
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pcre2pattern.3' command

$ man pcre2pattern.3

PCRE2PATTERN(3) Library Functions Manual PCRE2PATTERN(3)

NAME

 PCRE2 - Perl-compatible regular expressions (revised API)

PCRE2 REGULAR EXPRESSION DETAILS

 The syntax and semantics of the regular expressions that are supported

 by PCRE2 are described in detail below. There is a quick-reference syn?

 tax summary in the pcre2syntax page. PCRE2 tries to match Perl syntax

 and semantics as closely as it can. PCRE2 also supports some alterna?

 tive regular expression syntax (which does not conflict with the Perl

 syntax) in order to provide some compatibility with regular expressions

 in Python, .NET, and Oniguruma.

 Perl's regular expressions are described in its own documentation, and

 regular expressions in general are covered in a number of books, some

 of which have copious examples. Jeffrey Friedl's "Mastering Regular Ex?

 pressions", published by O'Reilly, covers regular expressions in great

 detail. This description of PCRE2's regular expressions is intended as

 reference material.

 This document discusses the regular expression patterns that are sup?

 ported by PCRE2 when its main matching function, pcre2_match(), is

 used. PCRE2 also has an alternative matching function,

 pcre2_dfa_match(), which matches using a different algorithm that is

 not Perl-compatible. Some of the features discussed below are not

 available when DFA matching is used. The advantages and disadvantages Page 1/83

 of the alternative function, and how it differs from the normal func?

 tion, are discussed in the pcre2matching page.

SPECIAL START-OF-PATTERN ITEMS

 A number of options that can be passed to pcre2_compile() can also be

 set by special items at the start of a pattern. These are not Perl-com?

 patible, but are provided to make these options accessible to pattern

 writers who are not able to change the program that processes the pat?

 tern. Any number of these items may appear, but they must all be to?

 gether right at the start of the pattern string, and the letters must

 be in upper case.

 UTF support

 In the 8-bit and 16-bit PCRE2 libraries, characters may be coded either

 as single code units, or as multiple UTF-8 or UTF-16 code units. UTF-32

 can be specified for the 32-bit library, in which case it constrains

 the character values to valid Unicode code points. To process UTF

 strings, PCRE2 must be built to include Unicode support (which is the

 default). When using UTF strings you must either call the compiling

 function with one or both of the PCRE2_UTF or PCRE2_MATCH_INVALID_UTF

 options, or the pattern must start with the special sequence (*UTF),

 which is equivalent to setting the relevant PCRE2_UTF. How setting a

 UTF mode affects pattern matching is mentioned in several places below.

 There is also a summary of features in the pcre2unicode page.

 Some applications that allow their users to supply patterns may wish to

 restrict them to non-UTF data for security reasons. If the

 PCRE2_NEVER_UTF option is passed to pcre2_compile(), (*UTF) is not al?

 lowed, and its appearance in a pattern causes an error.

 Unicode property support

 Another special sequence that may appear at the start of a pattern is

 (*UCP). This has the same effect as setting the PCRE2_UCP option: it

 causes sequences such as \d and \w to use Unicode properties to deter?

 mine character types, instead of recognizing only characters with codes

 less than 256 via a lookup table. If also causes upper/lower casing op?

 erations to use Unicode properties for characters with code points Page 2/83

 greater than 127, even when UTF is not set.

 Some applications that allow their users to supply patterns may wish to

 restrict them for security reasons. If the PCRE2_NEVER_UCP option is

 passed to pcre2_compile(), (*UCP) is not allowed, and its appearance in

 a pattern causes an error.

 Locking out empty string matching

 Starting a pattern with (*NOTEMPTY) or (*NOTEMPTY_ATSTART) has the same

 effect as passing the PCRE2_NOTEMPTY or PCRE2_NOTEMPTY_ATSTART option

 to whichever matching function is subsequently called to match the pat?

 tern. These options lock out the matching of empty strings, either en?

 tirely, or only at the start of the subject.

 Disabling auto-possessification

 If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as

 setting the PCRE2_NO_AUTO_POSSESS option. This stops PCRE2 from making

 quantifiers possessive when what follows cannot match the repeated

 item. For example, by default a+b is treated as a++b. For more details,

 see the pcre2api documentation.

 Disabling start-up optimizations

 If a pattern starts with (*NO_START_OPT), it has the same effect as

 setting the PCRE2_NO_START_OPTIMIZE option. This disables several opti?

 mizations for quickly reaching "no match" results. For more details,

 see the pcre2api documentation.

 Disabling automatic anchoring

 If a pattern starts with (*NO_DOTSTAR_ANCHOR), it has the same effect

 as setting the PCRE2_NO_DOTSTAR_ANCHOR option. This disables optimiza?

 tions that apply to patterns whose top-level branches all start with .*

 (match any number of arbitrary characters). For more details, see the

 pcre2api documentation.

 Disabling JIT compilation

 If a pattern that starts with (*NO_JIT) is successfully compiled, an

 attempt by the application to apply the JIT optimization by calling

 pcre2_jit_compile() is ignored.

 Setting match resource limits Page 3/83

 The pcre2_match() function contains a counter that is incremented every

 time it goes round its main loop. The caller of pcre2_match() can set a

 limit on this counter, which therefore limits the amount of computing

 resource used for a match. The maximum depth of nested backtracking can

 also be limited; this indirectly restricts the amount of heap memory

 that is used, but there is also an explicit memory limit that can be

 set.

 These facilities are provided to catch runaway matches that are pro?

 voked by patterns with huge matching trees. A common example is a pat?

 tern with nested unlimited repeats applied to a long string that does

 not match. When one of these limits is reached, pcre2_match() gives an

 error return. The limits can also be set by items at the start of the

 pattern of the form

 (*LIMIT_HEAP=d)

 (*LIMIT_MATCH=d)

 (*LIMIT_DEPTH=d)

 where d is any number of decimal digits. However, the value of the set?

 ting must be less than the value set (or defaulted) by the caller of

 pcre2_match() for it to have any effect. In other words, the pattern

 writer can lower the limits set by the programmer, but not raise them.

 If there is more than one setting of one of these limits, the lower

 value is used. The heap limit is specified in kibibytes (units of 1024

 bytes).

 Prior to release 10.30, LIMIT_DEPTH was called LIMIT_RECURSION. This

 name is still recognized for backwards compatibility.

 The heap limit applies only when the pcre2_match() or pcre2_dfa_match()

 interpreters are used for matching. It does not apply to JIT. The match

 limit is used (but in a different way) when JIT is being used, or when

 pcre2_dfa_match() is called, to limit computing resource usage by those

 matching functions. The depth limit is ignored by JIT but is relevant

 for DFA matching, which uses function recursion for recursions within

 the pattern and for lookaround assertions and atomic groups. In this

 case, the depth limit controls the depth of such recursion. Page 4/83

 Newline conventions

 PCRE2 supports six different conventions for indicating line breaks in

 strings: a single CR (carriage return) character, a single LF (line?

 feed) character, the two-character sequence CRLF, any of the three pre?

 ceding, any Unicode newline sequence, or the NUL character (binary

 zero). The pcre2api page has further discussion about newlines, and

 shows how to set the newline convention when calling pcre2_compile().

