
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'perf_event_open.2' command

$ man perf_event_open.2

PERF_EVENT_OPEN(2) Linux Programmer's Manual PERF_EVENT_OPEN(2)

NAME

 perf_event_open - set up performance monitoring

SYNOPSIS

 #include <linux/perf_event.h>

 #include <linux/hw_breakpoint.h>

 int perf_event_open(struct perf_event_attr *attr,

 pid_t pid, int cpu, int group_fd,

 unsigned long flags);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 Given a list of parameters, perf_event_open() returns a file descrip?

 tor, for use in subsequent system calls (read(2), mmap(2), prctl(2),

 fcntl(2), etc.).

 A call to perf_event_open() creates a file descriptor that allows mea?

 suring performance information. Each file descriptor corresponds to

 one event that is measured; these can be grouped together to measure

 multiple events simultaneously.

 Events can be enabled and disabled in two ways: via ioctl(2) and via

 prctl(2). When an event is disabled it does not count or generate

 overflows but does continue to exist and maintain its count value.

 Events come in two flavors: counting and sampled. A counting event is

 one that is used for counting the aggregate number of events that oc? Page 1/61

 cur. In general, counting event results are gathered with a read(2)

 call. A sampling event periodically writes measurements to a buffer

 that can then be accessed via mmap(2).

 Arguments

 The pid and cpu arguments allow specifying which process and CPU to

 monitor:

 pid == 0 and cpu == -1

 This measures the calling process/thread on any CPU.

 pid == 0 and cpu >= 0

 This measures the calling process/thread only when running on

 the specified CPU.

 pid > 0 and cpu == -1

 This measures the specified process/thread on any CPU.

 pid > 0 and cpu >= 0

 This measures the specified process/thread only when running on

 the specified CPU.

 pid == -1 and cpu >= 0

 This measures all processes/threads on the specified CPU. This

 requires CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN capabil?

 ity or a /proc/sys/kernel/perf_event_paranoid value of less than

 1.

 pid == -1 and cpu == -1

 This setting is invalid and will return an error.

 When pid is greater than zero, permission to perform this system call

 is governed by CAP_PERFMON (since Linux 5.9) and a ptrace access mode

 PTRACE_MODE_READ_REALCREDS check on older Linux versions; see

 ptrace(2).

 The group_fd argument allows event groups to be created. An event

 group has one event which is the group leader. The leader is created

 first, with group_fd = -1. The rest of the group members are created

 with subsequent perf_event_open() calls with group_fd being set to the

 file descriptor of the group leader. (A single event on its own is

 created with group_fd = -1 and is considered to be a group with only 1 Page 2/61

 member.) An event group is scheduled onto the CPU as a unit: it will

 be put onto the CPU only if all of the events in the group can be put

 onto the CPU. This means that the values of the member events can be

 meaningfully compared?added, divided (to get ratios), and so on?with

 each other, since they have counted events for the same set of executed

 instructions.

 The flags argument is formed by ORing together zero or more of the fol?

 lowing values:

 PERF_FLAG_FD_CLOEXEC (since Linux 3.14)

 This flag enables the close-on-exec flag for the created event

 file descriptor, so that the file descriptor is automatically

 closed on execve(2). Setting the close-on-exec flags at cre?

 ation time, rather than later with fcntl(2), avoids potential

 race conditions where the calling thread invokes

 perf_event_open() and fcntl(2) at the same time as another

 thread calls fork(2) then execve(2).

 PERF_FLAG_FD_NO_GROUP

 This flag tells the event to ignore the group_fd parameter ex?

 cept for the purpose of setting up output redirection using the

 PERF_FLAG_FD_OUTPUT flag.

 PERF_FLAG_FD_OUTPUT (broken since Linux 2.6.35)

 This flag re-routes the event's sampled output to instead be in?

 cluded in the mmap buffer of the event specified by group_fd.

 PERF_FLAG_PID_CGROUP (since Linux 2.6.39)

 This flag activates per-container system-wide monitoring. A

 container is an abstraction that isolates a set of resources for

 finer-grained control (CPUs, memory, etc.). In this mode, the

 event is measured only if the thread running on the monitored

 CPU belongs to the designated container (cgroup). The cgroup is

 identified by passing a file descriptor opened on its directory

 in the cgroupfs filesystem. For instance, if the cgroup to mon?

 itor is called test, then a file descriptor opened on

 /dev/cgroup/test (assuming cgroupfs is mounted on /dev/cgroup) Page 3/61

 must be passed as the pid parameter. cgroup monitoring is

 available only for system-wide events and may therefore require

 extra permissions.

 The perf_event_attr structure provides detailed configuration informa?

 tion for the event being created.

 struct perf_event_attr {

 __u32 type; /* Type of event */

 __u32 size; /* Size of attribute structure */

 __u64 config; /* Type-specific configuration */

 union {

 __u64 sample_period; /* Period of sampling */

 __u64 sample_freq; /* Frequency of sampling */

 };

 __u64 sample_type; /* Specifies values included in sample */

 __u64 read_format; /* Specifies values returned in read */

 __u64 disabled : 1, /* off by default */

 inherit : 1, /* children inherit it */

 pinned : 1, /* must always be on PMU */

 exclusive : 1, /* only group on PMU */

 exclude_user : 1, /* don't count user */

 exclude_kernel : 1, /* don't count kernel */

 exclude_hv : 1, /* don't count hypervisor */

 exclude_idle : 1, /* don't count when idle */

 mmap : 1, /* include mmap data */

 comm : 1, /* include comm data */

 freq : 1, /* use freq, not period */

 inherit_stat : 1, /* per task counts */

 enable_on_exec : 1, /* next exec enables */

 task : 1, /* trace fork/exit */

 watermark : 1, /* wakeup_watermark */

 precise_ip : 2, /* skid constraint */

 mmap_data : 1, /* non-exec mmap data */

 sample_id_all : 1, /* sample_type all events */ Page 4/61

 exclude_host : 1, /* don't count in host */

 exclude_guest : 1, /* don't count in guest */

 exclude_callchain_kernel : 1,

 /* exclude kernel callchains */

 exclude_callchain_user : 1,

 /* exclude user callchains */

 mmap2 : 1, /* include mmap with inode data */

 comm_exec : 1, /* flag comm events that are

 due to exec */

 use_clockid : 1, /* use clockid for time fields */

 context_switch : 1, /* context switch data */

 write_backward : 1, /* Write ring buffer from end

 to beginning */

 namespaces : 1, /* include namespaces data */

 ksymbol : 1, /* include ksymbol events */

 bpf_event : 1, /* include bpf events */

 aux_output : 1, /* generate AUX records

 instead of events */

 cgroup : 1, /* include cgroup events */

 text_poke : 1, /* include text poke events */

 __reserved_1 : 30;

 union {

 __u32 wakeup_events; /* wakeup every n events */

 __u32 wakeup_watermark; /* bytes before wakeup */

 };

 __u32 bp_type; /* breakpoint type */

 union {

 __u64 bp_addr; /* breakpoint address */

 __u64 kprobe_func; /* for perf_kprobe */

 __u64 uprobe_path; /* for perf_uprobe */

 __u64 config1; /* extension of config */

 };

 union { Page 5/61

 __u64 bp_len; /* breakpoint length */

 __u64 kprobe_addr; /* with kprobe_func == NULL */

 __u64 probe_offset; /* for perf_[k,u]probe */

 __u64 config2; /* extension of config1 */

 };

 __u64 branch_sample_type; /* enum perf_branch_sample_type */

 __u64 sample_regs_user; /* user regs to dump on samples */

 __u32 sample_stack_user; /* size of stack to dump on

 samples */

 __s32 clockid; /* clock to use for time fields */

 __u64 sample_regs_intr; /* regs to dump on samples */

 __u32 aux_watermark; /* aux bytes before wakeup */

 __u16 sample_max_stack; /* max frames in callchain */

 __u16 __reserved_2; /* align to u64 */

 };

 The fields of the perf_event_attr structure are described in more de?

 tail below:

 type This field specifies the overall event type. It has one of the

 following values:

 PERF_TYPE_HARDWARE

 This indicates one of the "generalized" hardware events

 provided by the kernel. See the config field definition

 for more details.

 PERF_TYPE_SOFTWARE

 This indicates one of the software-defined events pro?

 vided by the kernel (even if no hardware support is

 available).

 PERF_TYPE_TRACEPOINT

 This indicates a tracepoint provided by the kernel trace?

 point infrastructure.

 PERF_TYPE_HW_CACHE

 This indicates a hardware cache event. This has a spe?

 cial encoding, described in the config field definition. Page 6/61

 PERF_TYPE_RAW

 This indicates a "raw" implementation-specific event in

 the config field.

 PERF_TYPE_BREAKPOINT (since Linux 2.6.33)

 This indicates a hardware breakpoint as provided by the

 CPU. Breakpoints can be read/write accesses to an ad?

 dress as well as execution of an instruction address.

 dynamic PMU

 Since Linux 2.6.38, perf_event_open() can support multi?

 ple PMUs. To enable this, a value exported by the kernel

 can be used in the type field to indicate which PMU to

 use. The value to use can be found in the sysfs filesys?

 tem: there is a subdirectory per PMU instance under

 /sys/bus/event_source/devices. In each subdirectory

 there is a type file whose content is an integer that can

 be used in the type field. For instance,

 /sys/bus/event_source/devices/cpu/type contains the value

 for the core CPU PMU, which is usually 4.

 kprobe and uprobe (since Linux 4.17)

 These two dynamic PMUs create a kprobe/uprobe and attach

 it to the file descriptor generated by perf_event_open.

 The kprobe/uprobe will be destroyed on the destruction of

 the file descriptor. See fields kprobe_func, up?

 robe_path, kprobe_addr, and probe_offset for more de?

 tails.

 size The size of the perf_event_attr structure for forward/backward

 compatibility. Set this using sizeof(struct perf_event_attr) to

 allow the kernel to see the struct size at the time of compila?

 tion.

 The related define PERF_ATTR_SIZE_VER0 is set to 64; this was

 the size of the first published struct. PERF_ATTR_SIZE_VER1 is

 72, corresponding to the addition of breakpoints in Linux

 2.6.33. PERF_ATTR_SIZE_VER2 is 80 corresponding to the addition Page 7/61

 of branch sampling in Linux 3.4. PERF_ATTR_SIZE_VER3 is 96 cor?

 responding to the addition of sample_regs_user and sam?

 ple_stack_user in Linux 3.7. PERF_ATTR_SIZE_VER4 is 104 corre?

 sponding to the addition of sample_regs_intr in Linux 3.19.

