
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'perlpodstyle.1' command

$ man perlpodstyle.1

PERLPODSTYLE(1) User Contributed Perl Documentation PERLPODSTYLE(1)

NAME

 perlpodstyle - Perl POD style guide

DESCRIPTION

 These are general guidelines for how to write POD documentation for

 Perl scripts and modules, based on general guidelines for writing good

 UNIX man pages. All of these guidelines are, of course, optional, but

 following them will make your documentation more consistent with other

 documentation on the system.

 The name of the program being documented is conventionally written in

 bold (using B<>) wherever it occurs, as are all program options.

 Arguments should be written in italics (I<>). Function names are

 traditionally written in italics; if you write a function as

 function(), Pod::Man will take care of this for you. Literal code or

 commands should be in C<>. References to other man pages should be in

 the form "manpage(section)" or "L<manpage(section)>", and Pod::Man will

 automatically format those appropriately. The second form, with L<>,

 is used to request that a POD formatter make a link to the man page if

 possible. As an exception, one normally omits the section when

 referring to module documentation since it's not clear what section

 module documentation will be in; use "L<Module::Name>" for module

 references instead.

 References to other programs or functions are normally in the form of Page 1/8

 man page references so that cross-referencing tools can provide the

 user with links and the like. It's possible to overdo this, though, so

 be careful not to clutter your documentation with too much markup.

 References to other programs that are not given as man page references

 should be enclosed in B<>.

 The major headers should be set out using a "=head1" directive, and are

 historically written in the rather startling ALL UPPER CASE format;

 this is not mandatory, but it's strongly recommended so that sections

 have consistent naming across different software packages. Minor

 headers may be included using "=head2", and are typically in mixed

 case.

 The standard sections of a manual page are:

 NAME

 Mandatory section; should be a comma-separated list of programs or

 functions documented by this POD page, such as:

 foo, bar - programs to do something

 Manual page indexers are often extremely picky about the format of

 this section, so don't put anything in it except this line. Every

 program or function documented by this POD page should be listed,

 separated by a comma and a space. For a Perl module, just give the

 module name. A single dash, and only a single dash, should

 separate the list of programs or functions from the description.

 Do not use any markup such as C<> or B<> anywhere in this line.

 Functions should not be qualified with "()" or the like. The

 description should ideally fit on a single line, even if a man

 program replaces the dash with a few tabs.

 SYNOPSIS

 A short usage summary for programs and functions. This section is

 mandatory for section 3 pages. For Perl module documentation, it's

 usually convenient to have the contents of this section be a

 verbatim block showing some (brief) examples of typical ways the

 module is used.

 DESCRIPTION Page 2/8

 Extended description and discussion of the program or functions, or

 the body of the documentation for man pages that document something

 else. If particularly long, it's a good idea to break this up into

 subsections "=head2" directives like:

 =head2 Normal Usage

 =head2 Advanced Features

 =head2 Writing Configuration Files

 or whatever is appropriate for your documentation.

 For a module, this is generally where the documentation of the

 interfaces provided by the module goes, usually in the form of a

 list with an "=item" for each interface. Depending on how many

 interfaces there are, you may want to put that documentation in

 separate METHODS, FUNCTIONS, CLASS METHODS, or INSTANCE METHODS

 sections instead and save the DESCRIPTION section for an overview.

 OPTIONS

 Detailed description of each of the command-line options taken by

 the program. This should be separate from the description for the

 use of parsers like Pod::Usage. This is normally presented as a

 list, with each option as a separate "=item". The specific option

 string should be enclosed in B<>. Any values that the option takes

 should be enclosed in I<>. For example, the section for the option

 --section=manext would be introduced with:

 =item B<--section>=I<manext>

 Synonymous options (like both the short and long forms) are

 separated by a comma and a space on the same "=item" line, or

 optionally listed as their own item with a reference to the

 canonical name. For example, since --section can also be written

 as -s, the above would be:

 =item B<-s> I<manext>, B<--section>=I<manext>

 Writing the short option first is recommended because it's easier

 to read. The long option is long enough to draw the eye to it

 anyway and the short option can otherwise get lost in visual noise.

 RETURN VALUE Page 3/8

 What the program or function returns, if successful. This section

 can be omitted for programs whose precise exit codes aren't

 important, provided they return 0 on success and non-zero on

 failure as is standard. It should always be present for functions.

 For modules, it may be useful to summarize return values from the

 module interface here, or it may be more useful to discuss return

 values separately in the documentation of each function or method

 the module provides.

 ERRORS

 Exceptions, error return codes, exit statuses, and errno settings.

 Typically used for function or module documentation; program

 documentation uses DIAGNOSTICS instead. The general rule of thumb

 is that errors printed to "STDOUT" or "STDERR" and intended for the

 end user are documented in DIAGNOSTICS while errors passed internal

 to the calling program and intended for other programmers are

 documented in ERRORS. When documenting a function that sets errno,

 a full list of the possible errno values should be given here.

 DIAGNOSTICS

 All possible messages the program can print out and what they mean.

 You may wish to follow the same documentation style as the Perl

 documentation; see perldiag(1) for more details (and look at the

 POD source as well).