 It is also possible to specify a newline convention by starting a pat?

 tern string with one of the following sequences:

 (*CR) carriage return

 (*LF) linefeed

 (*CRLF) carriage return, followed by linefeed

 (*ANYCRLF) any of the three above

 (*ANY) all Unicode newline sequences

 (*NUL) the NUL character (binary zero)

 These override the default and the options given to the compiling func?

 tion. For example, on a Unix system where LF is the default newline se?

 quence, the pattern

 (*CR)a.b

 changes the convention to CR. That pattern matches "a\nb" because LF is

 no longer a newline. If more than one of these settings is present, the

 last one is used.

 The newline convention affects where the circumflex and dollar asser?

 tions are true. It also affects the interpretation of the dot metachar?

 acter when PCRE2_DOTALL is not set, and the behaviour of \N when not

 followed by an opening brace. However, it does not affect what the \R

 escape sequence matches. By default, this is any Unicode newline se?

 quence, for Perl compatibility. However, this can be changed; see the

 next section and the description of \R in the section entitled "Newline

 sequences" below. A change of \R setting can be combined with a change

 of newline convention.

 Specifying what \R matches

 It is possible to restrict \R to match only CR, LF, or CRLF (instead of Page 5/83

 the complete set of Unicode line endings) by setting the option

 PCRE2_BSR_ANYCRLF at compile time. This effect can also be achieved by

 starting a pattern with (*BSR_ANYCRLF). For completeness, (*BSR_UNI?

 CODE) is also recognized, corresponding to PCRE2_BSR_UNICODE.

EBCDIC CHARACTER CODES

 PCRE2 can be compiled to run in an environment that uses EBCDIC as its

 character code instead of ASCII or Unicode (typically a mainframe sys?

 tem). In the sections below, character code values are ASCII or Uni?

 code; in an EBCDIC environment these characters may have different code

 values, and there are no code points greater than 255.

CHARACTERS AND METACHARACTERS

 A regular expression is a pattern that is matched against a subject

 string from left to right. Most characters stand for themselves in a

 pattern, and match the corresponding characters in the subject. As a

 trivial example, the pattern

 The quick brown fox

 matches a portion of a subject string that is identical to itself. When

 caseless matching is specified (the PCRE2_CASELESS option or (?i)

 within the pattern), letters are matched independently of case. Note

 that there are two ASCII characters, K and S, that, in addition to

 their lower case ASCII equivalents, are case-equivalent with Unicode

 U+212A (Kelvin sign) and U+017F (long S) respectively when either

 PCRE2_UTF or PCRE2_UCP is set.

 The power of regular expressions comes from the ability to include wild

 cards, character classes, alternatives, and repetitions in the pattern.

 These are encoded in the pattern by the use of metacharacters, which do

 not stand for themselves but instead are interpreted in some special

 way.

 There are two different sets of metacharacters: those that are recog?

 nized anywhere in the pattern except within square brackets, and those

 that are recognized within square brackets. Outside square brackets,

 the metacharacters are as follows:

 \ general escape character with several uses Page 6/83

 ^ assert start of string (or line, in multiline mode)

 $ assert end of string (or line, in multiline mode)

 . match any character except newline (by default)

 [start character class definition

 | start of alternative branch

 (start group or control verb

) end group or control verb

 * 0 or more quantifier

 + 1 or more quantifier; also "possessive quantifier"

 ? 0 or 1 quantifier; also quantifier minimizer

 { start min/max quantifier

 Part of a pattern that is in square brackets is called a "character

 class". In a character class the only metacharacters are:

 \ general escape character

 ^ negate the class, but only if the first character

 - indicates character range

 [POSIX character class (if followed by POSIX syntax)

] terminates the character class

 If a pattern is compiled with the PCRE2_EXTENDED option, most white

 space in the pattern, other than in a character class, and characters

 between a # outside a character class and the next newline, inclusive,

 are ignored. An escaping backslash can be used to include a white space

 or a # character as part of the pattern. If the PCRE2_EXTENDED_MORE op?

 tion is set, the same applies, but in addition unescaped space and hor?

 izontal tab characters are ignored inside a character class. Note: only

 these two characters are ignored, not the full set of pattern white

 space characters that are ignored outside a character class. Option

 settings can be changed within a pattern; see the section entitled "In?

 ternal Option Setting" below.

 The following sections describe the use of each of the metacharacters.

BACKSLASH

 The backslash character has several uses. Firstly, if it is followed by

 a character that is not a digit or a letter, it takes away any special Page 7/83

 meaning that character may have. This use of backslash as an escape

 character applies both inside and outside character classes.

 For example, if you want to match a * character, you must write * in

 the pattern. This escaping action applies whether or not the following

 character would otherwise be interpreted as a metacharacter, so it is

 always safe to precede a non-alphanumeric with backslash to specify

 that it stands for itself. In particular, if you want to match a back?

 slash, you write \\.

 Only ASCII digits and letters have any special meaning after a back?

 slash. All other characters (in particular, those whose code points are

 greater than 127) are treated as literals.

 If you want to treat all characters in a sequence as literals, you can

 do so by putting them between \Q and \E. This is different from Perl in

 that $ and @ are handled as literals in \Q...\E sequences in PCRE2,

 whereas in Perl, $ and @ cause variable interpolation. Also, Perl does

 "double-quotish backslash interpolation" on any backslashes between \Q

 and \E which, its documentation says, "may lead to confusing results".

 PCRE2 treats a backslash between \Q and \E just like any other charac?

 ter. Note the following examples:

 Pattern PCRE2 matches Perl matches

 \Qabc$xyz\E abc$xyz abc followed by the

 contents of $xyz

 \Qabc\$xyz\E abc\$xyz abc\$xyz

 \Qabc\E\$\Qxyz\E abc$xyz abc$xyz

 \QA\B\E A\B A\B

 \Q\\E \ \\E

 The \Q...\E sequence is recognized both inside and outside character

 classes. An isolated \E that is not preceded by \Q is ignored. If \Q

 is not followed by \E later in the pattern, the literal interpretation

 continues to the end of the pattern (that is, \E is assumed at the

 end). If the isolated \Q is inside a character class, this causes an

 error, because the character class is not terminated by a closing

 square bracket. Page 8/83

 Non-printing characters

 A second use of backslash provides a way of encoding non-printing char?

 acters in patterns in a visible manner. There is no restriction on the

 appearance of non-printing characters in a pattern, but when a pattern

 is being prepared by text editing, it is often easier to use one of the

 following escape sequences instead of the binary character it repre?

 sents. In an ASCII or Unicode environment, these escapes are as fol?

 lows:

 \a alarm, that is, the BEL character (hex 07)

 \cx "control-x", where x is any printable ASCII character

 \e escape (hex 1B)

 \f form feed (hex 0C)

 \n linefeed (hex 0A)

 \r carriage return (hex 0D) (but see below)

 \t tab (hex 09)

 \0dd character with octal code 0dd

 \ddd character with octal code ddd, or backreference

 \o{ddd..} character with octal code ddd..

 \xhh character with hex code hh

 \x{hhh..} character with hex code hhh..

 \N{U+hhh..} character with Unicode hex code point hhh..

 By default, after \x that is not followed by {, from zero to two hexa?

 decimal digits are read (letters can be in upper or lower case). Any

 number of hexadecimal digits may appear between \x{ and }. If a charac?

 ter other than a hexadecimal digit appears between \x{ and }, or if

 there is no terminating }, an error occurs.

 Characters whose code points are less than 256 can be defined by either

 of the two syntaxes for \x or by an octal sequence. There is no differ?

 ence in the way they are handled. For example, \xdc is exactly the same

 as \x{dc} or \334. However, using the braced versions does make such

 sequences easier to read.