 PERF_ATTR_SIZE_VER5 is 112 corresponding to the addition of

 aux_watermark in Linux 4.1.

 config This specifies which event you want, in conjunction with the

 type field. The config1 and config2 fields are also taken into

 account in cases where 64 bits is not enough to fully specify

 the event. The encoding of these fields are event dependent.

 There are various ways to set the config field that are depen?

 dent on the value of the previously described type field. What

 follows are various possible settings for config separated out

 by type.

 If type is PERF_TYPE_HARDWARE, we are measuring one of the gen?

 eralized hardware CPU events. Not all of these are available on

 all platforms. Set config to one of the following:

 PERF_COUNT_HW_CPU_CYCLES

 Total cycles. Be wary of what happens during CPU

 frequency scaling.

 PERF_COUNT_HW_INSTRUCTIONS

 Retired instructions. Be careful, these can be af?

 fected by various issues, most notably hardware in?

 terrupt counts.

 PERF_COUNT_HW_CACHE_REFERENCES

 Cache accesses. Usually this indicates Last Level

 Cache accesses but this may vary depending on your

 CPU. This may include prefetches and coherency mes?

 sages; again this depends on the design of your CPU.

 PERF_COUNT_HW_CACHE_MISSES

 Cache misses. Usually this indicates Last Level

 Cache misses; this is intended to be used in con?

 junction with the PERF_COUNT_HW_CACHE_REFERENCES Page 8/61

 event to calculate cache miss rates.

 PERF_COUNT_HW_BRANCH_INSTRUCTIONS

 Retired branch instructions. Prior to Linux 2.6.35,

 this used the wrong event on AMD processors.

 PERF_COUNT_HW_BRANCH_MISSES

 Mispredicted branch instructions.

 PERF_COUNT_HW_BUS_CYCLES

 Bus cycles, which can be different from total cy?

 cles.

 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since Linux 3.0)

 Stalled cycles during issue.

 PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since Linux 3.0)

 Stalled cycles during retirement.

 PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)

 Total cycles; not affected by CPU frequency scaling.

 If type is PERF_TYPE_SOFTWARE, we are measuring software events

 provided by the kernel. Set config to one of the following:

 PERF_COUNT_SW_CPU_CLOCK

 This reports the CPU clock, a high-resolution per-

 CPU timer.

 PERF_COUNT_SW_TASK_CLOCK

 This reports a clock count specific to the task that

 is running.

 PERF_COUNT_SW_PAGE_FAULTS

 This reports the number of page faults.

 PERF_COUNT_SW_CONTEXT_SWITCHES

 This counts context switches. Until Linux 2.6.34,

 these were all reported as user-space events, after

 that they are reported as happening in the kernel.

 PERF_COUNT_SW_CPU_MIGRATIONS

 This reports the number of times the process has mi?

 grated to a new CPU.

 PERF_COUNT_SW_PAGE_FAULTS_MIN Page 9/61

 This counts the number of minor page faults. These

 did not require disk I/O to handle.

 PERF_COUNT_SW_PAGE_FAULTS_MAJ

 This counts the number of major page faults. These

 required disk I/O to handle.

 PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)

 This counts the number of alignment faults. These

 happen when unaligned memory accesses happen; the

 kernel can handle these but it reduces performance.

 This happens only on some architectures (never on

 x86).

 PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)

 This counts the number of emulation faults. The

 kernel sometimes traps on unimplemented instructions

 and emulates them for user space. This can nega?

 tively impact performance.

 PERF_COUNT_SW_DUMMY (since Linux 3.12)

 This is a placeholder event that counts nothing.

 Informational sample record types such as mmap or

 comm must be associated with an active event. This

 dummy event allows gathering such records without

 requiring a counting event.

 If type is PERF_TYPE_TRACEPOINT, then we are measuring kernel

 tracepoints. The value to use in config can be obtained from

 under debugfs tracing/events/*/*/id if ftrace is enabled in the

 kernel.

 If type is PERF_TYPE_HW_CACHE, then we are measuring a hardware

 CPU cache event. To calculate the appropriate config value, use

 the following equation:

 config = (perf_hw_cache_id) |

 (perf_hw_cache_op_id << 8) |

 (perf_hw_cache_op_result_id << 16);

 where perf_hw_cache_id is one of: Page 10/61

 PERF_COUNT_HW_CACHE_L1D

 for measuring Level 1 Data Cache

 PERF_COUNT_HW_CACHE_L1I

 for measuring Level 1 Instruction Cache

 PERF_COUNT_HW_CACHE_LL

 for measuring Last-Level Cache

 PERF_COUNT_HW_CACHE_DTLB

 for measuring the Data TLB

 PERF_COUNT_HW_CACHE_ITLB

 for measuring the Instruction TLB

 PERF_COUNT_HW_CACHE_BPU

 for measuring the branch prediction unit

 PERF_COUNT_HW_CACHE_NODE (since Linux 3.1)

 for measuring local memory accesses

 and perf_hw_cache_op_id is one of:

 PERF_COUNT_HW_CACHE_OP_READ

 for read accesses

 PERF_COUNT_HW_CACHE_OP_WRITE

 for write accesses

 PERF_COUNT_HW_CACHE_OP_PREFETCH

 for prefetch accesses

 and perf_hw_cache_op_result_id is one of:

 PERF_COUNT_HW_CACHE_RESULT_ACCESS

 to measure accesses

 PERF_COUNT_HW_CACHE_RESULT_MISS

 to measure misses

 If type is PERF_TYPE_RAW, then a custom "raw" config value is

 needed. Most CPUs support events that are not covered by the

 "generalized" events. These are implementation defined; see

 your CPU manual (for example the Intel Volume 3B documentation

 or the AMD BIOS and Kernel Developer Guide). The libpfm4 li?

 brary can be used to translate from the name in the architec?

 tural manuals to the raw hex value perf_event_open() expects in Page 11/61

 this field.

 If type is PERF_TYPE_BREAKPOINT, then leave config set to zero.

 Its parameters are set in other places.

 If type is kprobe or uprobe, set retprobe (bit 0 of config, see

 /sys/bus/event_source/devices/[k,u]probe/format/retprobe) for

 kretprobe/uretprobe. See fields kprobe_func, uprobe_path,

 kprobe_addr, and probe_offset for more details.

 kprobe_func, uprobe_path, kprobe_addr, and probe_offset

 These fields describe the kprobe/uprobe for dynamic PMUs kprobe

 and uprobe. For kprobe: use kprobe_func and probe_offset, or

 use kprobe_addr and leave kprobe_func as NULL. For uprobe: use

 uprobe_path and probe_offset.

 sample_period, sample_freq

 A "sampling" event is one that generates an overflow notifica?

 tion every N events, where N is given by sample_period. A sam?

 pling event has sample_period > 0. When an overflow occurs, re?

 quested data is recorded in the mmap buffer. The sample_type

 field controls what data is recorded on each overflow.

 sample_freq can be used if you wish to use frequency rather than

 period. In this case, you set the freq flag. The kernel will

 adjust the sampling period to try and achieve the desired rate.

 The rate of adjustment is a timer tick.

 sample_type

 The various bits in this field specify which values to include

 in the sample. They will be recorded in a ring-buffer, which is

 available to user space using mmap(2). The order in which the

 values are saved in the sample are documented in the MMAP Layout

 subsection below; it is not the enum perf_event_sample_format

 order.

 PERF_SAMPLE_IP

 Records instruction pointer.

 PERF_SAMPLE_TID

 Records the process and thread IDs. Page 12/61

 PERF_SAMPLE_TIME

 Records a timestamp.

 PERF_SAMPLE_ADDR

 Records an address, if applicable.

 PERF_SAMPLE_READ

 Record counter values for all events in a group, not just

 the group leader.

 PERF_SAMPLE_CALLCHAIN

 Records the callchain (stack backtrace).

 PERF_SAMPLE_ID

 Records a unique ID for the opened event's group leader.

 PERF_SAMPLE_CPU

 Records CPU number.

 PERF_SAMPLE_PERIOD

 Records the current sampling period.

 PERF_SAMPLE_STREAM_ID

 Records a unique ID for the opened event. Unlike

 PERF_SAMPLE_ID the actual ID is returned, not the group

 leader. This ID is the same as the one returned by

 PERF_FORMAT_ID.

 PERF_SAMPLE_RAW

 Records additional data, if applicable. Usually returned

 by tracepoint events.

 PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)

 This provides a record of recent branches, as provided by

 CPU branch sampling hardware (such as Intel Last Branch

 Record). Not all hardware supports this feature.

 See the branch_sample_type field for how to filter which

 branches are reported.

 PERF_SAMPLE_REGS_USER (since Linux 3.7)

 Records the current user-level CPU register state (the

 values in the process before the kernel was called).

 PERF_SAMPLE_STACK_USER (since Linux 3.7) Page 13/61

 Records the user level stack, allowing stack unwinding.

 PERF_SAMPLE_WEIGHT (since Linux 3.10)

 Records a hardware provided weight value that expresses

 how costly the sampled event was. This allows the hard?

 ware to highlight expensive events in a profile.

 PERF_SAMPLE_DATA_SRC (since Linux 3.10)

 Records the data source: where in the memory hierarchy

 the data associated with the sampled instruction came

 from. This is available only if the underlying hardware

 supports this feature.

 PERF_SAMPLE_IDENTIFIER (since Linux 3.12)

 Places the SAMPLE_ID value in a fixed position in the

 record, either at the beginning (for sample events) or at

 the end (if a non-sample event).

 This was necessary because a sample stream may have

 records from various different event sources with differ?

 ent sample_type settings. Parsing the event stream prop?

 erly was not possible because the format of the record

 was needed to find SAMPLE_ID, but the format could not be

 found without knowing what event the sample belonged to

 (causing a circular dependency).

 The PERF_SAMPLE_IDENTIFIER setting makes the event stream

 always parsable by putting SAMPLE_ID in a fixed location,

 even though it means having duplicate SAMPLE_ID values in

 records.

 PERF_SAMPLE_TRANSACTION (since Linux 3.13)

 Records reasons for transactional memory abort events

 (for example, from Intel TSX transactional memory sup?

 port).

 The precise_ip setting must be greater than 0 and a

 transactional memory abort event must be measured or no

 values will be recorded. Also note that some perf_event

 measurements, such as sampled cycle counting, may cause Page 14/61

 extraneous aborts (by causing an interrupt during a

 transaction).

 PERF_SAMPLE_REGS_INTR (since Linux 3.19)

 Records a subset of the current CPU register state as

 specified by sample_regs_intr. Unlike PERF_SAM?

 PLE_REGS_USER the register values will return kernel reg?

 ister state if the overflow happened while kernel code is

 running. If the CPU supports hardware sampling of regis?

 ter state (i.e., PEBS on Intel x86) and precise_ip is set

 higher than zero then the register values returned are

 those captured by hardware at the time of the sampled in?

 struction's retirement.

