 (kibibytes), m (mebibytes), or g (gibibytes).

 Must be used with the -m (--memory) flag. The argument value should

 always be larger than that of

 -m (--memory) By default, it is set to double the value of --memory.

 Set number to -1 to enable unlimited swap.

 This option is not supported on cgroups V1 rootless systems.

 --memory-swappiness=number

 Tune a container's memory swappiness behavior. Accepts an integer be?

 tween 0 and 100.

 This flag is only supported on cgroups V1 rootful systems.

 --mount=type=TYPE,TYPE-SPECIFIC-OPTION[,...]

 Attach a filesystem mount to the container

 Current supported mount TYPEs are bind, volume, image, tmpfs and de?

 vpts. [1] ?#Footnote1?

 e.g.

 type=bind,source=/path/on/host,destination=/path/in/container

 type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared

 type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared,U=true

 type=volume,source=vol1,destination=/path/in/container,ro=true

 type=tmpfs,tmpfs-size=512M,destination=/path/in/container

 type=image,source=fedora,destination=/fedora-image,rw=true

 type=devpts,destination=/dev/pts

 Common Options:

 ? src, source: mount source spec for bind and volume. Mandatory for bind.

 ? dst, destination, target: mount destination spec.

 Options specific to volume:

 ? ro, readonly: true or false (default).

 . U, chown: true or false (default). Change recursively the owner and group of the source volume based on the

UID and GID of the container. Page 19/52

 ? idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the

container.

 The idmap option supports a custom mapping that can be different than the user namespace used by the

container.

 The mapping can be specified after the idmap option like: `idmap=uids=0-1-10#10-11-10;gids=0-100-10`. For

each triplet, the first value is the

 start of the backing file system IDs that are mapped to the second value on the host. The length of this

mapping is given in the third value.

 Multiple ranges are separated with #.

 Options specific to image:

 ? rw, readwrite: true or false (default).

 Options specific to bind:

 ? ro, readonly: true or false (default).

 ? bind-propagation: shared, slave, private, unbindable, rshared, rslave, runbindable, or rprivate(default). See

also mount(2).

 . bind-nonrecursive: do not set up a recursive bind mount. By default it is recursive.

 . relabel: shared, private.

 ? idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the

container.

 . U, chown: true or false (default). Change recursively the owner and group of the source volume based on the

UID and GID of the container.

 Options specific to tmpfs:

 ? ro, readonly: true or false (default).

 ? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.

 ? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.

 ? tmpcopyup: Enable copyup from the image directory at the same location to the tmpfs. Used by default.

 ? notmpcopyup: Disable copying files from the image to the tmpfs.

 . U, chown: true or false (default). Change recursively the owner and group of the source volume based on the

UID and GID of the container.

 Options specific to devpts:

 ? uid: UID of the file owner (default 0).

 ? gid: GID of the file owner (default 0).

 ? mode: permission mask for the file (default 600). Page 20/52

 ? max: maximum number of PTYs (default 1048576).

 --name=name

 Assign a name to the container.

 The operator can identify a container in three ways:

 ? UUID long identifier

 (?f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778?);

 ? UUID short identifier (?f78375b1c487?);

 ? Name (?jonah?).

 Podman generates a UUID for each container, and if a name is not as?

 signed to the container with --name then it will generate a random

 string name. The name can be useful as a more human-friendly way to

 identify containers. This works for both background and foreground

 containers.

 --network=mode, --net

 Set the network mode for the container.

 Valid mode values are:

 ? bridge[:OPTIONS,...]: Create a network stack on the default

 bridge. This is the default for rootful containers. It is pos?

 sible to specify these additional options:

 ? alias=name: Add network-scoped alias for the container.

 ? ip=IPv4: Specify a static ipv4 address for this container.

 ? ip=IPv6: Specify a static ipv6 address for this container.

 ? mac=MAC: Specify a static mac address for this container.

 ? interface_name: Specify a name for the created network in?

 terface inside the container.

 For example to set a static ipv4 address and a static mac ad?

 dress, use --network bridge:ip=10.88.0.10,mac=44:33:22:11:00:99.

 ? <network name or ID>[:OPTIONS,...]: Connect to a user-defined

 network; this is the network name or ID from a network created

 by podman network create. Using the network name implies the

 bridge network mode. It is possible to specify the same op?

 tions described under the bridge mode above. Use the --network

 option multiple times to specify additional networks. Page 21/52

 ? none: Create a network namespace for the container but do not

 configure network interfaces for it, thus the container has no

 network connectivity.

 ? container:id: Reuse another container's network stack.

 ? host: Do not create a network namespace, the container will

 use the host's network. Note: The host mode gives the con?

 tainer full access to local system services such as D-bus and

 is therefore considered insecure.

 ? ns:path: Path to a network namespace to join.

 ? private: Create a new namespace for the container. This will

 use the bridge mode for rootful containers and slirp4netns for

 rootless ones.

 ? slirp4netns[:OPTIONS,...]: use slirp4netns(1) to create a user

 network stack. This is the default for rootless containers. It

 is possible to specify these additional options, they can also

 be set with network_cmd_options in containers.conf:

 ? allow_host_loopback=true|false: Allow slirp4netns to reach

 the host loopback IP (default is 10.0.2.2 or the second IP

 from slirp4netns cidr subnet when changed, see the cidr op?

 tion below). The default is false.

 ? mtu=MTU: Specify the MTU to use for this network. (Default

 is 65520).

 ? cidr=CIDR: Specify ip range to use for this network. (De?

 fault is 10.0.2.0/24).

 ? enable_ipv6=true|false: Enable IPv6. Default is true. (Re?

 quired for outbound_addr6).

 ? outbound_addr=INTERFACE: Specify the outbound interface

 slirp should bind to (ipv4 traffic only).

 ? outbound_addr=IPv4: Specify the outbound ipv4 address slirp

 should bind to.

 ? outbound_addr6=INTERFACE: Specify the outbound interface

 slirp should bind to (ipv6 traffic only).

 ? outbound_addr6=IPv6: Specify the outbound ipv6 address slirp Page 22/52

 should bind to.

 ? port_handler=rootlesskit: Use rootlesskit for port forward?

 ing. Default. Note: Rootlesskit changes the source IP ad?

 dress of incoming packets to an IP address in the container

 network namespace, usually 10.0.2.100. If the application

 requires the real source IP address, e.g. web server logs,

 use the slirp4netns port handler. The rootlesskit port han?

 dler is also used for rootless containers when connected to

 user-defined networks.