 Support is available for some ECMAScript (aka JavaScript) escape se?

 quences via two compile-time options. If PCRE2_ALT_BSUX is set, the se? Page 9/83

 quence \x followed by { is not recognized. Only if \x is followed by

 two hexadecimal digits is it recognized as a character escape. Other?

 wise it is interpreted as a literal "x" character. In this mode, sup?

 port for code points greater than 256 is provided by \u, which must be

 followed by four hexadecimal digits; otherwise it is interpreted as a

 literal "u" character.

 PCRE2_EXTRA_ALT_BSUX has the same effect as PCRE2_ALT_BSUX and, in ad?

 dition, \u{hhh..} is recognized as the character specified by hexadeci?

 mal code point. There may be any number of hexadecimal digits. This

 syntax is from ECMAScript 6.

 The \N{U+hhh..} escape sequence is recognized only when PCRE2 is oper?

 ating in UTF mode. Perl also uses \N{name} to specify characters by

 Unicode name; PCRE2 does not support this. Note that when \N is not

 followed by an opening brace (curly bracket) it has an entirely differ?

 ent meaning, matching any character that is not a newline.

 There are some legacy applications where the escape sequence \r is ex?

 pected to match a newline. If the PCRE2_EXTRA_ESCAPED_CR_IS_LF option

 is set, \r in a pattern is converted to \n so that it matches a LF

 (linefeed) instead of a CR (carriage return) character.

 The precise effect of \cx on ASCII characters is as follows: if x is a

 lower case letter, it is converted to upper case. Then bit 6 of the

 character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A

 (A is 41, Z is 5A), but \c{ becomes hex 3B ({ is 7B), and \c; becomes

 hex 7B (; is 3B). If the code unit following \c has a value less than

 32 or greater than 126, a compile-time error occurs.

 When PCRE2 is compiled in EBCDIC mode, \N{U+hhh..} is not supported.

 \a, \e, \f, \n, \r, and \t generate the appropriate EBCDIC code values.

 The \c escape is processed as specified for Perl in the perlebcdic doc?

 ument. The only characters that are allowed after \c are A-Z, a-z, or

 one of @, [, \,], ^, _, or ?. Any other character provokes a compile-

 time error. The sequence \c@ encodes character code 0; after \c the

 letters (in either case) encode characters 1-26 (hex 01 to hex 1A); [,

 \,], ^, and _ encode characters 27-31 (hex 1B to hex 1F), and \c? be? Page 10/83

 comes either 255 (hex FF) or 95 (hex 5F).

 Thus, apart from \c?, these escapes generate the same character code

 values as they do in an ASCII environment, though the meanings of the

 values mostly differ. For example, \cG always generates code value 7,

 which is BEL in ASCII but DEL in EBCDIC.

 The sequence \c? generates DEL (127, hex 7F) in an ASCII environment,

 but because 127 is not a control character in EBCDIC, Perl makes it

 generate the APC character. Unfortunately, there are several variants

 of EBCDIC. In most of them the APC character has the value 255 (hex

 FF), but in the one Perl calls POSIX-BC its value is 95 (hex 5F). If

 certain other characters have POSIX-BC values, PCRE2 makes \c? generate

 95; otherwise it generates 255.

 After \0 up to two further octal digits are read. If there are fewer

 than two digits, just those that are present are used. Thus the se?

 quence \0\x\015 specifies two binary zeros followed by a CR character

 (code value 13). Make sure you supply two digits after the initial zero

 if the pattern character that follows is itself an octal digit.

 The escape \o must be followed by a sequence of octal digits, enclosed

 in braces. An error occurs if this is not the case. This escape is a

 recent addition to Perl; it provides way of specifying character code

 points as octal numbers greater than 0777, and it also allows octal

 numbers and backreferences to be unambiguously specified.

 For greater clarity and unambiguity, it is best to avoid following \ by

 a digit greater than zero. Instead, use \o{} or \x{} to specify numeri?

 cal character code points, and \g{} to specify backreferences. The fol?

 lowing paragraphs describe the old, ambiguous syntax.

 The handling of a backslash followed by a digit other than 0 is compli?

 cated, and Perl has changed over time, causing PCRE2 also to change.

 Outside a character class, PCRE2 reads the digit and any following dig?

 its as a decimal number. If the number is less than 10, begins with the

 digit 8 or 9, or if there are at least that many previous capture

 groups in the expression, the entire sequence is taken as a backrefer?

 ence. A description of how this works is given later, following the Page 11/83

 discussion of parenthesized groups. Otherwise, up to three octal dig?

 its are read to form a character code.

 Inside a character class, PCRE2 handles \8 and \9 as the literal char?

 acters "8" and "9", and otherwise reads up to three octal digits fol?

 lowing the backslash, using them to generate a data character. Any sub?

 sequent digits stand for themselves. For example, outside a character

 class:

 \040 is another way of writing an ASCII space

 \40 is the same, provided there are fewer than 40

 previous capture groups

 \7 is always a backreference

 \11 might be a backreference, or another way of

 writing a tab

 \011 is always a tab

 \0113 is a tab followed by the character "3"

 \113 might be a backreference, otherwise the

 character with octal code 113

 \377 might be a backreference, otherwise

 the value 255 (decimal)

 \81 is always a backreference

 Note that octal values of 100 or greater that are specified using this

 syntax must not be introduced by a leading zero, because no more than

 three octal digits are ever read.

 Constraints on character values

 Characters that are specified using octal or hexadecimal numbers are

 limited to certain values, as follows:

 8-bit non-UTF mode no greater than 0xff

 16-bit non-UTF mode no greater than 0xffff

 32-bit non-UTF mode no greater than 0xffffffff

 All UTF modes no greater than 0x10ffff and a valid code point

 Invalid Unicode code points are all those in the range 0xd800 to 0xdfff

 (the so-called "surrogate" code points). The check for these can be

 disabled by the caller of pcre2_compile() by setting the option Page 12/83

 PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES. However, this is possible only in

 UTF-8 and UTF-32 modes, because these values are not representable in

 UTF-16.

 Escape sequences in character classes

 All the sequences that define a single character value can be used both

 inside and outside character classes. In addition, inside a character

 class, \b is interpreted as the backspace character (hex 08).

 When not followed by an opening brace, \N is not allowed in a character

 class. \B, \R, and \X are not special inside a character class. Like

 other unrecognized alphabetic escape sequences, they cause an error.

 Outside a character class, these sequences have different meanings.

 Unsupported escape sequences

 In Perl, the sequences \F, \l, \L, \u, and \U are recognized by its

 string handler and used to modify the case of following characters. By

 default, PCRE2 does not support these escape sequences in patterns.

 However, if either of the PCRE2_ALT_BSUX or PCRE2_EXTRA_ALT_BSUX op?

 tions is set, \U matches a "U" character, and \u can be used to define

 a character by code point, as described above.

 Absolute and relative backreferences

 The sequence \g followed by a signed or unsigned number, optionally en?

 closed in braces, is an absolute or relative backreference. A named

 backreference can be coded as \g{name}. Backreferences are discussed

 later, following the discussion of parenthesized groups.

 Absolute and relative subroutine calls

 For compatibility with Oniguruma, the non-Perl syntax \g followed by a

 name or a number enclosed either in angle brackets or single quotes, is

 an alternative syntax for referencing a capture group as a subroutine.