 PERF_SAMPLE_PHYS_ADDR (since Linux 4.13)

 Records physical address of data like in PERF_SAM?

 PLE_ADDR.

 PERF_SAMPLE_CGROUP (since Linux 5.7)

 Records (perf_event) cgroup ID of the process. This cor?

 responds to the id field in the PERF_RECORD_CGROUP event.

 read_format

 This field specifies the format of the data returned by read(2)

 on a perf_event_open() file descriptor.

 PERF_FORMAT_TOTAL_TIME_ENABLED

 Adds the 64-bit time_enabled field. This can be used to

 calculate estimated totals if the PMU is overcommitted

 and multiplexing is happening.

 PERF_FORMAT_TOTAL_TIME_RUNNING

 Adds the 64-bit time_running field. This can be used to

 calculate estimated totals if the PMU is overcommitted

 and multiplexing is happening.

 PERF_FORMAT_ID

 Adds a 64-bit unique value that corresponds to the event

 group.

 PERF_FORMAT_GROUP Page 15/61

 Allows all counter values in an event group to be read

 with one read.

 disabled

 The disabled bit specifies whether the counter starts out dis?

 abled or enabled. If disabled, the event can later be enabled

 by ioctl(2), prctl(2), or enable_on_exec.

 When creating an event group, typically the group leader is ini?

 tialized with disabled set to 1 and any child events are ini?

 tialized with disabled set to 0. Despite disabled being 0, the

 child events will not start until the group leader is enabled.

 inherit

 The inherit bit specifies that this counter should count events

 of child tasks as well as the task specified. This applies only

 to new children, not to any existing children at the time the

 counter is created (nor to any new children of existing chil?

 dren).

 Inherit does not work for some combinations of read_format val?

 ues, such as PERF_FORMAT_GROUP.

 pinned The pinned bit specifies that the counter should always be on

 the CPU if at all possible. It applies only to hardware coun?

 ters and only to group leaders. If a pinned counter cannot be

 put onto the CPU (e.g., because there are not enough hardware

 counters or because of a conflict with some other event), then

 the counter goes into an 'error' state, where reads return end-

 of-file (i.e., read(2) returns 0) until the counter is subse?

 quently enabled or disabled.

 exclusive

 The exclusive bit specifies that when this counter's group is on

 the CPU, it should be the only group using the CPU's counters.

 In the future this may allow monitoring programs to support PMU

 features that need to run alone so that they do not disrupt

 other hardware counters.

 Note that many unexpected situations may prevent events with the Page 16/61

 exclusive bit set from ever running. This includes any users

 running a system-wide measurement as well as any kernel use of

 the performance counters (including the commonly enabled NMI

 Watchdog Timer interface).

 exclude_user

 If this bit is set, the count excludes events that happen in

 user space.

 exclude_kernel

 If this bit is set, the count excludes events that happen in

 kernel space.

 exclude_hv

 If this bit is set, the count excludes events that happen in the

 hypervisor. This is mainly for PMUs that have built-in support

 for handling this (such as POWER). Extra support is needed for

 handling hypervisor measurements on most machines.

 exclude_idle

 If set, don't count when the CPU is running the idle task.

 While you can currently enable this for any event type, it is

 ignored for all but software events.

 mmap The mmap bit enables generation of PERF_RECORD_MMAP samples for

 every mmap(2) call that has PROT_EXEC set. This allows tools to

 notice new executable code being mapped into a program (dynamic

 shared libraries for example) so that addresses can be mapped

 back to the original code.

 comm The comm bit enables tracking of process command name as modi?

 fied by the exec(2) and prctl(PR_SET_NAME) system calls as well

 as writing to /proc/self/comm. If the comm_exec flag is also

 successfully set (possible since Linux 3.16), then the misc flag

 PERF_RECORD_MISC_COMM_EXEC can be used to differentiate the

 exec(2) case from the others.

 freq If this bit is set, then sample_frequency not sample_period is

 used when setting up the sampling interval.

 inherit_stat Page 17/61

 This bit enables saving of event counts on context switch for

 inherited tasks. This is meaningful only if the inherit field

 is set.

 enable_on_exec

 If this bit is set, a counter is automatically enabled after a

 call to exec(2).

 task If this bit is set, then fork/exit notifications are included in

 the ring buffer.

 watermark

 If set, have an overflow notification happen when we cross the

 wakeup_watermark boundary. Otherwise, overflow notifications

 happen after wakeup_events samples.

 precise_ip (since Linux 2.6.35)

 This controls the amount of skid. Skid is how many instructions

 execute between an event of interest happening and the kernel

 being able to stop and record the event. Smaller skid is better

 and allows more accurate reporting of which events correspond to

 which instructions, but hardware is often limited with how small

 this can be.

 The possible values of this field are the following:

 0 SAMPLE_IP can have arbitrary skid.

 1 SAMPLE_IP must have constant skid.

 2 SAMPLE_IP requested to have 0 skid.

 3 SAMPLE_IP must have 0 skid. See also the description of

 PERF_RECORD_MISC_EXACT_IP.

 mmap_data (since Linux 2.6.36)

 This is the counterpart of the mmap field. This enables genera?

 tion of PERF_RECORD_MMAP samples for mmap(2) calls that do not

 have PROT_EXEC set (for example data and SysV shared memory).

 sample_id_all (since Linux 2.6.38)

 If set, then TID, TIME, ID, STREAM_ID, and CPU can additionally

 be included in non-PERF_RECORD_SAMPLEs if the corresponding sam?

 ple_type is selected. Page 18/61

 If PERF_SAMPLE_IDENTIFIER is specified, then an additional ID

 value is included as the last value to ease parsing the record

 stream. This may lead to the id value appearing twice.

 The layout is described by this pseudo-structure:

 struct sample_id {

 { u32 pid, tid; } /* if PERF_SAMPLE_TID set */

 { u64 time; } /* if PERF_SAMPLE_TIME set */

 { u64 id; } /* if PERF_SAMPLE_ID set */

 { u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set */

 { u32 cpu, res; } /* if PERF_SAMPLE_CPU set */

 { u64 id; } /* if PERF_SAMPLE_IDENTIFIER set */

 };

 exclude_host (since Linux 3.2)

 When conducting measurements that include processes running VM

 instances (i.e., have executed a KVM_RUN ioctl(2)), only measure

 events happening inside a guest instance. This is only meaning?

 ful outside the guests; this setting does not change counts

 gathered inside of a guest. Currently, this functionality is

 x86 only.

 exclude_guest (since Linux 3.2)

 When conducting measurements that include processes running VM

 instances (i.e., have executed a KVM_RUN ioctl(2)), do not mea?

 sure events happening inside guest instances. This is only

 meaningful outside the guests; this setting does not change

 counts gathered inside of a guest. Currently, this functional?

 ity is x86 only.

 exclude_callchain_kernel (since Linux 3.7)

 Do not include kernel callchains.

 exclude_callchain_user (since Linux 3.7)

 Do not include user callchains.

 mmap2 (since Linux 3.16)

 Generate an extended executable mmap record that contains enough

 additional information to uniquely identify shared mappings. Page 19/61

 The mmap flag must also be set for this to work.

 comm_exec (since Linux 3.16)

 This is purely a feature-detection flag, it does not change ker?

 nel behavior. If this flag can successfully be set, then, when

 comm is enabled, the PERF_RECORD_MISC_COMM_EXEC flag will be set

 in the misc field of a comm record header if the rename event

 being reported was caused by a call to exec(2). This allows

 tools to distinguish between the various types of process renam?

 ing.

 use_clockid (since Linux 4.1)

 This allows selecting which internal Linux clock to use when

 generating timestamps via the clockid field. This can make it

 easier to correlate perf sample times with timestamps generated

 by other tools.

 context_switch (since Linux 4.3)

 This enables the generation of PERF_RECORD_SWITCH records when a

 context switch occurs. It also enables the generation of

 PERF_RECORD_SWITCH_CPU_WIDE records when sampling in CPU-wide

 mode. This functionality is in addition to existing tracepoint

 and software events for measuring context switches. The advan?

 tage of this method is that it will give full information even

 with strict perf_event_paranoid settings.

 write_backward (since Linux 4.6)

 This causes the ring buffer to be written from the end to the

 beginning. This is to support reading from overwritable ring

 buffer.

 namespaces (since Linux 4.11)

 This enables the generation of PERF_RECORD_NAMESPACES records

 when a task enters a new namespace. Each namespace has a combi?

 nation of device and inode numbers.

 ksymbol (since Linux 5.0)

 This enables the generation of PERF_RECORD_KSYMBOL records when

 new kernel symbols are registered or unregistered. This is ana? Page 20/61

 lyzing dynamic kernel functions like eBPF.

 bpf_event (since Linux 5.0)

 This enables the generation of PERF_RECORD_BPF_EVENT records

 when an eBPF program is loaded or unloaded.

 auxevent (since Linux 5.4)

 This allows normal (non-AUX) events to generate data for AUX

 events if the hardware supports it.

 cgroup (since Linux 5.7)

 This enables the generation of PERF_RECORD_CGROUP records when a

 new cgroup is created (and activated).

 text_poke (since Linux 5.8)

 This enables the generation of PERF_RECORD_TEXT_POKE records

 when there's a changes to the kernel text (i.e., self-modifying

 code).

 wakeup_events, wakeup_watermark

 This union sets how many samples (wakeup_events) or bytes

 (wakeup_watermark) happen before an overflow notification hap?

 pens. Which one is used is selected by the watermark bit flag.

 wakeup_events counts only PERF_RECORD_SAMPLE record types. To

 receive overflow notification for all PERF_RECORD types choose

 watermark and set wakeup_watermark to 1.

 Prior to Linux 3.0, setting wakeup_events to 0 resulted in no

 overflow notifications; more recent kernels treat 0 the same as

 1.

 bp_type (since Linux 2.6.33)

 This chooses the breakpoint type. It is one of:

 HW_BREAKPOINT_EMPTY

 No breakpoint.

 HW_BREAKPOINT_R

 Count when we read the memory location.

 HW_BREAKPOINT_W

 Count when we write the memory location.

 HW_BREAKPOINT_RW Page 21/61

 Count when we read or write the memory location.

 HW_BREAKPOINT_X

 Count when we execute code at the memory location.

 The values can be combined via a bitwise or, but the combination

 of HW_BREAKPOINT_R or HW_BREAKPOINT_W with HW_BREAKPOINT_X is

 not allowed.

 bp_addr (since Linux 2.6.33)

 This is the address of the breakpoint. For execution break?

 points, this is the memory address of the instruction of inter?

 est; for read and write breakpoints, it is the memory address of

 the memory location of interest.

 config1 (since Linux 2.6.39)

 config1 is used for setting events that need an extra register

 or otherwise do not fit in the regular config field. Raw OFF?