 ? port_handler=slirp4netns: Use the slirp4netns port forward?

 ing, it is slower than rootlesskit but preserves the correct

 source IP address. This port handler cannot be used for

 user-defined networks.

 ? pasta[:OPTIONS,...]: use pasta(1) to create a user-mode net?

 working stack.

 This is only supported in rootless mode.

 By default, IPv4 and IPv6 addresses and routes, as well as the

 pod interface name, are copied from the host. If port forward?

 ing isn't configured, ports will be forwarded dynamically as

 services are bound on either side (init namespace or container

 namespace). Port forwarding preserves the original source IP

 address. Options described in pasta(1) can be specified as

 comma-separated arguments.

 In terms of pasta(1) options, --config-net is given by de?

 fault, in order to configure networking when the container is

 started, and --no-map-gw is also assumed by default, to avoid

 direct access from container to host using the gateway ad?

 dress. The latter can be overridden by passing --map-gw in the

 pasta-specific options (despite not being an actual pasta(1)

 option).

 Also, -t none and -u none are passed if, respectively, no TCP

 or UDP port forwarding from host to container is configured,

 to disable automatic port forwarding based on bound ports. Page 23/52

 Similarly, -T none and -U none are given to disable the same

 functionality from container to host.

 Some examples:

 ? pasta:--map-gw: Allow the container to directly reach the

 host using the gateway address.

 ? pasta:--mtu,1500: Specify a 1500 bytes MTU for the tap in?

 terface in the container.

 ? pasta:--ipv4-only,-a,10.0.2.0,-n,24,-g,10.0.2.2,--dns-for?

 ward,10.0.2.3,-m,1500,--no-ndp,--no-dhcpv6,--no-dhcp, equiv?

 alent to default slirp4netns(1) options: disable IPv6, as?

 sign 10.0.2.0/24 to the tap0 interface in the container,

 with gateway 10.0.2.3, enable DNS forwarder reachable at

 10.0.2.3, set MTU to 1500 bytes, disable NDP, DHCPv6 and

 DHCP support.

 ? pasta:-I,tap0,--ipv4-only,-a,10.0.2.0,-n,24,-g,10.0.2.2,--dns-

 forward,10.0.2.3,--no-ndp,--no-dhcpv6,--no-dhcp, equivalent

 to default slirp4netns(1) options with Podman overrides:

 same as above, but leave the MTU to 65520 bytes

 ? pasta:-t,auto,-u,auto,-T,auto,-U,auto: enable automatic port

 forwarding based on observed bound ports from both host and

 container sides

 ? pasta:-T,5201: enable forwarding of TCP port 5201 from con?

 tainer to host, using the loopback interface instead of the

 tap interface for improved performance

 NOTE: For backward compatibility reasons, if there is an exist?

 ing network named pasta, Podman will use it instead of the pasta

 mode."?

 Invalid if using --dns, --dns-option, or --dns-search with --network

 set to none or container:id.

 If used together with --pod, the container will not join the pod's net?

 work namespace.

 --network-alias=alias

 Add a network-scoped alias for the container, setting the alias for all Page 24/52

 networks that the container joins. To set a name only for a specific

 network, use the alias option as described under the --network option.

 If the network has DNS enabled (podman network inspect -f {{.DNSEn?

 abled}} <name>), these aliases can be used for name resolution on the

 given network. This option can be specified multiple times. NOTE: When

 using CNI a container will only have access to aliases on the first

 network that it joins. This limitation does not exist with ne?

 tavark/aardvark-dns.

 --no-healthcheck

 Disable any defined healthchecks for container.

 --no-hosts

 Do not create /etc/hosts for the container. By default, Podman will

 manage /etc/hosts, adding the container's own IP address and any hosts

 from --add-host. --no-hosts disables this, and the image's /etc/hosts

 will be preserved unmodified.

 This option conflicts with --add-host.

 --oom-kill-disable

 Whether to disable OOM Killer for the container or not.

 This flag is not supported on cgroups V2 systems.

 --oom-score-adj=num

 Tune the host's OOM preferences for containers (accepts values from

 -1000 to 1000).

 --os=OS

 Override the OS, defaults to hosts, of the image to be pulled. For ex?

 ample, windows. Unless overridden, subsequent lookups of the same im?

 age in the local storage will match this OS, regardless of the host.

 --passwd-entry=ENTRY

 Customize the entry that is written to the /etc/passwd file within the

 container when --passwd is used.

 The variables $USERNAME, $UID, $GID, $NAME, $HOME are automatically re?

 placed with their value at runtime.

 --personality=persona

 Personality sets the execution domain via Linux personality(2). Page 25/52

 --pid=mode

 Set the PID namespace mode for the container. The default is to create

 a private PID namespace for the container.

 ? container:id: join another container's PID namespace;

 ? host: use the host's PID namespace for the container. Note the

 host mode gives the container full access to local PID and is

 therefore considered insecure;

 ? ns:path: join the specified PID namespace;

 ? private: create a new namespace for the container (default).

 --pidfile=path

 When the pidfile location is specified, the container process' PID will

 be written to the pidfile. (This option is not available with the re?

 mote Podman client, including Mac and Windows (excluding WSL2) ma?

 chines) If the pidfile option is not specified, the container process'

 PID will be written to /run/containers/storage/${storage-driver}-con?

 tainers/$CID/userdata/pidfile.

 After the container is started, the location for the pidfile can be

 discovered with the following podman inspect command:

 $ podman inspect --format '{{ .PidFile }}' $CID

 /run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile

 --pids-limit=limit

 Tune the container's pids limit. Set to -1 to have unlimited pids for

 the container. The default is 2048 on systems that support "pids"

 cgroup controller.

 --platform=OS/ARCH

 Specify the platform for selecting the image. (Conflicts with --arch

 and --os) The --platform option can be used to override the current ar?

 chitecture and operating system. Unless overridden, subsequent lookups

 of the same image in the local storage will match this platform, re?

 gardless of the host.

 --pod=name

 Run container in an existing pod. Podman will make the pod automati?

 cally if the pod name is prefixed with new:. To make a pod with more Page 26/52

 granular options, use the podman pod create command before creating a

 container. If a container is run with a pod, and the pod has an infra-

 container, the infra-container will be started before the container is.

 --pod-id-file=file

 Run container in an existing pod and read the pod's ID from the speci?

 fied file. If a container is run within a pod, and the pod has an in?

 fra-container, the infra-container will be started before the container

 is.