 If applicable, please include details on what the user should do to

 correct the error; documenting an error as indicating "the input

 buffer is too small" without telling the user how to increase the

 size of the input buffer (or at least telling them that it isn't

 possible) aren't very useful.

 EXAMPLES

 Give some example uses of the program or function. Don't skimp;

 users often find this the most useful part of the documentation.

 The examples are generally given as verbatim paragraphs.

 Don't just present an example without explaining what it does.

 Adding a short paragraph saying what the example will do can Page 4/8

 increase the value of the example immensely.

 ENVIRONMENT

 Environment variables that the program cares about, normally

 presented as a list using "=over", "=item", and "=back". For

 example:

 =over 6

 =item HOME

 Used to determine the user's home directory. F<.foorc> in this

 directory is read for configuration details, if it exists.

 =back

 Since environment variables are normally in all uppercase, no

 additional special formatting is generally needed; they're glaring

 enough as it is.

 FILES

 All files used by the program or function, normally presented as a

 list, and what it uses them for. File names should be enclosed in

 F<>. It's particularly important to document files that will be

 potentially modified.

 CAVEATS

 Things to take special care with, sometimes called WARNINGS.

 BUGS

 Things that are broken or just don't work quite right.

 RESTRICTIONS

 Bugs you don't plan to fix. :-)

 NOTES

 Miscellaneous commentary.

 AUTHOR

 Who wrote it (use AUTHORS for multiple people). It's a good idea

 to include your current e-mail address (or some e-mail address to

 which bug reports should be sent) or some other contact information

 so that users have a way of contacting you. Remember that program

 documentation tends to roam the wild for far longer than you expect

 and pick a contact method that's likely to last. Page 5/8

 HISTORY

 Programs derived from other sources sometimes have this. Some

 people keep a modification log here, but that usually gets long and

 is normally better maintained in a separate file.

 COPYRIGHT AND LICENSE

 For copyright

 Copyright YEAR(s) YOUR NAME(s)

 (No, (C) is not needed. No, "all rights reserved" is not needed.)

 For licensing the easiest way is to use the same licensing as Perl

 itself:

 This library is free software; you may redistribute it and/or

 modify it under the same terms as Perl itself.

 This makes it easy for people to use your module with Perl. Note

 that this licensing example is neither an endorsement or a

 requirement, you are of course free to choose any licensing.

 SEE ALSO

 Other man pages to check out, like man(1), man(7), makewhatis(8),

 or catman(8). Normally a simple list of man pages separated by

 commas, or a paragraph giving the name of a reference work. Man

 page references, if they use the standard "name(section)" form,

 don't have to be enclosed in L<> (although it's recommended), but

 other things in this section probably should be when appropriate.

 If the package has a mailing list, include a URL or subscription

 instructions here.

 If the package has a web site, include a URL here.

 Documentation of object-oriented libraries or modules may want to use

 CONSTRUCTORS and METHODS sections, or CLASS METHODS and INSTANCE

 METHODS sections, for detailed documentation of the parts of the

 library and save the DESCRIPTION section for an overview. Large

 modules with a function interface may want to use FUNCTIONS for similar

 reasons. Some people use OVERVIEW to summarize the description if it's

 quite long.

 Section ordering varies, although NAME must always be the first section Page 6/8

 (you'll break some man page systems otherwise), and NAME, SYNOPSIS,

 DESCRIPTION, and OPTIONS generally always occur first and in that order

 if present. In general, SEE ALSO, AUTHOR, and similar material should

 be left for last. Some systems also move WARNINGS and NOTES to last.

 The order given above should be reasonable for most purposes.

 Some systems use CONFORMING TO to note conformance to relevant

 standards and MT-LEVEL to note safeness for use in threaded programs or

 signal handlers. These headings are primarily useful when documenting

 parts of a C library.

 Finally, as a general note, try not to use an excessive amount of

 markup. As documented here and in Pod::Man, you can safely leave Perl

 variables, function names, man page references, and the like unadorned

 by markup and the POD translators will figure it out for you. This

 makes it much easier to later edit the documentation. Note that many

 existing translators will do the wrong thing with e-mail addresses when

 wrapped in L<>, so don't do that.

AUTHOR

 Russ Allbery <rra@cpan.org>, with large portions of this documentation

 taken from the documentation of the original pod2man implementation by

 Larry Wall and Tom Christiansen.

COPYRIGHT AND LICENSE

 Copyright 1999, 2000, 2001, 2004, 2006, 2008, 2010, 2015, 2018 Russ

 Allbery <rra@cpan.org>

 Copying and distribution of this file, with or without modification,

 are permitted in any medium without royalty provided the copyright

 notice and this notice are preserved. This file is offered as-is,

 without any warranty.

 SPDX-License-Identifier: FSFAP

SEE ALSO

 For additional information that may be more accurate for your specific

 system, see either man(5) or man(7) depending on your system manual

 section numbering conventions.

 This documentation is maintained as part of the podlators distribution. Page 7/8

 The current version is always available from its web site at

 <https://www.eyrie.org/~eagle/software/podlators/>.

perl v5.32.1 2021-08-09 PERLPODSTYLE(1)

Page 8/8