 CORE_EVENTS on Nehalem/Westmere/SandyBridge use this field on

 Linux 3.3 and later kernels.

 bp_len (since Linux 2.6.33)

 bp_len is the length of the breakpoint being measured if type is

 PERF_TYPE_BREAKPOINT. Options are HW_BREAKPOINT_LEN_1,

 HW_BREAKPOINT_LEN_2, HW_BREAKPOINT_LEN_4, and HW_BREAK?

 POINT_LEN_8. For an execution breakpoint, set this to

 sizeof(long).

 config2 (since Linux 2.6.39)

 config2 is a further extension of the config1 field.

 branch_sample_type (since Linux 3.4)

 If PERF_SAMPLE_BRANCH_STACK is enabled, then this specifies what

 branches to include in the branch record.

 The first part of the value is the privilege level, which is a

 combination of one of the values listed below. If the user does

 not set privilege level explicitly, the kernel will use the

 event's privilege level. Event and branch privilege levels do

 not have to match.

 PERF_SAMPLE_BRANCH_USER Page 22/61

 Branch target is in user space.

 PERF_SAMPLE_BRANCH_KERNEL

 Branch target is in kernel space.

 PERF_SAMPLE_BRANCH_HV

 Branch target is in hypervisor.

 PERF_SAMPLE_BRANCH_PLM_ALL

 A convenience value that is the three preceding values

 ORed together.

 In addition to the privilege value, at least one or more of the

 following bits must be set.

 PERF_SAMPLE_BRANCH_ANY

 Any branch type.

 PERF_SAMPLE_BRANCH_ANY_CALL

 Any call branch (includes direct calls, indirect calls,

 and far jumps).

 PERF_SAMPLE_BRANCH_IND_CALL

 Indirect calls.

 PERF_SAMPLE_BRANCH_CALL (since Linux 4.4)

 Direct calls.

 PERF_SAMPLE_BRANCH_ANY_RETURN

 Any return branch.

 PERF_SAMPLE_BRANCH_IND_JUMP (since Linux 4.2)

 Indirect jumps.

 PERF_SAMPLE_BRANCH_COND (since Linux 3.16)

 Conditional branches.

 PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)

 Transactional memory aborts.

 PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)

 Branch in transactional memory transaction.

 PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)

 Branch not in transactional memory transaction.

 PERF_SAMPLE_BRANCH_CALL_STACK (since Linux 4.1) Branch is

 part of a hardware-generated call stack. This requires Page 23/61

 hardware support, currently only found on Intel x86

 Haswell or newer.

 sample_regs_user (since Linux 3.7)

 This bit mask defines the set of user CPU registers to dump on

 samples. The layout of the register mask is architecture-spe?

 cific and is described in the kernel header file arch/ARCH/in?

 clude/uapi/asm/perf_regs.h.

 sample_stack_user (since Linux 3.7)

 This defines the size of the user stack to dump if PERF_SAM?

 PLE_STACK_USER is specified.

 clockid (since Linux 4.1)

 If use_clockid is set, then this field selects which internal

 Linux timer to use for timestamps. The available timers are de?

 fined in linux/time.h, with CLOCK_MONOTONIC, CLOCK_MONO?

 TONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, and CLOCK_TAI cur?

 rently supported.

 aux_watermark (since Linux 4.1)

 This specifies how much data is required to trigger a

 PERF_RECORD_AUX sample.

 sample_max_stack (since Linux 4.8)

 When sample_type includes PERF_SAMPLE_CALLCHAIN, this field

 specifies how many stack frames to report when generating the

 callchain.

 Reading results

 Once a perf_event_open() file descriptor has been opened, the values of

 the events can be read from the file descriptor. The values that are

 there are specified by the read_format field in the attr structure at

 open time.

 If you attempt to read into a buffer that is not big enough to hold the

 data, the error ENOSPC results.

 Here is the layout of the data returned by a read:

 * If PERF_FORMAT_GROUP was specified to allow reading all events in a

 group at once: Page 24/61

 struct read_format {

 u64 nr; /* The number of events */

 u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */

 u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */

 struct {

 u64 value; /* The value of the event */

 u64 id; /* if PERF_FORMAT_ID */

 } values[nr];

 };

 * If PERF_FORMAT_GROUP was not specified:

 struct read_format {

 u64 value; /* The value of the event */

 u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */

 u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */

 u64 id; /* if PERF_FORMAT_ID */

 };

 The values read are as follows:

 nr The number of events in this file descriptor. Available only if

 PERF_FORMAT_GROUP was specified.

 time_enabled, time_running

 Total time the event was enabled and running. Normally these

 values are the same. Multiplexing happens if the number of

 events is more than the number of available PMU counter slots.

 In that case the events run only part of the time and the

 time_enabled and time running values can be used to scale an es?

 timated value for the count.

 value An unsigned 64-bit value containing the counter result.

 id A globally unique value for this particular event; only present

 if PERF_FORMAT_ID was specified in read_format.

 MMAP layout

 When using perf_event_open() in sampled mode, asynchronous events (like

 counter overflow or PROT_EXEC mmap tracking) are logged into a ring-

 buffer. This ring-buffer is created and accessed through mmap(2). Page 25/61

 The mmap size should be 1+2^n pages, where the first page is a metadata

 page (struct perf_event_mmap_page) that contains various bits of infor?

 mation such as where the ring-buffer head is.

 Before kernel 2.6.39, there is a bug that means you must allocate an

 mmap ring buffer when sampling even if you do not plan to access it.

 The structure of the first metadata mmap page is as follows:

 struct perf_event_mmap_page {

 __u32 version; /* version number of this structure */

 __u32 compat_version; /* lowest version this is compat with */

 __u32 lock; /* seqlock for synchronization */

 __u32 index; /* hardware counter identifier */

 __s64 offset; /* add to hardware counter value */

 __u64 time_enabled; /* time event active */

 __u64 time_running; /* time event on CPU */

 union {

 __u64 capabilities;

 struct {

 __u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,

 cap_bit0_is_deprecated : 1,

 cap_user_rdpmc : 1,

 cap_user_time : 1,

 cap_user_time_zero : 1,

 };

 };

 __u16 pmc_width;

 __u16 time_shift;

 __u32 time_mult;

 __u64 time_offset;

 __u64 __reserved[120]; /* Pad to 1 k */

 __u64 data_head; /* head in the data section */

 __u64 data_tail; /* user-space written tail */

 __u64 data_offset; /* where the buffer starts */

 __u64 data_size; /* data buffer size */ Page 26/61

 __u64 aux_head;

 __u64 aux_tail;

 __u64 aux_offset;

 __u64 aux_size;

 }

 The following list describes the fields in the perf_event_mmap_page

 structure in more detail:

 version

 Version number of this structure.

 compat_version

 The lowest version this is compatible with.

 lock A seqlock for synchronization.

 index A unique hardware counter identifier.

 offset When using rdpmc for reads this offset value must be added to

 the one returned by rdpmc to get the current total event count.

 time_enabled

 Time the event was active.

 time_running

 Time the event was running.

 cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)

 There was a bug in the definition of cap_usr_time and

 cap_usr_rdpmc from Linux 3.4 until Linux 3.11. Both bits were

 defined to point to the same location, so it was impossible to

 know if cap_usr_time or cap_usr_rdpmc were actually set.

 Starting with Linux 3.12, these are renamed to cap_bit0 and you

 should use the cap_user_time and cap_user_rdpmc fields instead.

 cap_bit0_is_deprecated (since Linux 3.12)

 If set, this bit indicates that the kernel supports the properly

 separated cap_user_time and cap_user_rdpmc bits.

 If not-set, it indicates an older kernel where cap_usr_time and

 cap_usr_rdpmc map to the same bit and thus both features should

 be used with caution.

 cap_user_rdpmc (since Linux 3.12) Page 27/61

 If the hardware supports user-space read of performance counters

 without syscall (this is the "rdpmc" instruction on x86), then

 the following code can be used to do a read:

 u32 seq, time_mult, time_shift, idx, width;

 u64 count, enabled, running;

 u64 cyc, time_offset;

 do {

 seq = pc->lock;

 barrier();

 enabled = pc->time_enabled;

 running = pc->time_running;

 if (pc->cap_usr_time && enabled != running) {

 cyc = rdtsc();

 time_offset = pc->time_offset;

 time_mult = pc->time_mult;

 time_shift = pc->time_shift;

 }

 idx = pc->index;

 count = pc->offset;

 if (pc->cap_usr_rdpmc && idx) {

 width = pc->pmc_width;

 count += rdpmc(idx - 1);

 }

 barrier();

 } while (pc->lock != seq);

 cap_user_time (since Linux 3.12)

 This bit indicates the hardware has a constant, nonstop time?

 stamp counter (TSC on x86).

 cap_user_time_zero (since Linux 3.12)

 Indicates the presence of time_zero which allows mapping time?

 stamp values to the hardware clock.

 pmc_width

 If cap_usr_rdpmc, this field provides the bit-width of the value Page 28/61

 read using the rdpmc or equivalent instruction. This can be

 used to sign extend the result like:

 pmc <<= 64 - pmc_width;

 pmc >>= 64 - pmc_width; // signed shift right

 count += pmc;

 time_shift, time_mult, time_offset

 If cap_usr_time, these fields can be used to compute the time

 delta since time_enabled (in nanoseconds) using rdtsc or simi?

 lar.

 u64 quot, rem;

 u64 delta;

 quot = cyc >> time_shift;

 rem = cyc & (((u64)1 << time_shift) - 1);

 delta = time_offset + quot * time_mult +

 ((rem * time_mult) >> time_shift);

 Where time_offset, time_mult, time_shift, and cyc are read in

 the seqcount loop described above. This delta can then be added

 to enabled and possible running (if idx), improving the scaling:

 enabled += delta;

 if (idx)

 running += delta;

 quot = count / running;

 rem = count % running;

 count = quot * enabled + (rem * enabled) / running;

 time_zero (since Linux 3.12)

 If cap_usr_time_zero is set, then the hardware clock (the TSC

 timestamp counter on x86) can be calculated from the time_zero,

 time_mult, and time_shift values:

 time = timestamp - time_zero;

 quot = time / time_mult;

 rem = time % time_mult;

 cyc = (quot << time_shift) + (rem << time_shift) / time_mult;

 And vice versa: Page 29/61

 quot = cyc >> time_shift;

 rem = cyc & (((u64)1 << time_shift) - 1);

 timestamp = time_zero + quot * time_mult +

 ((rem * time_mult) >> time_shift);

 data_head

 This points to the head of the data section. The value continu?

 ously increases, it does not wrap. The value needs to be manu?

 ally wrapped by the size of the mmap buffer before accessing the

 samples.