 --privileged

 Give extended privileges to this container. The default is false.

 By default, Podman containers are unprivileged (=false) and cannot, for

 example, modify parts of the operating system. This is because by de?

 fault a container is only allowed limited access to devices. A "privi?

 leged" container is given the same access to devices as the user

 launching the container, with the exception of virtual consoles

 (/dev/tty\d+) when running in systemd mode (--systemd=always).

 A privileged container turns off the security features that isolate the

 container from the host. Dropped Capabilities, limited devices, read-

 only mount points, Apparmor/SELinux separation, and Seccomp filters are

 all disabled.

 Rootless containers cannot have more privileges than the account that

 launched them.

 --publish, -p=[[ip:][hostPort]:]containerPort[/protocol]

 Publish a container's port, or range of ports, to the host.

 Both hostPort and containerPort can be specified as a range of ports.

 When specifying ranges for both, the number of container ports in the

 range must match the number of host ports in the range.

 If host IP is set to 0.0.0.0 or not set at all, the port will be bound

 on all IPs on the host.

 By default, Podman will publish TCP ports. To publish a UDP port in?

 stead, give udp as protocol. To publish both TCP and UDP ports, set

 --publish twice, with tcp, and udp as protocols respectively. Rootful

 containers can also publish ports using the sctp protocol. Page 27/52

 Host port does not have to be specified (e.g. podman run -p

 127.0.0.1::80). If it is not, the container port will be randomly as?

 signed a port on the host.

 Use podman port to see the actual mapping: podman port $CONTAINER $CON?

 TAINERPORT.

 Note: If a container will be run within a pod, it is not necessary to

 publish the port for the containers in the pod. The port must only be

 published by the pod itself. Pod network stacks act like the network

 stack on the host - when there are a variety of containers in the pod,

 and programs in the container, all sharing a single interface and IP

 address, and associated ports. If one container binds to a port, no

 other container can use that port within the pod while it is in use.

 Containers in the pod can also communicate over localhost by having one

 container bind to localhost in the pod, and another connect to that

 port.

 --publish-all, -P

 Publish all exposed ports to random ports on the host interfaces. The

 default is false.

 When set to true, publish all exposed ports to the host interfaces. If

 the operator uses -P (or -p) then Podman will make the exposed port ac?

 cessible on the host and the ports will be available to any client that

 can reach the host.

 When using this option, Podman will bind any exposed port to a random

 port on the host within an ephemeral port range defined by

 /proc/sys/net/ipv4/ip_local_port_range. To find the mapping between

 the host ports and the exposed ports, use podman port.

 --pull=policy

 Pull image policy. The default is missing.

 ? always: Always pull the image and throw an error if the pull

 fails.

 ? missing: Pull the image only if it could not be found in the

 local containers storage. Throw an error if no image could be

 found and the pull fails. Page 28/52

 ? never: Never pull the image but use the one from the local

 containers storage. Throw an error if no image could be

 found.

 ? newer: Pull if the image on the registry is newer than the one

 in the local containers storage. An image is considered to be

 newer when the digests are different. Comparing the time

 stamps is prone to errors. Pull errors are suppressed if a

 local image was found.

 --quiet, -q

 Suppress output information when pulling images

 --read-only

 Mount the container's root filesystem as read-only.

 By default a container will have its root filesystem writable allowing

 processes to write files anywhere. By specifying the --read-only flag,

 the container will have its root filesystem mounted as read-only pro?

 hibiting any writes.

 --read-only-tmpfs

 If container is running in --read-only mode, then mount a read-write

 tmpfs on /run, /tmp, and /var/tmp. The default is true.

 --replace

 If another container with the same name already exists, replace and re?

 move it. The default is false.

 --requires=container

 Specify one or more requirements. A requirement is a dependency con?

 tainer that will be started before this container. Containers can be

 specified by name or ID, with multiple containers being separated by

 commas.

 --restart=policy

 Restart policy to follow when containers exit. Restart policy will not

 take effect if a container is stopped via the podman kill or podman

 stop commands.

 Valid policy values are:

 ? no : Do not restart containers on exit Page 29/52

 ? on-failure[:max_retries] : Restart containers when they exit

 with a non-zero exit code, retrying indefinitely or until the

 optional max_retries count is hit

 ? always : Restart containers when they exit,

 regardless of status, retrying indefinitely

 ? unless-stopped : Identical to always

 Podman provides a systemd unit file, podman-restart.service, which

 restarts containers after a system reboot.

 If container will run as a system service, generate a systemd unit file

 to manage it. See podman generate systemd.

 --rm

 Automatically remove the container when it exits. The default is false.

 --rootfs

 If specified, the first argument refers to an exploded container on the

 file system.

 This is useful to run a container without requiring any image manage?

 ment, the rootfs of the container is assumed to be managed externally.

 Overlay Rootfs Mounts

 The :O flag tells Podman to mount the directory from the rootfs path as

 storage using the overlay file system. The container processes can mod?

 ify content within the mount point which is stored in the container

 storage in a separate directory. In overlay terms, the source directory

 will be the lower, and the container storage directory will be the up?

 per. Modifications to the mount point are destroyed when the container

 finishes executing, similar to a tmpfs mount point being unmounted.

 Note: On SELinux systems, the rootfs needs the correct label, which is

 by default unconfined_u:object_r:container_file_t:s0.

 --sdnotify=container | conmon | ignore

 Determines how to use the NOTIFY_SOCKET, as passed with systemd and

 Type=notify.

 Default is container, which means allow the OCI runtime to proxy the

 socket into the container to receive ready notification. Podman will

 set the MAINPID to conmon's pid. The conmon option sets MAINPID to Page 30/52

 conmon's pid, and sends READY when the container has started. The

 socket is never passed to the runtime or the container. The ignore op?

 tion removes NOTIFY_SOCKET from the environment for itself and child

 processes, for the case where some other process above Podman uses NO?

 TIFY_SOCKET and Podman should not use it.

 --seccomp-policy=policy

 Specify the policy to select the seccomp profile. If set to image, Pod?

 man will look for a "io.containers.seccomp.profile" label in the con?

 tainer-image config and use its value as a seccomp profile. Otherwise,

 Podman will follow the default policy by applying the default profile

 unless specified otherwise via --security-opt seccomp as described be?

 low.

 Note that this feature is experimental and may change in the future.

 --secret=secret[,opt=opt ...]

 Give the container access to a secret. Can be specified multiple times.