 Details are discussed later. Note that \g{...} (Perl syntax) and

 \g<...> (Oniguruma syntax) are not synonymous. The former is a backref?

 erence; the latter is a subroutine call.

 Generic character types

 Another use of backslash is for specifying generic character types:

 \d any decimal digit Page 13/83

 \D any character that is not a decimal digit

 \h any horizontal white space character

 \H any character that is not a horizontal white space character

 \N any character that is not a newline

 \s any white space character

 \S any character that is not a white space character

 \v any vertical white space character

 \V any character that is not a vertical white space character

 \w any "word" character

 \W any "non-word" character

 The \N escape sequence has the same meaning as the "." metacharacter

 when PCRE2_DOTALL is not set, but setting PCRE2_DOTALL does not change

 the meaning of \N. Note that when \N is followed by an opening brace it

 has a different meaning. See the section entitled "Non-printing charac?

 ters" above for details. Perl also uses \N{name} to specify characters

 by Unicode name; PCRE2 does not support this.

 Each pair of lower and upper case escape sequences partitions the com?

 plete set of characters into two disjoint sets. Any given character

 matches one, and only one, of each pair. The sequences can appear both

 inside and outside character classes. They each match one character of

 the appropriate type. If the current matching point is at the end of

 the subject string, all of them fail, because there is no character to

 match.

 The default \s characters are HT (9), LF (10), VT (11), FF (12), CR

 (13), and space (32), which are defined as white space in the "C" lo?

 cale. This list may vary if locale-specific matching is taking place.

 For example, in some locales the "non-breaking space" character (\xA0)

 is recognized as white space, and in others the VT character is not.

 A "word" character is an underscore or any character that is a letter

 or digit. By default, the definition of letters and digits is con?

 trolled by PCRE2's low-valued character tables, and may vary if locale-

 specific matching is taking place (see "Locale support" in the pcre2api

 page). For example, in a French locale such as "fr_FR" in Unix-like Page 14/83

 systems, or "french" in Windows, some character codes greater than 127

 are used for accented letters, and these are then matched by \w. The

 use of locales with Unicode is discouraged.

 By default, characters whose code points are greater than 127 never

 match \d, \s, or \w, and always match \D, \S, and \W, although this may

 be different for characters in the range 128-255 when locale-specific

 matching is happening. These escape sequences retain their original

 meanings from before Unicode support was available, mainly for effi?

 ciency reasons. If the PCRE2_UCP option is set, the behaviour is

 changed so that Unicode properties are used to determine character

 types, as follows:

 \d any character that matches \p{Nd} (decimal digit)

 \s any character that matches \p{Z} or \h or \v

 \w any character that matches \p{L} or \p{N}, plus underscore

 The upper case escapes match the inverse sets of characters. Note that

 \d matches only decimal digits, whereas \w matches any Unicode digit,

 as well as any Unicode letter, and underscore. Note also that PCRE2_UCP

 affects \b, and \B because they are defined in terms of \w and \W.

 Matching these sequences is noticeably slower when PCRE2_UCP is set.

 The sequences \h, \H, \v, and \V, in contrast to the other sequences,

 which match only ASCII characters by default, always match a specific

 list of code points, whether or not PCRE2_UCP is set. The horizontal

 space characters are:

 U+0009 Horizontal tab (HT)

 U+0020 Space

 U+00A0 Non-break space

 U+1680 Ogham space mark

 U+180E Mongolian vowel separator

 U+2000 En quad

 U+2001 Em quad

 U+2002 En space

 U+2003 Em space

 U+2004 Three-per-em space Page 15/83

 U+2005 Four-per-em space

 U+2006 Six-per-em space

 U+2007 Figure space

 U+2008 Punctuation space

 U+2009 Thin space

 U+200A Hair space

 U+202F Narrow no-break space

 U+205F Medium mathematical space

 U+3000 Ideographic space

 The vertical space characters are:

 U+000A Linefeed (LF)

 U+000B Vertical tab (VT)

 U+000C Form feed (FF)

 U+000D Carriage return (CR)

 U+0085 Next line (NEL)

 U+2028 Line separator

 U+2029 Paragraph separator

 In 8-bit, non-UTF-8 mode, only the characters with code points less

 than 256 are relevant.

 Newline sequences

 Outside a character class, by default, the escape sequence \R matches

 any Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent

 to the following:

 (?>\r\n|\n|\x0b|\f|\r|\x85)

 This is an example of an "atomic group", details of which are given be?

 low. This particular group matches either the two-character sequence

 CR followed by LF, or one of the single characters LF (linefeed,

 U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (car?

 riage return, U+000D), or NEL (next line, U+0085). Because this is an

 atomic group, the two-character sequence is treated as a single unit

 that cannot be split.

 In other modes, two additional characters whose code points are greater

 than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa? Page 16/83

 rator, U+2029). Unicode support is not needed for these characters to

 be recognized.

 It is possible to restrict \R to match only CR, LF, or CRLF (instead of

 the complete set of Unicode line endings) by setting the option

 PCRE2_BSR_ANYCRLF at compile time. (BSR is an abbreviation for "back?

 slash R".) This can be made the default when PCRE2 is built; if this is

 the case, the other behaviour can be requested via the PCRE2_BSR_UNI?

 CODE option. It is also possible to specify these settings by starting

 a pattern string with one of the following sequences:

 (*BSR_ANYCRLF) CR, LF, or CRLF only

 (*BSR_UNICODE) any Unicode newline sequence

 These override the default and the options given to the compiling func?

 tion. Note that these special settings, which are not Perl-compatible,

 are recognized only at the very start of a pattern, and that they must

 be in upper case. If more than one of them is present, the last one is

 used. They can be combined with a change of newline convention; for ex?

 ample, a pattern can start with:

 (*ANY)(*BSR_ANYCRLF)

 They can also be combined with the (*UTF) or (*UCP) special sequences.

 Inside a character class, \R is treated as an unrecognized escape se?

 quence, and causes an error.

 Unicode character properties

 When PCRE2 is built with Unicode support (the default), three addi?

 tional escape sequences that match characters with specific properties

 are available. They can be used in any mode, though in 8-bit and 16-bit

 non-UTF modes these sequences are of course limited to testing charac?

 ters whose code points are less than U+0100 and U+10000, respectively.

 In 32-bit non-UTF mode, code points greater than 0x10ffff (the Unicode

 limit) may be encountered. These are all treated as being in the Un?

 known script and with an unassigned type.

 Matching characters by Unicode property is not fast, because PCRE2 has

 to do a multistage table lookup in order to find a character's prop?

 erty. That is why the traditional escape sequences such as \d and \w do Page 17/83

 not use Unicode properties in PCRE2 by default, though you can make

 them do so by setting the PCRE2_UCP option or by starting the pattern

 with (*UCP).

 The extra escape sequences that provide property support are:

 \p{xx} a character with the xx property

 \P{xx} a character without the xx property

 \X a Unicode extended grapheme cluster

 The property names represented by xx above are not case-sensitive, and

 in accordance with Unicode's "loose matching" rules, spaces, hyphens,

 and underscores are ignored. There is support for Unicode script names,

 Unicode general category properties, "Any", which matches any character

 (including newline), Bidi_Class, a number of binary (yes/no) proper?

 ties, and some special PCRE2 properties (described below). Certain

 other Perl properties such as "InMusicalSymbols" are not supported by

 PCRE2. Note that \P{Any} does not match any characters, so always

 causes a match failure.