 On SMP-capable platforms, after reading the data_head value,

 user space should issue an rmb().

 data_tail

 When the mapping is PROT_WRITE, the data_tail value should be

 written by user space to reflect the last read data. In this

 case, the kernel will not overwrite unread data.

 data_offset (since Linux 4.1)

 Contains the offset of the location in the mmap buffer where

 perf sample data begins.

 data_size (since Linux 4.1)

 Contains the size of the perf sample region within the mmap buf?

 fer.

 aux_head, aux_tail, aux_offset, aux_size (since Linux 4.1)

 The AUX region allows mmap(2)-ing a separate sample buffer for

 high-bandwidth data streams (separate from the main perf sample

 buffer). An example of a high-bandwidth stream is instruction

 tracing support, as is found in newer Intel processors.

 To set up an AUX area, first aux_offset needs to be set with an

 offset greater than data_offset+data_size and aux_size needs to

 be set to the desired buffer size. The desired offset and size

 must be page aligned, and the size must be a power of two.

 These values are then passed to mmap in order to map the AUX

 buffer. Pages in the AUX buffer are included as part of the

 RLIMIT_MEMLOCK resource limit (see setrlimit(2)), and also as Page 30/61

 part of the perf_event_mlock_kb allowance.

 By default, the AUX buffer will be truncated if it will not fit

 in the available space in the ring buffer. If the AUX buffer is

 mapped as a read only buffer, then it will operate in ring buf?

 fer mode where old data will be overwritten by new. In over?

 write mode, it might not be possible to infer where the new data

 began, and it is the consumer's job to disable measurement while

 reading to avoid possible data races.

 The aux_head and aux_tail ring buffer pointers have the same be?

 havior and ordering rules as the previous described data_head

 and data_tail.

 The following 2^n ring-buffer pages have the layout described below.

 If perf_event_attr.sample_id_all is set, then all event types will have

 the sample_type selected fields related to where/when (identity) an

 event took place (TID, TIME, ID, CPU, STREAM_ID) described in

 PERF_RECORD_SAMPLE below, it will be stashed just after the

 perf_event_header and the fields already present for the existing

 fields, that is, at the end of the payload. This allows a newer

 perf.data file to be supported by older perf tools, with the new op?

 tional fields being ignored.

 The mmap values start with a header:

 struct perf_event_header {

 __u32 type;

 __u16 misc;

 __u16 size;

 };

 Below, we describe the perf_event_header fields in more detail. For

 ease of reading, the fields with shorter descriptions are presented

 first.

 size This indicates the size of the record.

 misc The misc field contains additional information about the sample.

 The CPU mode can be determined from this value by masking with

 PERF_RECORD_MISC_CPUMODE_MASK and looking for one of the follow? Page 31/61

 ing (note these are not bit masks, only one can be set at a

 time):

 PERF_RECORD_MISC_CPUMODE_UNKNOWN

 Unknown CPU mode.

 PERF_RECORD_MISC_KERNEL

 Sample happened in the kernel.

 PERF_RECORD_MISC_USER

 Sample happened in user code.

 PERF_RECORD_MISC_HYPERVISOR

 Sample happened in the hypervisor.

 PERF_RECORD_MISC_GUEST_KERNEL (since Linux 2.6.35)

 Sample happened in the guest kernel.

 PERF_RECORD_MISC_GUEST_USER (since Linux 2.6.35)

 Sample happened in guest user code.

 Since the following three statuses are generated by different

 record types, they alias to the same bit:

 PERF_RECORD_MISC_MMAP_DATA (since Linux 3.10)

 This is set when the mapping is not executable; otherwise

 the mapping is executable.

 PERF_RECORD_MISC_COMM_EXEC (since Linux 3.16)

 This is set for a PERF_RECORD_COMM record on kernels more

 recent than Linux 3.16 if a process name change was

 caused by an exec(2) system call.

 PERF_RECORD_MISC_SWITCH_OUT (since Linux 4.3)

 When a PERF_RECORD_SWITCH or PERF_RECORD_SWITCH_CPU_WIDE

 record is generated, this bit indicates that the context

 switch is away from the current process (instead of into

 the current process).

 In addition, the following bits can be set:

 PERF_RECORD_MISC_EXACT_IP

 This indicates that the content of PERF_SAMPLE_IP points

 to the actual instruction that triggered the event. See

 also perf_event_attr.precise_ip. Page 32/61

 PERF_RECORD_MISC_EXT_RESERVED (since Linux 2.6.35)

 This indicates there is extended data available (cur?

 rently not used).

 PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT

 This bit is not set by the kernel. It is reserved for

 the user-space perf utility to indicate that

 /proc/i[pid]/maps parsing was taking too long and was

 stopped, and thus the mmap records may be truncated.

 type The type value is one of the below. The values in the corre?

 sponding record (that follows the header) depend on the type se?

 lected as shown.

 PERF_RECORD_MMAP

 The MMAP events record the PROT_EXEC mappings so that we can

 correlate user-space IPs to code. They have the following

 structure:

 struct {

 struct perf_event_header header;

 u32 pid, tid;

 u64 addr;

 u64 len;

 u64 pgoff;

 char filename[];

 };

 pid is the process ID.

 tid is the thread ID.

 addr is the address of the allocated memory. len is the

 length of the allocated memory. pgoff is the page

 offset of the allocated memory. filename is a string

 describing the backing of the allocated memory.

 PERF_RECORD_LOST

 This record indicates when events are lost.

 struct {

 struct perf_event_header header; Page 33/61

 u64 id;

 u64 lost;

 struct sample_id sample_id;

 };

 id is the unique event ID for the samples that were

 lost.

 lost is the number of events that were lost.

 PERF_RECORD_COMM

 This record indicates a change in the process name.

 struct {

 struct perf_event_header header;

 u32 pid;

 u32 tid;

 char comm[];

 struct sample_id sample_id;

 };

 pid is the process ID.

 tid is the thread ID.

 comm is a string containing the new name of the process.

 PERF_RECORD_EXIT

 This record indicates a process exit event.

 struct {

 struct perf_event_header header;

 u32 pid, ppid;

 u32 tid, ptid;

 u64 time;

 struct sample_id sample_id;

 };

 PERF_RECORD_THROTTLE, PERF_RECORD_UNTHROTTLE

 This record indicates a throttle/unthrottle event.

 struct {

 struct perf_event_header header;

 u64 time; Page 34/61

 u64 id;

 u64 stream_id;

 struct sample_id sample_id;

 };

 PERF_RECORD_FORK

 This record indicates a fork event.

 struct {

 struct perf_event_header header;

 u32 pid, ppid;

 u32 tid, ptid;

 u64 time;

 struct sample_id sample_id;

 };

 PERF_RECORD_READ

 This record indicates a read event.

 struct {

 struct perf_event_header header;

 u32 pid, tid;

 struct read_format values;

 struct sample_id sample_id;

 };

 PERF_RECORD_SAMPLE

 This record indicates a sample.

 struct {

 struct perf_event_header header;

 u64 sample_id; /* if PERF_SAMPLE_IDENTIFIER */

 u64 ip; /* if PERF_SAMPLE_IP */

 u32 pid, tid; /* if PERF_SAMPLE_TID */

 u64 time; /* if PERF_SAMPLE_TIME */

 u64 addr; /* if PERF_SAMPLE_ADDR */

 u64 id; /* if PERF_SAMPLE_ID */

 u64 stream_id; /* if PERF_SAMPLE_STREAM_ID */

 u32 cpu, res; /* if PERF_SAMPLE_CPU */ Page 35/61

 u64 period; /* if PERF_SAMPLE_PERIOD */

 struct read_format v;

 /* if PERF_SAMPLE_READ */

 u64 nr; /* if PERF_SAMPLE_CALLCHAIN */

 u64 ips[nr]; /* if PERF_SAMPLE_CALLCHAIN */

 u32 size; /* if PERF_SAMPLE_RAW */

 char data[size]; /* if PERF_SAMPLE_RAW */

 u64 bnr; /* if PERF_SAMPLE_BRANCH_STACK */

 struct perf_branch_entry lbr[bnr];

 /* if PERF_SAMPLE_BRANCH_STACK */

 u64 abi; /* if PERF_SAMPLE_REGS_USER */

 u64 regs[weight(mask)];

 /* if PERF_SAMPLE_REGS_USER */

 u64 size; /* if PERF_SAMPLE_STACK_USER */

 char data[size]; /* if PERF_SAMPLE_STACK_USER */

 u64 dyn_size; /* if PERF_SAMPLE_STACK_USER &&

 size != 0 */

 u64 weight; /* if PERF_SAMPLE_WEIGHT */

 u64 data_src; /* if PERF_SAMPLE_DATA_SRC */

 u64 transaction; /* if PERF_SAMPLE_TRANSACTION */

 u64 abi; /* if PERF_SAMPLE_REGS_INTR */

 u64 regs[weight(mask)];

 /* if PERF_SAMPLE_REGS_INTR */

 u64 phys_addr; /* if PERF_SAMPLE_PHYS_ADDR */

 u64 cgroup; /* if PERF_SAMPLE_CGROUP */

 };

 sample_id

 If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID

 is included. This is a duplication of the PERF_SAM?

 PLE_ID id value, but included at the beginning of the

 sample so parsers can easily obtain the value.

 ip If PERF_SAMPLE_IP is enabled, then a 64-bit instruction

 pointer value is included. Page 36/61

 pid, tid

 If PERF_SAMPLE_TID is enabled, then a 32-bit process ID

 and 32-bit thread ID are included.

 time

 If PERF_SAMPLE_TIME is enabled, then a 64-bit timestamp

 is included. This is obtained via local_clock() which

 is a hardware timestamp if available and the jiffies

 value if not.

 addr

 If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is

 included. This is usually the address of a tracepoint,

 breakpoint, or software event; otherwise the value is 0.

 id If PERF_SAMPLE_ID is enabled, a 64-bit unique ID is in?

 cluded. If the event is a member of an event group, the

 group leader ID is returned. This ID is the same as the

 one returned by PERF_FORMAT_ID.

 stream_id

 If PERF_SAMPLE_STREAM_ID is enabled, a 64-bit unique ID

 is included. Unlike PERF_SAMPLE_ID the actual ID is re?

 turned, not the group leader. This ID is the same as

 the one returned by PERF_FORMAT_ID.

 cpu, res

 If PERF_SAMPLE_CPU is enabled, this is a 32-bit value

 indicating which CPU was being used, in addition to a

 reserved (unused) 32-bit value.

 period

 If PERF_SAMPLE_PERIOD is enabled, a 64-bit value indi?

 cating the current sampling period is written.

 v If PERF_SAMPLE_READ is enabled, a structure of type

 read_format is included which has values for all events

 in the event group. The values included depend on the

 read_format value used at perf_event_open() time.

 nr, ips[nr] Page 37/61

 If PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit num?

 ber is included which indicates how many following

 64-bit instruction pointers will follow. This is the

 current callchain.

 size, data[size]

 If PERF_SAMPLE_RAW is enabled, then a 32-bit value indi?

 cating size is included followed by an array of 8-bit

 values of length size. The values are padded with 0 to

 have 64-bit alignment.