 A secret is a blob of sensitive data which a container needs at runtime

 but should not be stored in the image or in source control, such as

 usernames and passwords, TLS certificates and keys, SSH keys or other

 important generic strings or binary content (up to 500 kb in size).

 When secrets are specified as type mount, the secrets are copied and

 mounted into the container when a container is created. When secrets

 are specified as type env, the secret will be set as an environment

 variable within the container. Secrets are written in the container at

 the time of container creation, and modifying the secret using podman

 secret commands after the container is created will not affect the se?

 cret inside the container.

 Secrets and its storage are managed using the podman secret command.

 Secret Options

 ? type=mount|env : How the secret will be exposed to the con?

 tainer.

 mount mounts the secret into the container

 as a file.

 env exposes the secret as a environment Page 31/52

 variable.

 Defaults to mount.

 ? target=target : Target of secret.

 For mounted secrets, this is the path to

 the secret inside the container.

 If a fully qualified path is provided, the

 secret will be mounted at that location.

 Otherwise, the secret will be mounted to

 /run/secrets/target.

 If target is not set, by default the se?

 cret will be mounted to /run/secrets/secretname.

 For env secrets, this is the environment

 variable key. Defaults to secretname.

 ? uid=0 : UID of secret. Defaults to 0. Mount secret

 type only.

 ? gid=0 : GID of secret. Defaults to 0. Mount secret

 type only.

 ? mode=0 : Mode of secret. Defaults to 0444. Mount

 secret type only.

 Examples

 Mount at /my/location/mysecret with UID 1.

 --secret mysecret,target=/my/location/mysecret,uid=1

 Mount at /run/secrets/customtarget with mode 0777.

 --secret mysecret,target=customtarget,mode=0777

 Create a secret environment variable called ENVSEC.

 --secret mysecret,type=env,target=ENVSEC

 --security-opt=option

 Security Options

 ? apparmor=unconfined : Turn off apparmor confinement for the

 container

 ? apparmor=alternate-profile : Set the apparmor confinement pro?

 file for the container

 ? label=user:USER: Set the label user for the container pro? Page 32/52

 cesses

 ? label=role:ROLE: Set the label role for the container pro?

 cesses

 ? label=type:TYPE: Set the label process type for the container

 processes

 ? label=level:LEVEL: Set the label level for the container pro?

 cesses

 ? label=filetype:TYPE: Set the label file type for the container

 files

 ? label=disable: Turn off label separation for the container

 Note: Labeling can be disabled for all containers by setting la?

 bel=false in the containers.conf (/etc/containers/containers.conf or

 $HOME/.config/containers/containers.conf) file.

 ? mask=/path/1:/path/2: The paths to mask separated by a colon.

 A masked path cannot be accessed inside the container.

 ? no-new-privileges: Disable container processes from gaining

 additional privileges.

 ? seccomp=unconfined: Turn off seccomp confinement for the con?

 tainer.

 ? seccomp=profile.json: JSON file to be used as a seccomp fil?

 ter. Note that the io.podman.annotations.seccomp annotation is

 set with the specified value as shown in podman inspect.

 ? proc-opts=OPTIONS : Comma-separated list of options to use for

 the /proc mount. More details for the possible mount options

 are specified in the proc(5) man page.

 ? unmask=ALL or /path/1:/path/2, or shell expanded paths

 (/proc/*): Paths to unmask separated by a colon. If set to

 ALL, it will unmask all the paths that are masked or made

 read-only by default. The default masked paths are

 /proc/acpi, /proc/kcore, /proc/keys, /proc/latency_stats,

 /proc/sched_debug, /proc/scsi, /proc/timer_list,

 /proc/timer_stats, /sys/firmware, and /sys/fs/selinux. The

 default paths that are read-only are /proc/asound, /proc/bus, Page 33/52

 /proc/fs, /proc/irq, /proc/sys, /proc/sysrq-trigger,

 /sys/fs/cgroup.

 Note: Labeling can be disabled for all containers by setting la?

 bel=false in the containers.conf(5) file.

 --shm-size=number[unit]

 Size of /dev/shm. A unit can be b (bytes), k (kibibytes), m

 (mebibytes), or g (gibibytes). If the unit is omitted, the system uses

 bytes. If the size is omitted, the default is 64m. When size is 0,

 there is no limit on the amount of memory used for IPC by the con?

 tainer. This option conflicts with --ipc=host.

 --stop-signal=signal

 Signal to stop a container. Default is SIGTERM.

 --stop-timeout=seconds

 Timeout to stop a container. Default is 10. Remote connections use lo?

 cal containers.conf for defaults

 --subgidname=name

 Run the container in a new user namespace using the map with name in

 the /etc/subgid file. If running rootless, the user needs to have the

 right to use the mapping. See subgid(5). This flag conflicts with

 --userns and --gidmap.

 --subuidname=name

 Run the container in a new user namespace using the map with name in

 the /etc/subuid file. If running rootless, the user needs to have the

 right to use the mapping. See subuid(5). This flag conflicts with

 --userns and --uidmap.

 --sysctl=name=value

 Configure namespaced kernel parameters at runtime.

 For the IPC namespace, the following sysctls are allowed:

 ? kernel.msgmax

 ? kernel.msgmnb

 ? kernel.msgmni

 ? kernel.sem

 ? kernel.shmall Page 34/52

 ? kernel.shmmax

 ? kernel.shmmni

 ? kernel.shm_rmid_forced

 ? Sysctls beginning with fs.mqueue.*

 Note: if using the --ipc=host option, the above sysctls are not al?

 lowed.

 For the network namespace, only sysctls beginning with net.* are al?

 lowed.

 Note: if using the --network=host option, the above sysctls are not al?

 lowed.

 --systemd=true | false | always

 Run container in systemd mode. The default is true.

 ? true enables systemd mode only when the command executed in?

 side the container is systemd, /usr/sbin/init, /sbin/init or

 /usr/local/sbin/init, systemd mode is enabled.

 ? false disables systemd mode.

 ? always enforces the systemd mode to be enabled.

 Running the container in systemd mode causes the following changes:

 ? Podman mounts tmpfs file systems on the following directories

 ? /run

 ? /run/lock

 ? /tmp

 ? /sys/fs/cgroup/systemd

 ? /var/lib/journal

 ? Podman sets the default stop signal to SIGRTMIN+3.

 ? Podman sets container_uuid environment variable in the con?

 tainer to the first 32 characters of the container id.

 ? Podman will not mount virtual consoles (/dev/tty\d+) when run?

 ning with --privileged.