 Script properties for \p and \P

 There are three different syntax forms for matching a script. Each Uni?

 code character has a basic script and, optionally, a list of other

 scripts ("Script Extensions") with which it is commonly used. Using the

 Adlam script as an example, \p{sc:Adlam} matches characters whose basic

 script is Adlam, whereas \p{scx:Adlam} matches, in addition, characters

 that have Adlam in their extensions list. The full names "script" and

 "script extensions" for the property types are recognized, and a equals

 sign is an alternative to the colon. If a script name is given without

 a property type, for example, \p{Adlam}, it is treated as \p{scx:Ad?

 lam}. Perl changed to this interpretation at release 5.26 and PCRE2

 changed at release 10.40.

 Unassigned characters (and in non-UTF 32-bit mode, characters with code

 points greater than 0x10FFFF) are assigned the "Unknown" script. Others

 that are not part of an identified script are lumped together as "Com?

 mon". The current list of recognized script names and their 4-character

 abbreviations can be obtained by running this command: Page 18/83

 pcre2test -LS

 The general category property for \p and \P

 Each character has exactly one Unicode general category property, spec?

 ified by a two-letter abbreviation. For compatibility with Perl, nega?

 tion can be specified by including a circumflex between the opening

 brace and the property name. For example, \p{^Lu} is the same as

 \P{Lu}.

 If only one letter is specified with \p or \P, it includes all the gen?

 eral category properties that start with that letter. In this case, in

 the absence of negation, the curly brackets in the escape sequence are

 optional; these two examples have the same effect:

 \p{L}

 \pL

 The following general category property codes are supported:

 C Other

 Cc Control

 Cf Format

 Cn Unassigned

 Co Private use

 Cs Surrogate

 L Letter

 Ll Lower case letter

 Lm Modifier letter

 Lo Other letter

 Lt Title case letter

 Lu Upper case letter

 M Mark

 Mc Spacing mark

 Me Enclosing mark

 Mn Non-spacing mark

 N Number

 Nd Decimal number

 Nl Letter number Page 19/83

 No Other number

 P Punctuation

 Pc Connector punctuation

 Pd Dash punctuation

 Pe Close punctuation

 Pf Final punctuation

 Pi Initial punctuation

 Po Other punctuation

 Ps Open punctuation

 S Symbol

 Sc Currency symbol

 Sk Modifier symbol

 Sm Mathematical symbol

 So Other symbol

 Z Separator

 Zl Line separator

 Zp Paragraph separator

 Zs Space separator

 The special property LC, which has the synonym L&, is also supported:

 it matches a character that has the Lu, Ll, or Lt property, in other

 words, a letter that is not classified as a modifier or "other".

 The Cs (Surrogate) property applies only to characters whose code

 points are in the range U+D800 to U+DFFF. These characters are no dif?

 ferent to any other character when PCRE2 is not in UTF mode (using the

 16-bit or 32-bit library). However, they are not valid in Unicode

 strings and so cannot be tested by PCRE2 in UTF mode, unless UTF valid?

 ity checking has been turned off (see the discussion of

 PCRE2_NO_UTF_CHECK in the pcre2api page).

 The long synonyms for property names that Perl supports (such as

 \p{Letter}) are not supported by PCRE2, nor is it permitted to prefix

 any of these properties with "Is".

 No character that is in the Unicode table has the Cn (unassigned) prop?

 erty. Instead, this property is assumed for any code point that is not Page 20/83

 in the Unicode table.

 Specifying caseless matching does not affect these escape sequences.

 For example, \p{Lu} always matches only upper case letters. This is

 different from the behaviour of current versions of Perl.

 Binary (yes/no) properties for \p and \P

 Unicode defines a number of binary properties, that is, properties

 whose only values are true or false. You can obtain a list of those

 that are recognized by \p and \P, along with their abbreviations, by

 running this command:

 pcre2test -LP

 The Bidi_Class property for \p and \P

 \p{Bidi_Class:<class>} matches a character with the given class

 \p{BC:<class>} matches a character with the given class

 The recognized classes are:

 AL Arabic letter

 AN Arabic number

 B paragraph separator

 BN boundary neutral

 CS common separator

 EN European number

 ES European separator

 ET European terminator

 FSI first strong isolate

 L left-to-right

 LRE left-to-right embedding

 LRI left-to-right isolate

 LRO left-to-right override

 NSM non-spacing mark

 ON other neutral

 PDF pop directional format

 PDI pop directional isolate

 R right-to-left

 RLE right-to-left embedding Page 21/83

 RLI right-to-left isolate

 RLO right-to-left override

 S segment separator

 WS which space

 An equals sign may be used instead of a colon. The class names are

 case-insensitive; only the short names listed above are recognized.

 Extended grapheme clusters

 The \X escape matches any number of Unicode characters that form an

 "extended grapheme cluster", and treats the sequence as an atomic group

 (see below). Unicode supports various kinds of composite character by

 giving each character a grapheme breaking property, and having rules

 that use these properties to define the boundaries of extended grapheme

 clusters. The rules are defined in Unicode Standard Annex 29, "Unicode

 Text Segmentation". Unicode 11.0.0 abandoned the use of some previous

 properties that had been used for emojis. Instead it introduced vari?

 ous emoji-specific properties. PCRE2 uses only the Extended Picto?

 graphic property.

 \X always matches at least one character. Then it decides whether to

 add additional characters according to the following rules for ending a

 cluster:

 1. End at the end of the subject string.

 2. Do not end between CR and LF; otherwise end after any control char?

 acter.

 3. Do not break Hangul (a Korean script) syllable sequences. Hangul

 characters are of five types: L, V, T, LV, and LVT. An L character may

 be followed by an L, V, LV, or LVT character; an LV or V character may

 be followed by a V or T character; an LVT or T character may be fol?

 lowed only by a T character.

 4. Do not end before extending characters or spacing marks or the

 "zero-width joiner" character. Characters with the "mark" property al?

 ways have the "extend" grapheme breaking property.

 5. Do not end after prepend characters.

 6. Do not break within emoji modifier sequences or emoji zwj sequences. Page 22/83

 That is, do not break between characters with the Extended_Pictographic

 property. Extend and ZWJ characters are allowed between the charac?

 ters.

 7. Do not break within emoji flag sequences. That is, do not break be?

 tween regional indicator (RI) characters if there are an odd number of

 RI characters before the break point.

 8. Otherwise, end the cluster.

 PCRE2's additional properties

 As well as the standard Unicode properties described above, PCRE2 sup?

 ports four more that make it possible to convert traditional escape se?

 quences such as \w and \s to use Unicode properties. PCRE2 uses these

 non-standard, non-Perl properties internally when PCRE2_UCP is set.

 However, they may also be used explicitly. These properties are:

 Xan Any alphanumeric character

 Xps Any POSIX space character

 Xsp Any Perl space character

 Xwd Any Perl "word" character

 Xan matches characters that have either the L (letter) or the N (num?

 ber) property. Xps matches the characters tab, linefeed, vertical tab,

 form feed, or carriage return, and any other character that has the Z

 (separator) property. Xsp is the same as Xps; in PCRE1 it used to ex?

 clude vertical tab, for Perl compatibility, but Perl changed. Xwd

 matches the same characters as Xan, plus underscore.