 This RAW record data is opaque with respect to the ABI.

 The ABI doesn't make any promises with respect to the

 stability of its content, it may vary depending on

 event, hardware, and kernel version.

 bnr, lbr[bnr]

 If PERF_SAMPLE_BRANCH_STACK is enabled, then a 64-bit

 value indicating the number of records is included, fol?

 lowed by bnr perf_branch_entry structures which each in?

 clude the fields:

 from This indicates the source instruction (may not be

 a branch).

 to The branch target.

 mispred

 The branch target was mispredicted.

 predicted

 The branch target was predicted.

 in_tx (since Linux 3.11)

 The branch was in a transactional memory transac?

 tion.

 abort (since Linux 3.11)

 The branch was in an aborted transactional memory

 transaction.

 cycles (since Linux 4.3)

 This reports the number of cycles elapsed since Page 38/61

 the previous branch stack update.

 The entries are from most to least recent, so the first

 entry has the most recent branch.

 Support for mispred, predicted, and cycles is optional;

 if not supported, those values will be 0.

 The type of branches recorded is specified by the

 branch_sample_type field.

 abi, regs[weight(mask)]

 If PERF_SAMPLE_REGS_USER is enabled, then the user CPU

 registers are recorded.

 The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,

 PERF_SAMPLE_REGS_ABI_32, or PERF_SAMPLE_REGS_ABI_64.

 The regs field is an array of the CPU registers that

 were specified by the sample_regs_user attr field. The

 number of values is the number of bits set in the sam?

 ple_regs_user bit mask.

 size, data[size], dyn_size

 If PERF_SAMPLE_STACK_USER is enabled, then the user

 stack is recorded. This can be used to generate stack

 backtraces. size is the size requested by the user in

 sample_stack_user or else the maximum record size. data

 is the stack data (a raw dump of the memory pointed to

 by the stack pointer at the time of sampling). dyn_size

 is the amount of data actually dumped (can be less than

 size). Note that dyn_size is omitted if size is 0.

 weight

 If PERF_SAMPLE_WEIGHT is enabled, then a 64-bit value

 provided by the hardware is recorded that indicates how

 costly the event was. This allows expensive events to

 stand out more clearly in profiles.

 data_src

 If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit value

 is recorded that is made up of the following fields: Page 39/61

 mem_op

 Type of opcode, a bitwise combination of:

 PERF_MEM_OP_NA Not available

 PERF_MEM_OP_LOAD Load instruction

 PERF_MEM_OP_STORE Store instruction

 PERF_MEM_OP_PFETCH Prefetch

 PERF_MEM_OP_EXEC Executable code

 mem_lvl

 Memory hierarchy level hit or miss, a bitwise combi?

 nation of the following, shifted left by

 PERF_MEM_LVL_SHIFT:

 PERF_MEM_LVL_NA Not available

 PERF_MEM_LVL_HIT Hit

 PERF_MEM_LVL_MISS Miss

 PERF_MEM_LVL_L1 Level 1 cache

 PERF_MEM_LVL_LFB Line fill buffer

 PERF_MEM_LVL_L2 Level 2 cache

 PERF_MEM_LVL_L3 Level 3 cache

 PERF_MEM_LVL_LOC_RAM Local DRAM

 PERF_MEM_LVL_REM_RAM1 Remote DRAM 1 hop

 PERF_MEM_LVL_REM_RAM2 Remote DRAM 2 hops

 PERF_MEM_LVL_REM_CCE1 Remote cache 1 hop

 PERF_MEM_LVL_REM_CCE2 Remote cache 2 hops

 PERF_MEM_LVL_IO I/O memory

 PERF_MEM_LVL_UNC Uncached memory

 mem_snoop

 Snoop mode, a bitwise combination of the following,

 shifted left by PERF_MEM_SNOOP_SHIFT:

 PERF_MEM_SNOOP_NA Not available

 PERF_MEM_SNOOP_NONE No snoop

 PERF_MEM_SNOOP_HIT Snoop hit

 PERF_MEM_SNOOP_MISS Snoop miss

 PERF_MEM_SNOOP_HITM Snoop hit modified Page 40/61

 mem_lock

 Lock instruction, a bitwise combination of the fol?

 lowing, shifted left by PERF_MEM_LOCK_SHIFT:

 PERF_MEM_LOCK_NA Not available

 PERF_MEM_LOCK_LOCKED Locked transaction

 mem_dtlb

 TLB access hit or miss, a bitwise combination of the

 following, shifted left by PERF_MEM_TLB_SHIFT:

 PERF_MEM_TLB_NA Not available

 PERF_MEM_TLB_HIT Hit

 PERF_MEM_TLB_MISS Miss

 PERF_MEM_TLB_L1 Level 1 TLB

 PERF_MEM_TLB_L2 Level 2 TLB

 PERF_MEM_TLB_WK Hardware walker

 PERF_MEM_TLB_OS OS fault handler

 transaction

 If the PERF_SAMPLE_TRANSACTION flag is set, then a

 64-bit field is recorded describing the sources of any

 transactional memory aborts.

 The field is a bitwise combination of the following val?

 ues:

 PERF_TXN_ELISION

 Abort from an elision type transaction (Intel-

 CPU-specific).

 PERF_TXN_TRANSACTION

 Abort from a generic transaction.

 PERF_TXN_SYNC

 Synchronous abort (related to the reported in?

 struction).

 PERF_TXN_ASYNC

 Asynchronous abort (not related to the reported

 instruction).

 PERF_TXN_RETRY Page 41/61

 Retryable abort (retrying the transaction may

 have succeeded).

 PERF_TXN_CONFLICT

 Abort due to memory conflicts with other threads.

 PERF_TXN_CAPACITY_WRITE

 Abort due to write capacity overflow.

 PERF_TXN_CAPACITY_READ

 Abort due to read capacity overflow.

 In addition, a user-specified abort code can be obtained

 from the high 32 bits of the field by shifting right by

 PERF_TXN_ABORT_SHIFT and masking with the value

 PERF_TXN_ABORT_MASK.

 abi, regs[weight(mask)]

 If PERF_SAMPLE_REGS_INTR is enabled, then the user CPU

 registers are recorded.

 The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,

 PERF_SAMPLE_REGS_ABI_32, or PERF_SAMPLE_REGS_ABI_64.

 The regs field is an array of the CPU registers that

 were specified by the sample_regs_intr attr field. The

 number of values is the number of bits set in the sam?

 ple_regs_intr bit mask.

 phys_addr

 If the PERF_SAMPLE_PHYS_ADDR flag is set, then the

 64-bit physical address is recorded.

 cgroup

 If the PERF_SAMPLE_CGROUP flag is set, then the 64-bit

 cgroup ID (for the perf_event subsystem) is recorded.

 To get the pathname of the cgroup, the ID should match

 to one in a PERF_RECORD_CGROUP .

 PERF_RECORD_MMAP2

 This record includes extended information on mmap(2) calls

 returning executable mappings. The format is similar to

 that of the PERF_RECORD_MMAP record, but includes extra val? Page 42/61

 ues that allow uniquely identifying shared mappings.

 struct {

 struct perf_event_header header;

 u32 pid;

 u32 tid;

 u64 addr;

 u64 len;

 u64 pgoff;

 u32 maj;

 u32 min;

 u64 ino;

 u64 ino_generation;

 u32 prot;

 u32 flags;

 char filename[];

 struct sample_id sample_id;

 };

 pid is the process ID.

 tid is the thread ID.

 addr is the address of the allocated memory.

 len is the length of the allocated memory.

 pgoff is the page offset of the allocated memory.

 maj is the major ID of the underlying device.

 min is the minor ID of the underlying device.

 ino is the inode number.

 ino_generation

 is the inode generation.

 prot is the protection information.

 flags is the flags information.

 filename

 is a string describing the backing of the allocated

 memory.

 PERF_RECORD_AUX (since Linux 4.1) Page 43/61

 This record reports that new data is available in the sepa?

 rate AUX buffer region.

 struct {

 struct perf_event_header header;

 u64 aux_offset;

 u64 aux_size;

 u64 flags;

 struct sample_id sample_id;

 };

 aux_offset

 offset in the AUX mmap region where the new data be?

 gins.

 aux_size

 size of the data made available.

 flags describes the AUX update.

 PERF_AUX_FLAG_TRUNCATED

 if set, then the data returned was truncated

 to fit the available buffer size.

 PERF_AUX_FLAG_OVERWRITE

 if set, then the data returned has overwritten

 previous data.

 PERF_RECORD_ITRACE_START (since Linux 4.1)

 This record indicates which process has initiated an in?

 struction trace event, allowing tools to properly correlate

 the instruction addresses in the AUX buffer with the proper

 executable.

 struct {

 struct perf_event_header header;

 u32 pid;

 u32 tid;

 };

 pid process ID of the thread starting an instruction

 trace. Page 44/61

 tid thread ID of the thread starting an instruction

 trace.

 PERF_RECORD_LOST_SAMPLES (since Linux 4.2)

 When using hardware sampling (such as Intel PEBS) this

 record indicates some number of samples that may have been

 lost.

 struct {

 struct perf_event_header header;

 u64 lost;

 struct sample_id sample_id;

 };

 lost the number of potentially lost samples.

 PERF_RECORD_SWITCH (since Linux 4.3)

 This record indicates a context switch has happened. The

 PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates

 whether it was a context switch into or away from the cur?

 rent process.

 struct {

 struct perf_event_header header;

 struct sample_id sample_id;

 };

 PERF_RECORD_SWITCH_CPU_WIDE (since Linux 4.3)

 As with PERF_RECORD_SWITCH this record indicates a context

 switch has happened, but it only occurs when sampling in

 CPU-wide mode and provides additional information on the

 process being switched to/from. The

 PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates

 whether it was a context switch into or away from the cur?

 rent process.

 struct {

 struct perf_event_header header;

 u32 next_prev_pid;

 u32 next_prev_tid; Page 45/61

 struct sample_id sample_id;

 };

 next_prev_pid

 The process ID of the previous (if switching in) or

 next (if switching out) process on the CPU.

 next_prev_tid

 The thread ID of the previous (if switching in) or

 next (if switching out) thread on the CPU.