 This allows systemd to run in a confined container without any modifi?

 cations.

 Note that on SELinux systems, systemd attempts to write to the cgroup

 file system. Containers writing to the cgroup file system are denied by Page 35/52

 default. The container_manage_cgroup boolean must be enabled for this

 to be allowed on an SELinux separated system.

 setsebool -P container_manage_cgroup true

 --timeout=seconds

 Maximum time a container is allowed to run before conmon sends it the

 kill signal. By default containers will run until they exit or are

 stopped by podman stop.

 --tls-verify

 Require HTTPS and verify certificates when contacting registries (de?

 fault: true). If explicitly set to true, TLS verification will be

 used. If set to false, TLS verification will not be used. If not

 specified, TLS verification will be used unless the target registry is

 listed as an insecure registry in containers-registries.conf(5)

 --tmpfs=fs

 Create a tmpfs mount.

 Mount a temporary filesystem (tmpfs) mount into a container, for exam?

 ple:

 $ podman create -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image

 This command mounts a tmpfs at /tmp within the container. The supported

 mount options are the same as the Linux default mount flags. If no op?

 tions are specified, the system uses the following options:

 rw,noexec,nosuid,nodev.

 --tty, -t

 Allocate a pseudo-TTY. The default is false.

 When set to true, Podman will allocate a pseudo-tty and attach to the

 standard input of the container. This can be used, for example, to run

 a throwaway interactive shell.

 NOTE: The --tty flag prevents redirection of standard output. It com?

 bines STDOUT and STDERR, it can insert control characters, and it can

 hang pipes. This option should only be used when run interactively in a

 terminal. When feeding input to Podman, use -i only, not -it.

 --tz=timezone

 Set timezone in container. This flag takes area-based timezones, GMT Page 36/52

 time, as well as local, which sets the timezone in the container to

 match the host machine. See /usr/share/zoneinfo/ for valid timezones.

 Remote connections use local containers.conf for defaults

 --uidmap=container_uid:from_uid:amount

 Run the container in a new user namespace using the supplied UID map?

 ping. This option conflicts with the --userns and --subuidname options.

 This option provides a way to map host UIDs to container UIDs. It can

 be passed several times to map different ranges.

 The _fromuid value is based upon the user running the command, either

 rootful or rootless users. * rootful user: con?

 tainer_uid:host_uid:amount * rootless user: container_uid:intermedi?

 ate_uid:amount

 When podman create is called by a privileged user, the option --uidmap

 works as a direct mapping between host UIDs and container UIDs.

 host UID -> container UID

 The amount specifies the number of consecutive UIDs that will be

 mapped. If for example amount is 4 the mapping would look like:

 | host UID | container UID | | - | -

 | | _fromuid | _containeruid | | _fromuid + 1 | _containeruid +

 1 | | _fromuid + 2 | _containeruid + 2 | | _fromuid + 3 | _containeruid

 + 3 |

 When podman create is called by an unprivileged user (i.e. running

 rootless), the value _fromuid is interpreted as an "intermediate UID".

 In the rootless case, host UIDs are not mapped directly to container

 UIDs. Instead the mapping happens over two mapping steps:

 host UID -> intermediate UID -> container UID

 The --uidmap option only influences the second mapping step.

 The first mapping step is derived by Podman from the contents of the

 file /etc/subuid and the UID of the user calling Podman.

 First mapping step:

 | host UID | intermediate UID |

 | - | - |

 | UID for the user starting Podman | 0 | Page 37/52

 | 1st subordinate UID for the user starting Podman | 1 |

 | 2nd subordinate UID for the user starting Podman | 2 |

 | 3rd subordinate UID for the user starting Podman | 3 |

 | nth subordinate UID for the user starting Podman | n |

 To be able to use intermediate UIDs greater than zero, the user needs

 to have subordinate UIDs configured in /etc/subuid. See subuid(5).

 The second mapping step is configured with --uidmap.

 If for example amount is 5 the second mapping step would look like:

 | intermediate UID | container UID | | - |

 - | | _fromuid | _containeruid | |

 _fromuid + 1 | _containeruid + 1 | | _fromuid + 2 | _con?

 taineruid + 2 | | _fromuid + 3 | _containeruid + 3 | | _fromuid +

 4 | _containeruid + 4 |

 When running as rootless, Podman will use all the ranges configured in

 the /etc/subuid file.

 The current user ID is mapped to UID=0 in the rootless user namespace.

 Every additional range is added sequentially afterward:

 | host |rootless user namespace | length

 | | - | - | -

 | | $UID | 0 | 1

 | | 1 | $FIRST_RANGE_ID |

 $FIRST_RANGE_LENGTH | | 1+$FIRST_RANGE_LENGTH | $SECOND_RANGE_ID

 | $SECOND_RANGE_LENGTH|

 Even if a user does not have any subordinate UIDs in /etc/subuid,

 --uidmap could still be used to map the normal UID of the user to a

 container UID by running podman create --uidmap $container_uid:0:1

 --user $container_uid

 Note: the --uidmap flag cannot be called in conjunction with the --pod

 flag as a uidmap cannot be set on the container level when in a pod.

 --ulimit=option

 Ulimit options. You can use host to copy the current configuration from

 the host.

 --umask=umask Page 38/52

 Set the umask inside the container. Defaults to 0022. Remote connec?

 tions use local containers.conf for defaults

 --unsetenv=env

 Unset default environment variables for the container. Default environ?

 ment variables include variables provided natively by Podman, environ?

 ment variables configured by the image, and environment variables from

 containers.conf.

 --unsetenv-all

 Unset all default environment variables for the container. Default en?

 vironment variables include variables provided natively by Podman, en?

 vironment variables configured by the image, and environment variables

 from containers.conf.

 --user, -u=user[:group]

 Sets the username or UID used and, optionally, the groupname or GID for

 the specified command. Both user and group may be symbolic or numeric.

 Without this argument, the command will run as the user specified in

 the container image. Unless overridden by a USER command in the Con?

 tainerfile or by a value passed to this option, this user generally de?

 faults to root.

 When a user namespace is not in use, the UID and GID used within the

 container and on the host will match. When user namespaces are in use,

 however, the UID and GID in the container may correspond to another UID

 and GID on the host. In rootless containers, for example, a user name?

 space is always used, and root in the container will by default corre?

 spond to the UID and GID of the user invoking Podman.

 --userns=mode

 Set the user namespace mode for the container. It defaults to the POD?