 There is another non-standard property, Xuc, which matches any charac?

 ter that can be represented by a Universal Character Name in C++ and

 other programming languages. These are the characters $, @, ` (grave

 accent), and all characters with Unicode code points greater than or

 equal to U+00A0, except for the surrogates U+D800 to U+DFFF. Note that

 most base (ASCII) characters are excluded. (Universal Character Names

 are of the form \uHHHH or \UHHHHHHHH where H is a hexadecimal digit.

 Note that the Xuc property does not match these sequences but the char?

 acters that they represent.)

 Resetting the match start Page 23/83

 In normal use, the escape sequence \K causes any previously matched

 characters not to be included in the final matched sequence that is re?

 turned. For example, the pattern:

 foo\Kbar

 matches "foobar", but reports that it has matched "bar". \K does not

 interact with anchoring in any way. The pattern:

 ^foo\Kbar

 matches only when the subject begins with "foobar" (in single line

 mode), though it again reports the matched string as "bar". This fea?

 ture is similar to a lookbehind assertion (described below). However,

 in this case, the part of the subject before the real match does not

 have to be of fixed length, as lookbehind assertions do. The use of \K

 does not interfere with the setting of captured substrings. For exam?

 ple, when the pattern

 (foo)\Kbar

 matches "foobar", the first substring is still set to "foo".

 From version 5.32.0 Perl forbids the use of \K in lookaround asser?

 tions. From release 10.38 PCRE2 also forbids this by default. However,

 the PCRE2_EXTRA_ALLOW_LOOKAROUND_BSK option can be used when calling

 pcre2_compile() to re-enable the previous behaviour. When this option

 is set, \K is acted upon when it occurs inside positive assertions, but

 is ignored in negative assertions. Note that when a pattern such as

 (?=ab\K) matches, the reported start of the match can be greater than

 the end of the match. Using \K in a lookbehind assertion at the start

 of a pattern can also lead to odd effects. For example, consider this

 pattern:

 (?<=\Kfoo)bar

 If the subject is "foobar", a call to pcre2_match() with a starting

 offset of 3 succeeds and reports the matching string as "foobar", that

 is, the start of the reported match is earlier than where the match

 started.

 Simple assertions

 The final use of backslash is for certain simple assertions. An asser? Page 24/83

 tion specifies a condition that has to be met at a particular point in

 a match, without consuming any characters from the subject string. The

 use of groups for more complicated assertions is described below. The

 backslashed assertions are:

 \b matches at a word boundary

 \B matches when not at a word boundary

 \A matches at the start of the subject

 \Z matches at the end of the subject

 also matches before a newline at the end of the subject

 \z matches only at the end of the subject

 \G matches at the first matching position in the subject

 Inside a character class, \b has a different meaning; it matches the

 backspace character. If any other of these assertions appears in a

 character class, an "invalid escape sequence" error is generated.

 A word boundary is a position in the subject string where the current

 character and the previous character do not both match \w or \W (i.e.

 one matches \w and the other matches \W), or the start or end of the

 string if the first or last character matches \w, respectively. When

 PCRE2 is built with Unicode support, the meanings of \w and \W can be

 changed by setting the PCRE2_UCP option. When this is done, it also af?

 fects \b and \B. Neither PCRE2 nor Perl has a separate "start of word"

 or "end of word" metasequence. However, whatever follows \b normally

 determines which it is. For example, the fragment \ba matches "a" at

 the start of a word.

 The \A, \Z, and \z assertions differ from the traditional circumflex

 and dollar (described in the next section) in that they only ever match

 at the very start and end of the subject string, whatever options are

 set. Thus, they are independent of multiline mode. These three asser?

 tions are not affected by the PCRE2_NOTBOL or PCRE2_NOTEOL options,

 which affect only the behaviour of the circumflex and dollar metachar?

 acters. However, if the startoffset argument of pcre2_match() is non-

 zero, indicating that matching is to start at a point other than the

 beginning of the subject, \A can never match. The difference between Page 25/83

 \Z and \z is that \Z matches before a newline at the end of the string

 as well as at the very end, whereas \z matches only at the end.

 The \G assertion is true only when the current matching position is at

 the start point of the matching process, as specified by the startoff?

 set argument of pcre2_match(). It differs from \A when the value of

 startoffset is non-zero. By calling pcre2_match() multiple times with

 appropriate arguments, you can mimic Perl's /g option, and it is in

 this kind of implementation where \G can be useful.

 Note, however, that PCRE2's implementation of \G, being true at the

 starting character of the matching process, is subtly different from

 Perl's, which defines it as true at the end of the previous match. In

 Perl, these can be different when the previously matched string was

 empty. Because PCRE2 does just one match at a time, it cannot reproduce

 this behaviour.

 If all the alternatives of a pattern begin with \G, the expression is

 anchored to the starting match position, and the "anchored" flag is set

 in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

 The circumflex and dollar metacharacters are zero-width assertions.

 That is, they test for a particular condition being true without con?

 suming any characters from the subject string. These two metacharacters

 are concerned with matching the starts and ends of lines. If the new?

 line convention is set so that only the two-character sequence CRLF is

 recognized as a newline, isolated CR and LF characters are treated as

 ordinary data characters, and are not recognized as newlines.

 Outside a character class, in the default matching mode, the circumflex

 character is an assertion that is true only if the current matching

 point is at the start of the subject string. If the startoffset argu?

 ment of pcre2_match() is non-zero, or if PCRE2_NOTBOL is set, circum?

 flex can never match if the PCRE2_MULTILINE option is unset. Inside a

 character class, circumflex has an entirely different meaning (see be?

 low).

 Circumflex need not be the first character of the pattern if a number Page 26/83

 of alternatives are involved, but it should be the first thing in each

 alternative in which it appears if the pattern is ever to match that

 branch. If all possible alternatives start with a circumflex, that is,

 if the pattern is constrained to match only at the start of the sub?

 ject, it is said to be an "anchored" pattern. (There are also other

 constructs that can cause a pattern to be anchored.)

 The dollar character is an assertion that is true only if the current

 matching point is at the end of the subject string, or immediately be?

 fore a newline at the end of the string (by default), unless PCRE2_NO?

 TEOL is set. Note, however, that it does not actually match the new?

 line. Dollar need not be the last character of the pattern if a number

 of alternatives are involved, but it should be the last item in any

 branch in which it appears. Dollar has no special meaning in a charac?

 ter class.

 The meaning of dollar can be changed so that it matches only at the

 very end of the string, by setting the PCRE2_DOLLAR_ENDONLY option at

 compile time. This does not affect the \Z assertion.

 The meanings of the circumflex and dollar metacharacters are changed if

 the PCRE2_MULTILINE option is set. When this is the case, a dollar

 character matches before any newlines in the string, as well as at the

 very end, and a circumflex matches immediately after internal newlines

 as well as at the start of the subject string. It does not match after

 a newline that ends the string, for compatibility with Perl. However,

 this can be changed by setting the PCRE2_ALT_CIRCUMFLEX option.

 For example, the pattern /^abc$/ matches the subject string "def\nabc"

 (where \n represents a newline) in multiline mode, but not otherwise.

 Consequently, patterns that are anchored in single line mode because

 all branches start with ^ are not anchored in multiline mode, and a

 match for circumflex is possible when the startoffset argument of

 pcre2_match() is non-zero. The PCRE2_DOLLAR_ENDONLY option is ignored

 if PCRE2_MULTILINE is set.

 When the newline convention (see "Newline conventions" below) recog?

 nizes the two-character sequence CRLF as a newline, this is preferred, Page 27/83

 even if the single characters CR and LF are also recognized as new?

 lines. For example, if the newline convention is "any", a multiline

 mode circumflex matches before "xyz" in the string "abc\r\nxyz" rather

 than after CR, even though CR on its own is a valid newline. (It also

 matches at the very start of the string, of course.)