 PERF_RECORD_NAMESPACES (since Linux 4.11)

 This record includes various namespace information of a

 process.

 struct {

 struct perf_event_header header;

 u32 pid;

 u32 tid;

 u64 nr_namespaces;

 struct { u64 dev, inode } [nr_namespaces];

 struct sample_id sample_id;

 };

 pid is the process ID

 tid is the thread ID

 nr_namespace

 is the number of namespaces in this record

 Each namespace has dev and inode fields and is recorded in

 the fixed position like below:

 NET_NS_INDEX=0

 Network namespace

 UTS_NS_INDEX=1

 UTS namespace

 IPC_NS_INDEX=2

 IPC namespace

 PID_NS_INDEX=3

 PID namespace Page 46/61

 USER_NS_INDEX=4

 User namespace

 MNT_NS_INDEX=5

 Mount namespace

 CGROUP_NS_INDEX=6

 Cgroup namespace

 PERF_RECORD_KSYMBOL (since Linux 5.0)

 This record indicates kernel symbol register/unregister

 events.

 struct {

 struct perf_event_header header;

 u64 addr;

 u32 len;

 u16 ksym_type;

 u16 flags;

 char name[];

 struct sample_id sample_id;

 };

 addr is the address of the kernel symbol.

 len is the length of the kernel symbol.

 ksym_type

 is the type of the kernel symbol. Currently the fol?

 lowing types are available:

 PERF_RECORD_KSYMBOL_TYPE_BPF

 The kernel symbol is a BPF function.

 flags If the PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER is set,

 then this event is for unregistering the kernel sym?

 bol.

 PERF_RECORD_BPF_EVENT (since Linux 5.0)

 This record indicates BPF program is loaded or unloaded.

 struct {

 struct perf_event_header header;

 u16 type; Page 47/61

 u16 flags;

 u32 id;

 u8 tag[BPF_TAG_SIZE];

 struct sample_id sample_id;

 };

 type is one of the following values:

 PERF_BPF_EVENT_PROG_LOAD

 A BPF program is loaded

 PERF_BPF_EVENT_PROG_UNLOAD

 A BPF program is unloaded

 id is the ID of the BPF program.

 tag is the tag of the BPF program. Currently,

 BPF_TAG_SIZE is defined as 8.

 PERF_RECORD_CGROUP (since Linux 5.7)

 This record indicates a new cgroup is created and activated.

 struct {

 struct perf_event_header header;

 u64 id;

 char path[];

 struct sample_id sample_id;

 };

 id is the cgroup identifier. This can be also retrieved

 by name_to_handle_at(2) on the cgroup path (as a file

 handle).

 path is the path of the cgroup from the root.

 PERF_RECORD_TEXT_POKE (since Linux 5.8)

 This record indicates a change in the kernel text. This in?

 cludes addition and removal of the text and the correspond?

 ing length is zero in this case.

 struct {

 struct perf_event_header header;

 u64 addr;

 u16 old_len; Page 48/61

 u16 new_len;

 u8 bytes[];

 struct sample_id sample_id;

 };

 addr is the address of the change

 old_len

 is the old length

 new_len

 is the new length

 bytes contains old bytes immediately followed by new bytes.

 Overflow handling

 Events can be set to notify when a threshold is crossed, indicating an

 overflow. Overflow conditions can be captured by monitoring the event

 file descriptor with poll(2), select(2), or epoll(7). Alternatively,

 the overflow events can be captured via sa signal handler, by enabling

 I/O signaling on the file descriptor; see the discussion of the F_SE?

 TOWN and F_SETSIG operations in fcntl(2).

 Overflows are generated only by sampling events (sample_period must

 have a nonzero value).

 There are two ways to generate overflow notifications.

 The first is to set a wakeup_events or wakeup_watermark value that will

 trigger if a certain number of samples or bytes have been written to

 the mmap ring buffer. In this case, POLL_IN is indicated.

 The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl. This

 ioctl adds to a counter that decrements each time the event overflows.

 When nonzero, POLL_IN is indicated, but once the counter reaches 0

 POLL_HUP is indicated and the underlying event is disabled.

 Refreshing an event group leader refreshes all siblings and refreshing

 with a parameter of 0 currently enables infinite refreshes; these be?

 haviors are unsupported and should not be relied on.

 Starting with Linux 3.18, POLL_HUP is indicated if the event being mon?

 itored is attached to a different process and that process exits.

 rdpmc instruction Page 49/61

 Starting with Linux 3.4 on x86, you can use the rdpmc instruction to

 get low-latency reads without having to enter the kernel. Note that

 using rdpmc is not necessarily faster than other methods for reading

 event values.

 Support for this can be detected with the cap_usr_rdpmc field in the

 mmap page; documentation on how to calculate event values can be found

 in that section.

 Originally, when rdpmc support was enabled, any process (not just ones

 with an active perf event) could use the rdpmc instruction to access

 the counters. Starting with Linux 4.0, rdpmc support is only allowed

 if an event is currently enabled in a process's context. To restore

 the old behavior, write the value 2 to /sys/devices/cpu/rdpmc.

 perf_event ioctl calls

 Various ioctls act on perf_event_open() file descriptors:

 PERF_EVENT_IOC_ENABLE

 This enables the individual event or event group specified by

 the file descriptor argument.

 If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument,

 then all events in a group are enabled, even if the event speci?

 fied is not the group leader (but see BUGS).

 PERF_EVENT_IOC_DISABLE

 This disables the individual counter or event group specified by

 the file descriptor argument.

 Enabling or disabling the leader of a group enables or disables

 the entire group; that is, while the group leader is disabled,

 none of the counters in the group will count. Enabling or dis?

 abling a member of a group other than the leader affects only

 that counter; disabling a non-leader stops that counter from

 counting but doesn't affect any other counter.

 If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument,

 then all events in a group are disabled, even if the event spec?

 ified is not the group leader (but see BUGS).

 PERF_EVENT_IOC_REFRESH Page 50/61

 Non-inherited overflow counters can use this to enable a counter

 for a number of overflows specified by the argument, after which

 it is disabled. Subsequent calls of this ioctl add the argument

 value to the current count. An overflow notification with

 POLL_IN set will happen on each overflow until the count reaches

 0; when that happens a notification with POLL_HUP set is sent

 and the event is disabled. Using an argument of 0 is considered

 undefined behavior.

 PERF_EVENT_IOC_RESET

 Reset the event count specified by the file descriptor argument

 to zero. This resets only the counts; there is no way to reset

 the multiplexing time_enabled or time_running values.

 If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument,

 then all events in a group are reset, even if the event speci?

 fied is not the group leader (but see BUGS).

 PERF_EVENT_IOC_PERIOD

 This updates the overflow period for the event.

 Since Linux 3.7 (on ARM) and Linux 3.14 (all other architec?

 tures), the new period takes effect immediately. On older ker?

 nels, the new period did not take effect until after the next

 overflow.

 The argument is a pointer to a 64-bit value containing the de?

 sired new period.

 Prior to Linux 2.6.36, this ioctl always failed due to a bug in

 the kernel.

 PERF_EVENT_IOC_SET_OUTPUT

 This tells the kernel to report event notifications to the spec?

 ified file descriptor rather than the default one. The file de?

 scriptors must all be on the same CPU.

 The argument specifies the desired file descriptor, or -1 if

 output should be ignored.

 PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)

 This adds an ftrace filter to this event. Page 51/61

 The argument is a pointer to the desired ftrace filter.

 PERF_EVENT_IOC_ID (since Linux 3.12)

 This returns the event ID value for the given event file de?

 scriptor.

 The argument is a pointer to a 64-bit unsigned integer to hold

 the result.

 PERF_EVENT_IOC_SET_BPF (since Linux 4.1)

 This allows attaching a Berkeley Packet Filter (BPF) program to

 an existing kprobe tracepoint event. You need CAP_PERFMON

 (since Linux 5.8) or CAP_SYS_ADMIN privileges to use this ioctl.

 The argument is a BPF program file descriptor that was created

 by a previous bpf(2) system call.

 PERF_EVENT_IOC_PAUSE_OUTPUT (since Linux 4.7)

 This allows pausing and resuming the event's ring-buffer. A

 paused ring-buffer does not prevent generation of samples, but

 simply discards them. The discarded samples are considered

 lost, and cause a PERF_RECORD_LOST sample to be generated when

 possible. An overflow signal may still be triggered by the dis?

 carded sample even though the ring-buffer remains empty.

 The argument is an unsigned 32-bit integer. A nonzero value

 pauses the ring-buffer, while a zero value resumes the ring-buf?

 fer.

 PERF_EVENT_MODIFY_ATTRIBUTES (since Linux 4.17)

 This allows modifying an existing event without the overhead of

 closing and reopening a new event. Currently this is supported

 only for breakpoint events.

 The argument is a pointer to a perf_event_attr structure con?

 taining the updated event settings.

 PERF_EVENT_IOC_QUERY_BPF (since Linux 4.16)

 This allows querying which Berkeley Packet Filter (BPF) programs

 are attached to an existing kprobe tracepoint. You can only at?

 tach one BPF program per event, but you can have multiple events

 attached to a tracepoint. Querying this value on one tracepoint Page 52/61

 event returns the ID of all BPF programs in all events attached

 to the tracepoint. You need CAP_PERFMON (since Linux 5.8) or

 CAP_SYS_ADMIN privileges to use this ioctl.

 The argument is a pointer to a structure

 struct perf_event_query_bpf {

 __u32 ids_len;

 __u32 prog_cnt;

 __u32 ids[0];

 };

 The ids_len field indicates the number of ids that can fit in

 the provided ids array. The prog_cnt value is filled in by the

 kernel with the number of attached BPF programs. The ids array

 is filled with the ID of each attached BPF program. If there

 are more programs than will fit in the array, then the kernel

 will return ENOSPC and ids_len will indicate the number of pro?

 gram IDs that were successfully copied.

 Using prctl(2)

 A process can enable or disable all currently open event groups using

 the prctl(2) PR_TASK_PERF_EVENTS_ENABLE and PR_TASK_PERF_EVENTS_DISABLE

 operations. This applies only to events created locally by the calling

 process. This does not apply to events created by other processes at?

 tached to the calling process or inherited events from a parent

 process. Only group leaders are enabled and disabled, not any other

 members of the groups.

 perf_event related configuration files

 Files in /proc/sys/kernel/

 /proc/sys/kernel/perf_event_paranoid

 The perf_event_paranoid file can be set to restrict access

 to the performance counters.

 2 allow only user-space measurements (default since Linux

 4.6).

 1 allow both kernel and user measurements (default before

 Linux 4.6). Page 53/61

 0 allow access to CPU-specific data but not raw tracepoint

 samples.