 MAN_USERNS environment variable. An empty value ("") means user name?

 spaces are disabled unless an explicit mapping is set with the --uidmap

 and --gidmap options.

 This option is incompatible with --gidmap, --uidmap, --subuidname and

 --subgidname.

 Rootless user --userns=Key mappings: Page 39/52

 ??

 ?Key ? Host User ? Container User ?

 ??

 ?"" ? $UID ? 0 (Default User ac? ?

 ? ? ? count mapped to ?

 ? ? ? root user in con? ?

 ? ? ? tainer.) ?

 ??

 ?keep-id ? $UID ? $UID (Map user ac? ?

 ? ? ? count to same UID ?

 ? ? ? within container.) ?

 ??

 ?keep-id:uid=200,gid=210 ? $UID ? 200:210 (Map user ?

 ? ? ? account to speci? ?

 ? ? ? fied uid, gid value ?

 ? ? ? within container.) ?

 ??

 ?auto ? $UID ? nil (Host User UID ?

 ? ? ? is not mapped into ?

 ? ? ? container.) ?

 ??

 ?nomap ? $UID ? nil (Host User UID ?

 ? ? ? is not mapped into ?

 ? ? ? container.) ?

 ??

 Valid mode values are:

 auto[:OPTIONS,...]: automatically create a unique user namespace.

 The --userns=auto flag requires that the user name containers be speci?

 fied in the /etc/subuid and /etc/subgid files, with an unused range of

 subordinate user IDs that Podman containers are allowed to allocate.

 See subuid(5).

 Example: containers:2147483647:2147483648.

 Podman allocates unique ranges of UIDs and GIDs from the containers Page 40/52

 subordinate user ids. The size of the ranges is based on the number of

 UIDs required in the image. The number of UIDs and GIDs can be overrid?

 den with the size option.

 The rootless option --userns=keep-id uses all the subuids and subgids

 of the user. Using --userns=auto when starting new containers will not

 work as long as any containers exist that were started with

 --userns=keep-id.

 Valid auto options:

 ? gidmapping=CONTAINER_GID:HOST_GID:SIZE: to force a GID mapping

 to be present in the user namespace.

 ? size=SIZE: to specify an explicit size for the automatic user

 namespace. e.g. --userns=auto:size=8192. If size is not speci?

 fied, auto will estimate a size for the user namespace.

 ? uidmapping=CONTAINER_UID:HOST_UID:SIZE: to force a UID mapping

 to be present in the user namespace.

 container:id: join the user namespace of the specified container.

 host: run in the user namespace of the caller. The processes running in

 the container will have the same privileges on the host as any other

 process launched by the calling user (default).

 keep-id: creates a user namespace where the current rootless user's

 UID:GID are mapped to the same values in the container. This option is

 not allowed for containers created by the root user.

 Valid keep-id options:

 ? uid=UID: override the UID inside the container that will be

 used to map the current rootless user to.

 ? gid=GID: override the GID inside the container that will be

 used to map the current rootless user to.

 nomap: creates a user namespace where the current rootless user's

 UID:GID are not mapped into the container. This option is not allowed

 for containers created by the root user.

 ns:namespace: run the container in the given existing user namespace.

 --uts=mode

 Set the UTS namespace mode for the container. The following values are Page 41/52

 supported:

 ? host: use the host's UTS namespace inside the container.

 ? private: create a new namespace for the container (default).

 ? ns:[path]: run the container in the given existing UTS name?

 space.

 ? container:[container]: join the UTS namespace of the specified

 container.

 --variant=VARIANT

 Use VARIANT instead of the default architecture variant of the con?

 tainer image. Some images can use multiple variants of the arm archi?

 tectures, such as arm/v5 and arm/v7.

 --volume, -v=[[SOURCE-VOLUME|HOST-DIR:]CONTAINER-DIR[:OPTIONS]]

 Create a bind mount. If -v /HOST-DIR:/CONTAINER-DIR is specified, Pod?

 man bind mounts /HOST-DIR from the host into /CONTAINER-DIR in the Pod?

 man container. Similarly, -v SOURCE-VOLUME:/CONTAINER-DIR will mount

 the named volume from the host into the container. If no such named

 volume exists, Podman will create one. If no source is given, the vol?

 ume will be created as an anonymously named volume with a randomly gen?

 erated name, and will be removed when the container is removed via the

 --rm flag or the podman rm --volumes command.

 (Note when using the remote client, including Mac and Windows (exclud?

 ing WSL2) machines, the volumes will be mounted from the remote server,

 not necessarily the client machine.)

 The OPTIONS is a comma-separated list and can be: [1] ?#Footnote1?

 ? rw|ro

 ? z|Z

 ? [O]

 ? [U]

 ? [no]copy

 ? [no]dev

 ? [no]exec

 ? [no]suid

 ? [r]bind Page 42/52

 ? [r]shared|[r]slave|[r]private[r]unbindable

 ? idmap[=options]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The vol?

 ume will be mounted into the container at this directory.

 If a volume source is specified, it must be a path on the host or the

 name of a named volume. Host paths are allowed to be absolute or rela?

 tive; relative paths are resolved relative to the directory Podman is

 run in. If the source does not exist, Podman will return an error.

 Users must pre-create the source files or directories.

 Any source that does not begin with a . or / will be treated as the

 name of a named volume. If a volume with that name does not exist, it

 will be created. Volumes created with names are not anonymous, and

 they are not removed by the --rm option and the podman rm --volumes

 command.

 Specify multiple -v options to mount one or more volumes into a con?

 tainer.

 Write Protected Volume Mounts

 Add :ro or :rw option to mount a volume in read-only or read-write

 mode, respectively. By default, the volumes are mounted read-write.

 See examples.

 Chowning Volume Mounts

 By default, Podman does not change the owner and group of source volume

 directories mounted into containers. If a container is created in a new

 user namespace, the UID and GID in the container may correspond to an?

 other UID and GID on the host.

 The :U suffix tells Podman to use the correct host UID and GID based on

 the UID and GID within the container, to change recursively the owner

 and group of the source volume. Chowning walks the file system under

 the volume and changes the UID/GID on each file, it the volume has

 thousands of inodes, this process will take a long time, delaying the

 start of the container.

 Warning use with caution since this will modify the host filesystem.

 Labeling Volume Mounts Page 43/52

 Labeling systems like SELinux require that proper labels are placed on

 volume content mounted into a container. Without a label, the security

 system might prevent the processes running inside the container from

 using the content. By default, Podman does not change the labels set by

 the OS.