 Note that the sequences \A, \Z, and \z can be used to match the start

 and end of the subject in both modes, and if all branches of a pattern

 start with \A it is always anchored, whether or not PCRE2_MULTILINE is

 set.

FULL STOP (PERIOD, DOT) AND \N

 Outside a character class, a dot in the pattern matches any one charac?

 ter in the subject string except (by default) a character that signi?

 fies the end of a line. One or more characters may be specified as line

 terminators (see "Newline conventions" above).

 Dot never matches a single line-ending character. When the two-charac?

 ter sequence CRLF is the only line ending, dot does not match CR if it

 is immediately followed by LF, but otherwise it matches all characters

 (including isolated CRs and LFs). When ANYCRLF is selected for line

 endings, no occurences of CR of LF match dot. When all Unicode line

 endings are being recognized, dot does not match CR or LF or any of the

 other line ending characters.

 The behaviour of dot with regard to newlines can be changed. If the

 PCRE2_DOTALL option is set, a dot matches any one character, without

 exception. If the two-character sequence CRLF is present in the sub?

 ject string, it takes two dots to match it.

 The handling of dot is entirely independent of the handling of circum?

 flex and dollar, the only relationship being that they both involve

 newlines. Dot has no special meaning in a character class.

 The escape sequence \N when not followed by an opening brace behaves

 like a dot, except that it is not affected by the PCRE2_DOTALL option.

 In other words, it matches any character except one that signifies the

 end of a line.

 When \N is followed by an opening brace it has a different meaning. See Page 28/83

 the section entitled "Non-printing characters" above for details. Perl

 also uses \N{name} to specify characters by Unicode name; PCRE2 does

 not support this.

MATCHING A SINGLE CODE UNIT

 Outside a character class, the escape sequence \C matches any one code

 unit, whether or not a UTF mode is set. In the 8-bit library, one code

 unit is one byte; in the 16-bit library it is a 16-bit unit; in the

 32-bit library it is a 32-bit unit. Unlike a dot, \C always matches

 line-ending characters. The feature is provided in Perl in order to

 match individual bytes in UTF-8 mode, but it is unclear how it can use?

 fully be used.

 Because \C breaks up characters into individual code units, matching

 one unit with \C in UTF-8 or UTF-16 mode means that the rest of the

 string may start with a malformed UTF character. This has undefined re?

 sults, because PCRE2 assumes that it is matching character by character

 in a valid UTF string (by default it checks the subject string's valid?

 ity at the start of processing unless the PCRE2_NO_UTF_CHECK or

 PCRE2_MATCH_INVALID_UTF option is used).

 An application can lock out the use of \C by setting the

 PCRE2_NEVER_BACKSLASH_C option when compiling a pattern. It is also

 possible to build PCRE2 with the use of \C permanently disabled.

 PCRE2 does not allow \C to appear in lookbehind assertions (described

 below) in UTF-8 or UTF-16 modes, because this would make it impossible

 to calculate the length of the lookbehind. Neither the alternative

 matching function pcre2_dfa_match() nor the JIT optimizer support \C in

 these UTF modes. The former gives a match-time error; the latter fails

 to optimize and so the match is always run using the interpreter.

 In the 32-bit library, however, \C is always supported (when not ex?

 plicitly locked out) because it always matches a single code unit,

 whether or not UTF-32 is specified.

 In general, the \C escape sequence is best avoided. However, one way of

 using it that avoids the problem of malformed UTF-8 or UTF-16 charac?

 ters is to use a lookahead to check the length of the next character, Page 29/83

 as in this pattern, which could be used with a UTF-8 string (ignore

 white space and line breaks):

 (?| (?=[\x00-\x7f])(\C) |

 (?=[\x80-\x{7ff}])(\C)(\C) |

 (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |

 (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))

 In this example, a group that starts with (?| resets the capturing

 parentheses numbers in each alternative (see "Duplicate Group Numbers"

 below). The assertions at the start of each branch check the next UTF-8

 character for values whose encoding uses 1, 2, 3, or 4 bytes, respec?

 tively. The character's individual bytes are then captured by the ap?

 propriate number of \C groups.

SQUARE BRACKETS AND CHARACTER CLASSES

 An opening square bracket introduces a character class, terminated by a

 closing square bracket. A closing square bracket on its own is not spe?

 cial by default. If a closing square bracket is required as a member

 of the class, it should be the first data character in the class (after

 an initial circumflex, if present) or escaped with a backslash. This

 means that, by default, an empty class cannot be defined. However, if

 the PCRE2_ALLOW_EMPTY_CLASS option is set, a closing square bracket at

 the start does end the (empty) class.

 A character class matches a single character in the subject. A matched

 character must be in the set of characters defined by the class, unless

 the first character in the class definition is a circumflex, in which

 case the subject character must not be in the set defined by the class.

 If a circumflex is actually required as a member of the class, ensure

 it is not the first character, or escape it with a backslash.

 For example, the character class [aeiou] matches any lower case vowel,

 while [^aeiou] matches any character that is not a lower case vowel.

 Note that a circumflex is just a convenient notation for specifying the

 characters that are in the class by enumerating those that are not. A

 class that starts with a circumflex is not an assertion; it still con?

 sumes a character from the subject string, and therefore it fails if Page 30/83

 the current pointer is at the end of the string.

 Characters in a class may be specified by their code points using \o,

 \x, or \N{U+hh..} in the usual way. When caseless matching is set, any

 letters in a class represent both their upper case and lower case ver?

 sions, so for example, a caseless [aeiou] matches "A" as well as "a",

 and a caseless [^aeiou] does not match "A", whereas a caseful version

 would. Note that there are two ASCII characters, K and S, that, in ad?

 dition to their lower case ASCII equivalents, are case-equivalent with

 Unicode U+212A (Kelvin sign) and U+017F (long S) respectively when ei?

 ther PCRE2_UTF or PCRE2_UCP is set.

 Characters that might indicate line breaks are never treated in any

 special way when matching character classes, whatever line-ending se?

 quence is in use, and whatever setting of the PCRE2_DOTALL and

 PCRE2_MULTILINE options is used. A class such as [^a] always matches

 one of these characters.

 The generic character type escape sequences \d, \D, \h, \H, \p, \P, \s,

 \S, \v, \V, \w, and \W may appear in a character class, and add the

 characters that they match to the class. For example, [\dABCDEF]

 matches any hexadecimal digit. In UTF modes, the PCRE2_UCP option af?

 fects the meanings of \d, \s, \w and their upper case partners, just as

 it does when they appear outside a character class, as described in the

 section entitled "Generic character types" above. The escape sequence

 \b has a different meaning inside a character class; it matches the

 backspace character. The sequences \B, \R, and \X are not special in?

 side a character class. Like any other unrecognized escape sequences,

 they cause an error. The same is true for \N when not followed by an

 opening brace.

 The minus (hyphen) character can be used to specify a range of charac?

 ters in a character class. For example, [d-m] matches any letter be?

 tween d and m, inclusive. If a minus character is required in a class,

 it must be escaped with a backslash or appear in a position where it

 cannot be interpreted as indicating a range, typically as the first or

 last character in the class, or immediately after a range. For example, Page 31/83

 [b-d-z] matches letters in the range b to d, a hyphen character, or z.