 -1 no restrictions.

 The existence of the perf_event_paranoid file is the offi?

 cial method for determining if a kernel supports

 perf_event_open().

 /proc/sys/kernel/perf_event_max_sample_rate

 This sets the maximum sample rate. Setting this too high

 can allow users to sample at a rate that impacts overall ma?

 chine performance and potentially lock up the machine. The

 default value is 100000 (samples per second).

 /proc/sys/kernel/perf_event_max_stack

 This file sets the maximum depth of stack frame entries re?

 ported when generating a call trace.

 /proc/sys/kernel/perf_event_mlock_kb

 Maximum number of pages an unprivileged user can mlock(2).

 The default is 516 (kB).

 Files in /sys/bus/event_source/devices/

 Since Linux 2.6.34, the kernel supports having multiple PMUs avail?

 able for monitoring. Information on how to program these PMUs can

 be found under /sys/bus/event_source/devices/. Each subdirectory

 corresponds to a different PMU.

 /sys/bus/event_source/devices/*/type (since Linux 2.6.38)

 This contains an integer that can be used in the type field

 of perf_event_attr to indicate that you wish to use this

 PMU.

 /sys/bus/event_source/devices/cpu/rdpmc (since Linux 3.4)

 If this file is 1, then direct user-space access to the per?

 formance counter registers is allowed via the rdpmc instruc?

 tion. This can be disabled by echoing 0 to the file.

 As of Linux 4.0 the behavior has changed, so that 1 now

 means only allow access to processes with active perf

 events, with 2 indicating the old allow-anyone-access behav? Page 54/61

 ior.

 /sys/bus/event_source/devices/*/format/ (since Linux 3.4)

 This subdirectory contains information on the architecture-

 specific subfields available for programming the various

 config fields in the perf_event_attr struct.

 The content of each file is the name of the config field,

 followed by a colon, followed by a series of integer bit

 ranges separated by commas. For example, the file event may

 contain the value config1:1,6-10,44 which indicates that

 event is an attribute that occupies bits 1,6?10, and 44 of

 perf_event_attr::config1.

 /sys/bus/event_source/devices/*/events/ (since Linux 3.4)

 This subdirectory contains files with predefined events.

 The contents are strings describing the event settings ex?

 pressed in terms of the fields found in the previously men?

 tioned ./format/ directory. These are not necessarily com?

 plete lists of all events supported by a PMU, but usually a

 subset of events deemed useful or interesting.

 The content of each file is a list of attribute names sepa?

 rated by commas. Each entry has an optional value (either

 hex or decimal). If no value is specified, then it is as?

 sumed to be a single-bit field with a value of 1. An exam?

 ple entry may look like this: event=0x2,inv,ldlat=3.

 /sys/bus/event_source/devices/*/uevent

 This file is the standard kernel device interface for in?

 jecting hotplug events.

 /sys/bus/event_source/devices/*/cpumask (since Linux 3.7)

 The cpumask file contains a comma-separated list of integers

 that indicate a representative CPU number for each socket

 (package) on the motherboard. This is needed when setting

 up uncore or northbridge events, as those PMUs present

 socket-wide events.

RETURN VALUE Page 55/61

 perf_event_open() returns the new file descriptor, or -1 if an error

 occurred (in which case, errno is set appropriately).

ERRORS

 The errors returned by perf_event_open() can be inconsistent, and may

 vary across processor architectures and performance monitoring units.

 E2BIG Returned if the perf_event_attr size value is too small (smaller

 than PERF_ATTR_SIZE_VER0), too big (larger than the page size),

 or larger than the kernel supports and the extra bytes are not

 zero. When E2BIG is returned, the perf_event_attr size field is

 overwritten by the kernel to be the size of the structure it was

 expecting.

 EACCES Returned when the requested event requires CAP_PERFMON (since

 Linux 5.8) or CAP_SYS_ADMIN permissions (or a more permissive

 perf_event paranoid setting). Some common cases where an un?

 privileged process may encounter this error: attaching to a

 process owned by a different user; monitoring all processes on a

 given CPU (i.e., specifying the pid argument as -1); and not

 setting exclude_kernel when the paranoid setting requires it.

 EBADF Returned if the group_fd file descriptor is not valid, or, if

 PERF_FLAG_PID_CGROUP is set, the cgroup file descriptor in pid

 is not valid.

 EBUSY (since Linux 4.1)

 Returned if another event already has exclusive access to the

 PMU.

 EFAULT Returned if the attr pointer points at an invalid memory ad?

 dress.

 EINVAL Returned if the specified event is invalid. There are many pos?

 sible reasons for this. A not-exhaustive list: sample_freq is

 higher than the maximum setting; the cpu to monitor does not ex?

 ist; read_format is out of range; sample_type is out of range;

 the flags value is out of range; exclusive or pinned set and the

 event is not a group leader; the event config values are out of

 range or set reserved bits; the generic event selected is not Page 56/61

 supported; or there is not enough room to add the selected

 event.

 EINTR Returned when trying to mix perf and ftrace handling for a up?

 robe.

 EMFILE Each opened event uses one file descriptor. If a large number

 of events are opened, the per-process limit on the number of

 open file descriptors will be reached, and no more events can be

 created.

 ENODEV Returned when the event involves a feature not supported by the

 current CPU.

 ENOENT Returned if the type setting is not valid. This error is also

 returned for some unsupported generic events.

 ENOSPC Prior to Linux 3.3, if there was not enough room for the event,

 ENOSPC was returned. In Linux 3.3, this was changed to EINVAL.

 ENOSPC is still returned if you try to add more breakpoint

 events than supported by the hardware.

 ENOSYS Returned if PERF_SAMPLE_STACK_USER is set in sample_type and it

 is not supported by hardware.

 EOPNOTSUPP

 Returned if an event requiring a specific hardware feature is

 requested but there is no hardware support. This includes re?

 questing low-skid events if not supported, branch tracing if it

 is not available, sampling if no PMU interrupt is available, and

 branch stacks for software events.

 EOVERFLOW (since Linux 4.8)

 Returned if PERF_SAMPLE_CALLCHAIN is requested and sam?

 ple_max_stack is larger than the maximum specified in

 /proc/sys/kernel/perf_event_max_stack.

 EPERM Returned on many (but not all) architectures when an unsupported

 exclude_hv, exclude_idle, exclude_user, or exclude_kernel set?

 ting is specified.

 It can also happen, as with EACCES, when the requested event re?

 quires CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN permis? Page 57/61

 sions (or a more permissive perf_event paranoid setting). This

 includes setting a breakpoint on a kernel address, and (since

 Linux 3.13) setting a kernel function-trace tracepoint.

 ESRCH Returned if attempting to attach to a process that does not ex?

 ist.

VERSION

 perf_event_open() was introduced in Linux 2.6.31 but was called

 perf_counter_open(). It was renamed in Linux 2.6.32.

CONFORMING TO

 This perf_event_open() system call Linux-specific and should not be

 used in programs intended to be portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2). See the example below.

 The official way of knowing if perf_event_open() support is enabled is

 checking for the existence of the file /proc/sys/ker?

 nel/perf_event_paranoid.

 CAP_PERFMON capability (since Linux 5.8) provides secure approach to

 performance monitoring and observability operations in a system accord?

 ing to the principal of least privilege (POSIX IEEE 1003.1e). Access?

 ing system performance monitoring and observability operations using

 CAP_PERFMON rather than the much more powerful CAP_SYS_ADMIN excludes

 chances to misuse credentials and makes operations more secure.

 CAP_SYS_ADMIN usage for secure system performance monitoring and ob?

 servability is discouraged in favor of the CAP_PERFMON capability.

BUGS

 The F_SETOWN_EX option to fcntl(2) is needed to properly get overflow

 signals in threads. This was introduced in Linux 2.6.32.

 Prior to Linux 2.6.33 (at least for x86), the kernel did not check if

 events could be scheduled together until read time. The same happens

 on all known kernels if the NMI watchdog is enabled. This means to see

 if a given set of events works you have to perf_event_open(), start,

 then read before you know for sure you can get valid measurements. Page 58/61

 Prior to Linux 2.6.34, event constraints were not enforced by the ker?

 nel. In that case, some events would silently return "0" if the kernel

 scheduled them in an improper counter slot.

 Prior to Linux 2.6.34, there was a bug when multiplexing where the

 wrong results could be returned.

 Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel

 if "inherit" is enabled and many threads are started.

 Prior to Linux 2.6.35, PERF_FORMAT_GROUP did not work with attached

 processes.

 There is a bug in the kernel code between Linux 2.6.36 and Linux 3.0

 that ignores the "watermark" field and acts as if a wakeup_event was

 chosen if the union has a nonzero value in it.

 From Linux 2.6.31 to Linux 3.4, the PERF_IOC_FLAG_GROUP ioctl argument

 was broken and would repeatedly operate on the event specified rather

 than iterating across all sibling events in a group.

 From Linux 3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time

 bits mapped to the same location. Code should migrate to the new

 cap_user_rdpmc and cap_user_time fields instead.

 Always double-check your results! Various generalized events have had

 wrong values. For example, retired branches measured the wrong thing

 on AMD machines until Linux 2.6.35.

EXAMPLES

 The following is a short example that measures the total instruction

 count of a call to printf(3).

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <string.h>

 #include <sys/ioctl.h>

 #include <linux/perf_event.h>

 #include <asm/unistd.h>

 static long

 perf_event_open(struct perf_event_attr *hw_event, pid_t pid, Page 59/61

 int cpu, int group_fd, unsigned long flags)

 {

 int ret;

 ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,

 group_fd, flags);

 return ret;

 }

 int

 main(int argc, char **argv)

 {

 struct perf_event_attr pe;

 long long count;

 int fd;

 memset(&pe, 0, sizeof(pe));

 pe.type = PERF_TYPE_HARDWARE;

 pe.size = sizeof(pe);

 pe.config = PERF_COUNT_HW_INSTRUCTIONS;

 pe.disabled = 1;

 pe.exclude_kernel = 1;

 pe.exclude_hv = 1;

 fd = perf_event_open(&pe, 0, -1, -1, 0);

 if (fd == -1) {

 fprintf(stderr, "Error opening leader %llx\n", pe.config);

 exit(EXIT_FAILURE);

 }

 ioctl(fd, PERF_EVENT_IOC_RESET, 0);

 ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

 printf("Measuring instruction count for this printf\n");

 ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

 read(fd, &count, sizeof(count));

 printf("Used %lld instructions\n", count);

 close(fd);

 } Page 60/61

SEE ALSO

 perf(1), fcntl(2), mmap(2), open(2), prctl(2), read(2)

 Documentation/admin-guide/perf-security.rst in the kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 PERF_EVENT_OPEN(2)

Page 61/61