 To change a label in the container context, add either of two suffixes

 :z or :Z to the volume mount. These suffixes tell Podman to relabel

 file objects on the shared volumes. The z option tells Podman that two

 or more containers share the volume content. As a result, Podman labels

 the content with a shared content label. Shared volume labels allow all

 containers to read/write content. The Z option tells Podman to label

 the content with a private unshared label Only the current container

 can use a private volume. Relabeling walks the file system under the

 volume and changes the label on each file, it the volume has thousands

 of inodes, this process will take a long time, delaying the start of

 the container. If the volume was previously relabeled with the z op?

 tion, Podman is optimized to not relabel a second time. If files are

 moved into the volume, then the labels can be manually change with the

 chcon -R container_file_t PATH command.

 Note: Do not relabel system files and directories. Relabeling system

 content might cause other confined services on the machine to fail.

 For these types of containers we recommend disabling SELinux separa?

 tion. The option --security-opt label=disable disables SELinux separa?

 tion for the container. For example if a user wanted to volume mount

 their entire home directory into a container, they need to disable

 SELinux separation.

 $ podman create --security-opt label=disable -v $HOME:/home/user fedora touch /home/user/file

 Overlay Volume Mounts

 The :O flag tells Podman to mount the directory from the host as a tem?

 porary storage using the overlay file system. The container processes

 can modify content within the mountpoint which is stored in the con?

 tainer storage in a separate directory. In overlay terms, the source

 directory will be the lower, and the container storage directory will Page 44/52

 be the upper. Modifications to the mount point are destroyed when the

 container finishes executing, similar to a tmpfs mount point being un?

 mounted.

 For advanced users, the overlay option also supports custom non-

 volatile upperdir and workdir for the overlay mount. Custom upperdir

 and workdir can be fully managed by the users themselves, and Podman

 will not remove it on lifecycle completion. Example :O,up?

 perdir=/some/upper,workdir=/some/work

 Subsequent executions of the container will see the original source di?

 rectory content, any changes from previous container executions no

 longer exist.

 One use case of the overlay mount is sharing the package cache from the

 host into the container to allow speeding up builds.

 Note:

 - The `O` flag conflicts with other options listed above.

 Content mounted into the container is labeled with the private label.

 On SELinux systems, labels in the source directory must be read?

 able by the container label. Usually containers can read/execute con?

 tainer_share_t and can read/write container_file_t. If unable to change

 the labels on a source volume, SELinux container separation must be

 disabled for the container to work.

 - The source directory mounted into the container with an overlay

 mount should not be modified, it can cause unexpected failures. It is

 recommended to not modify the directory until the container finishes

 running.

 Mounts propagation

 By default bind mounted volumes are private. That means any mounts done

 inside the container will not be visible on host and vice versa. One

 can change this behavior by specifying a volume mount propagation prop?

 erty. Making a volume shared mounts done under that volume inside the

 container will be visible on host and vice versa. Making a volume slave

 enables only one way mount propagation and that is mounts done on host

 under that volume will be visible inside container but not the other Page 45/52

 way around. [1] ?#Footnote1?

 To control mount propagation property of a volume one can use the

 [r]shared, [r]slave, [r]private or the [r]unbindable propagation flag.

 Propagation property can be specified only for bind mounted volumes and

 not for internal volumes or named volumes. For mount propagation to

 work the source mount point (the mount point where source dir is

 mounted on) has to have the right propagation properties. For shared

 volumes, the source mount point has to be shared. And for slave vol?

 umes, the source mount point has to be either shared or slave. [1]

 ?#Footnote1?

 To recursively mount a volume and all of its submounts into a con?

 tainer, use the rbind option. By default the bind option is used, and

 submounts of the source directory will not be mounted into the con?

 tainer.

 Mounting the volume with a copy option tells podman to copy content

 from the underlying destination directory onto newly created internal

 volumes. The copy only happens on the initial creation of the volume.

 Content is not copied up when the volume is subsequently used on dif?

 ferent containers. The copy option is ignored on bind mounts and has no

 effect.

 Mounting the volume with the nosuid options means that SUID applica?

 tions on the volume will not be able to change their privilege. By de?

 fault volumes are mounted with nosuid.

 Mounting the volume with the noexec option means that no executables on

 the volume will be able to be executed within the container.

 Mounting the volume with the nodev option means that no devices on the

 volume will be able to be used by processes within the container. By

 default volumes are mounted with nodev.

 If the HOST-DIR is a mount point, then dev, suid, and exec options are

 ignored by the kernel.

 Use df HOST-DIR to figure out the source mount, then use findmnt -o

 TARGET,PROPAGATION source-mount-dir to figure out propagation proper?

 ties of source mount. If findmnt(1) utility is not available, then one Page 46/52

 can look at the mount entry for the source mount point in

 /proc/self/mountinfo. Look at the "optional fields" and see if any

 propagation properties are specified. In there, shared:N means the

 mount is shared, master:N means mount is slave, and if nothing is

 there, the mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point, use mount(8) com?

 mand. For example, if one wants to bind mount source directory /foo,

 one can do mount --bind /foo /foo and mount --make-private --make-

 shared /foo. This will convert /foo into a shared mount point. Alterna?

 tively, one can directly change propagation properties of source mount.

 Say / is source mount for /foo, then use mount --make-shared / to con?

 vert / into a shared mount.

 Note: if the user only has access rights via a group, accessing the

 volume from inside a rootless container will fail.

 Idmapped mount

 If idmap is specified, create an idmapped mount to the target user

 namespace in the container. The idmap option supports a custom mapping

 that can be different than the user namespace used by the container.

 The mapping can be specified after the idmap option like:

 idmap=uids=0-1-10#10-11-10;gids=0-100-10. For each triplet, the first

 value is the start of the backing file system IDs that are mapped to

 the second value on the host. The length of this mapping is given in

 the third value. Multiple ranges are separated with #.

 Use the --group-add keep-groups option to pass the user's supplementary

 group access into the container.

 --volumes-from=CONTAINER[:OPTIONS]

 Mount volumes from the specified container(s). Used to share volumes

 between containers. The options is a comma-separated list with the fol?

 lowing available elements:

 ? rw|ro

 ? z

 Mounts already mounted volumes from a source container onto another

 container. CONTAINER may be a name or ID. To share a volume, use the Page 47/52

 --volumes-from option when running the target container. Volumes can be

 shared even if the source container is not running.

 By default, Podman mounts the volumes in the same mode (read-write or

 read-only) as it is mounted in the source container. This can be

 changed by adding a ro or rw option.

 Labeling systems like SELinux require that proper labels are placed on

 volume content mounted into a container. Without a label, the security

 system might prevent the processes running inside the container from

 using the content. By default, Podman does not change the labels set by

 the OS.

 To change a label in the container context, add z to the volume mount.

 This suffix tells Podman to relabel file objects on the shared volumes.

 The z option tells Podman that two entities share the volume content.

 As a result, Podman labels the content with a shared content label.

 Shared volume labels allow all containers to read/write content.

 If the location of the volume from the source container overlaps with

 data residing on a target container, then the volume hides that data on

 the target.

 --workdir, -w=dir

 Working directory inside the container.

 The default working directory for running binaries within a container

 is the root directory (/). The image developer can set a different de?

 fault with the WORKDIR instruction. The operator can override the work?

 ing directory by using the -w option.

EXAMPLES

 Create a container using a local image

 $ podman create alpine ls

 Create a container using a local image and annotate it

 $ podman create --annotation HELLO=WORLD alpine ls

 Create a container using a local image, allocating a pseudo-TTY, keeping

 stdin open and name it myctr

 podman create -t -i --name myctr alpine ls

 Set UID/GID mapping in a new user namespace Page 48/52

 Running a container in a new user namespace requires a mapping of the

 uids and gids from the host.

 $ podman create --uidmap 0:30000:7000 --gidmap 0:30000:7000 fedora echo hello

 Setting automatic user namespace separated containers

 # podman create --userns=auto:size=65536 ubi8-init

 Configure timezone in a container

 $ podman create --tz=local alpine date

 $ podman create --tz=Asia/Shanghai alpine date

 $ podman create --tz=US/Eastern alpine date

 Adding dependency containers

 Podman will make sure the first container, container1, is running be?

 fore the second container (container2) is started.

 $ podman create --name container1 -t -i fedora bash

 $ podman create --name container2 --requires container1 -t -i fedora bash

 $ podman start --attach container2

 Multiple containers can be required.

 $ podman create --name container1 -t -i fedora bash

 $ podman create --name container2 -t -i fedora bash

 $ podman create --name container3 --requires container1,container2 -t -i fedora bash

 $ podman start --attach container3

 Configure keep supplemental groups for access to volume

 $ podman create -v /var/lib/design:/var/lib/design --group-add keep-groups ubi8

 Configure execution domain for containers using personality flag

 $ podman create --name container1 --personality=LINUX32 fedora bash

 Create a container with external rootfs mounted as an overlay

 $ podman create --name container1 --rootfs /path/to/rootfs:O bash

 Create a container connected to two networks (called net1 and net2) with a

 static ip

 $ podman create --network net1:ip=10.89.1.5 --network net2:ip=10.89.10.10 alpine ip addr

 Rootless Containers

 Podman runs as a non-root user on most systems. This feature requires

 that a new enough version of shadow-utils be installed. The shadow-

 utils package must include the newuidmap and newgidmap executables. Page 49/52

 In order for users to run rootless, there must be an entry for their

 username in /etc/subuid and /etc/subgid which lists the UIDs for their

 user namespace.

 Rootless Podman works better if the fuse-overlayfs and slirp4netns

 packages are installed. The fuse-overlayfs package provides a

 userspace overlay storage driver, otherwise users need to use the vfs

 storage driver, which can be disk space expensive and less performant

 than other drivers.

 To enable VPN on the container, slirp4netns or pasta needs to be speci?

 fied; without either, containers need to be run with the --network=host

 flag.

ENVIRONMENT

 Environment variables within containers can be set using multiple dif?

 ferent options: This section describes the precedence.

 Precedence order (later entries override earlier entries):

 ? --env-host : Host environment of the process executing Podman

 is added.

 ? --http-proxy: By default, several environment variables will

 be passed in from the host, such as http_proxy and no_proxy.

 See --http-proxy for details.

 ? Container image : Any environment variables specified in the

 container image.

 ? --env-file : Any environment variables specified via env-

 files. If multiple files specified, then they override each

 other in order of entry.

 ? --env : Any environment variables specified will override pre?

 vious settings.

 Create containers and set the environment ending with a *. The trail?

 ing * glob functionality is only active when no value is specified:

 $ export ENV1=a

 $ podman create --name ctr1 --env 'ENV*' alpine env

 $ podman start --attach ctr1 | grep ENV

 ENV1=a Page 50/52

 $ podman create --name ctr2 --env 'ENV*=b' alpine env

 $ podman start --attach ctr2 | grep ENV

 ENV*=b

CONMON

 When Podman starts a container it actually executes the conmon program,

 which then executes the OCI Runtime. Conmon is the container monitor.

 It is a small program whose job is to watch the primary process of the

 container, and if the container dies, save the exit code. It also

 holds open the tty of the container, so that it can be attached to

 later. This is what allows Podman to run in detached mode (back?

 grounded), so Podman can exit but conmon continues to run. Each con?

 tainer has their own instance of conmon. Conmon waits for the container

 to exit, gathers and saves the exit code, and then launches a Podman

 process to complete the container cleanup, by shutting down the network

 and storage. For more information on conmon, please reference the

 conmon(8) man page.

FILES

 /etc/subuid /etc/subgid

 NOTE: Use the environment variable TMPDIR to change the temporary stor?

 age location of downloaded container images. Podman defaults to use

 /var/tmp.

SEE ALSO

 podman(1), podman-save(1), podman-ps(1), podman-attach(1), podman-pod-

 create(1), podman-port(1), podman-start(1), podman-kill(1), podman-

 stop(1), podman-generate-systemd(1), podman-rm(1), subgid(5), sub?

 uid(5), containers.conf(5), systemd.unit(5), setsebool(8),

 slirp4netns(1), pasta(1), fuse-overlayfs(1), proc(5), conmon(8), per?

 sonality(2)

HISTORY

 October 2017, converted from Docker documentation to Podman by Dan

 Walsh for Podman <dwalsh@redhat.com>

 November 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

 September 2014, updated by Sven Dowideit <SvenDowideit@home.org.au> Page 51/52

 August 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

FOOTNOTES

 1: The Podman project is committed to inclusivity, a core value of open

 source. The master and slave mount propagation terminology used here is

 problematic and divisive, and should be changed. However, these terms

 are currently used within the Linux kernel and must be used as-is at

 this time. When the kernel maintainers rectify this usage, Podman will

 follow suit immediately.

 podman-create(1)

Page 52/52