 Perl treats a hyphen as a literal if it appears before or after a POSIX

 class (see below) or before or after a character type escape such as as

 \d or \H. However, unless the hyphen is the last character in the

 class, Perl outputs a warning in its warning mode, as this is most

 likely a user error. As PCRE2 has no facility for warning, an error is

 given in these cases.

 It is not possible to have the literal character "]" as the end charac?

 ter of a range. A pattern such as [W-]46] is interpreted as a class of

 two characters ("W" and "-") followed by a literal string "46]", so it

 would match "W46]" or "-46]". However, if the "]" is escaped with a

 backslash it is interpreted as the end of range, so [W-\]46] is inter?

 preted as a class containing a range followed by two other characters.

 The octal or hexadecimal representation of "]" can also be used to end

 a range.

 Ranges normally include all code points between the start and end char?

 acters, inclusive. They can also be used for code points specified nu?

 merically, for example [\000-\037]. Ranges can include any characters

 that are valid for the current mode. In any UTF mode, the so-called

 "surrogate" characters (those whose code points lie between 0xd800 and

 0xdfff inclusive) may not be specified explicitly by default (the

 PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES option disables this check). How?

 ever, ranges such as [\x{d7ff}-\x{e000}], which include the surrogates,

 are always permitted.

 There is a special case in EBCDIC environments for ranges whose end

 points are both specified as literal letters in the same case. For com?

 patibility with Perl, EBCDIC code points within the range that are not

 letters are omitted. For example, [h-k] matches only four characters,

 even though the codes for h and k are 0x88 and 0x92, a range of 11 code

 points. However, if the range is specified numerically, for example,

 [\x88-\x92] or [h-\x92], all code points are included.

 If a range that includes letters is used when caseless matching is set,

 it matches the letters in either case. For example, [W-c] is equivalent Page 32/83

 to [][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if

 character tables for a French locale are in use, [\xc8-\xcb] matches

 accented E characters in both cases.

 A circumflex can conveniently be used with the upper case character

 types to specify a more restricted set of characters than the matching

 lower case type. For example, the class [^\W_] matches any letter or

 digit, but not underscore, whereas [\w] includes underscore. A positive

 character class should be read as "something OR something OR ..." and a

 negative class as "NOT something AND NOT something AND NOT ...".

 The only metacharacters that are recognized in character classes are

 backslash, hyphen (only where it can be interpreted as specifying a

 range), circumflex (only at the start), opening square bracket (only

 when it can be interpreted as introducing a POSIX class name, or for a

 special compatibility feature - see the next two sections), and the

 terminating closing square bracket. However, escaping other non-al?

 phanumeric characters does no harm.

POSIX CHARACTER CLASSES

 Perl supports the POSIX notation for character classes. This uses names

 enclosed by [: and :] within the enclosing square brackets. PCRE2 also

 supports this notation. For example,

 [01[:alpha:]%]

 matches "0", "1", any alphabetic character, or "%". The supported class

 names are:

 alnum letters and digits

 alpha letters

 ascii character codes 0 - 127

 blank space or tab only

 cntrl control characters

 digit decimal digits (same as \d)

 graph printing characters, excluding space

 lower lower case letters

 print printing characters, including space

 punct printing characters, excluding letters and digits and space Page 33/83

 space white space (the same as \s from PCRE2 8.34)

 upper upper case letters

 word "word" characters (same as \w)

 xdigit hexadecimal digits

 The default "space" characters are HT (9), LF (10), VT (11), FF (12),

 CR (13), and space (32). If locale-specific matching is taking place,

 the list of space characters may be different; there may be fewer or

 more of them. "Space" and \s match the same set of characters.

 The name "word" is a Perl extension, and "blank" is a GNU extension

 from Perl 5.8. Another Perl extension is negation, which is indicated

 by a ^ character after the colon. For example,

 [12[:^digit:]]

 matches "1", "2", or any non-digit. PCRE2 (and Perl) also recognize the

 POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but

 these are not supported, and an error is given if they are encountered.

 By default, characters with values greater than 127 do not match any of

 the POSIX character classes, although this may be different for charac?

 ters in the range 128-255 when locale-specific matching is happening.

 However, if the PCRE2_UCP option is passed to pcre2_compile(), some of

 the classes are changed so that Unicode character properties are used.

 This is achieved by replacing certain POSIX classes with other se?

 quences, as follows:

 [:alnum:] becomes \p{Xan}

 [:alpha:] becomes \p{L}

 [:blank:] becomes \h

 [:cntrl:] becomes \p{Cc}

 [:digit:] becomes \p{Nd}

 [:lower:] becomes \p{Ll}

 [:space:] becomes \p{Xps}

 [:upper:] becomes \p{Lu}

 [:word:] becomes \p{Xwd}

 Negated versions, such as [:^alpha:] use \P instead of \p. Three other

 POSIX classes are handled specially in UCP mode: Page 34/83

 [:graph:] This matches characters that have glyphs that mark the page

 when printed. In Unicode property terms, it matches all char?

 acters with the L, M, N, P, S, or Cf properties, except for:

 U+061C Arabic Letter Mark

 U+180E Mongolian Vowel Separator

 U+2066 - U+2069 Various "isolate"s

 [:print:] This matches the same characters as [:graph:] plus space

 characters that are not controls, that is, characters with

 the Zs property.

 [:punct:] This matches all characters that have the Unicode P (punctua?

 tion) property, plus those characters with code points less

 than 256 that have the S (Symbol) property.

 The other POSIX classes are unchanged, and match only characters with

 code points less than 256.

COMPATIBILITY FEATURE FOR WORD BOUNDARIES

 In the POSIX.2 compliant library that was included in 4.4BSD Unix, the

 ugly syntax [[:<:]] and [[:>:]] is used for matching "start of word"

 and "end of word". PCRE2 treats these items as follows:

 [[:<:]] is converted to \b(?=\w)

 [[:>:]] is converted to \b(?<=\w)

 Only these exact character sequences are recognized. A sequence such as

 [a[:<:]b] provokes error for an unrecognized POSIX class name. This

 support is not compatible with Perl. It is provided to help migrations

 from other environments, and is best not used in any new patterns. Note

 that \b matches at the start and the end of a word (see "Simple asser?

 tions" above), and in a Perl-style pattern the preceding or following

 character normally shows which is wanted, without the need for the as?

 sertions that are used above in order to give exactly the POSIX behav?

 iour.

VERTICAL BAR

 Vertical bar characters are used to separate alternative patterns. For

 example, the pattern

 gilbert|sullivan Page 35/83

 matches either "gilbert" or "sullivan". Any number of alternatives may

 appear, and an empty alternative is permitted (matching the empty

 string). The matching process tries each alternative in turn, from left

 to right, and the first one that succeeds is used. If the alternatives

 are within a group (defined below), "succeeds" means matching the rest

 of the main pattern as well as the alternative in the group.

INTERNAL OPTION SETTING

 The settings of the PCRE2_CASELESS, PCRE2_MULTILINE, PCRE2_DOTALL,

 PCRE2_EXTENDED, PCRE2_EXTENDED_MORE, and PCRE2_NO_AUTO_CAPTURE options

 can be changed from within the pattern by a sequence of letters en?

 closed between "(?" and ")". These options are Perl-compatible, and

 are described in detail in the pcre2api documentation. The option let?

 ters are:

 i for PCRE2_CASELESS

 m for PCRE2_MULTILINE

 n for PCRE2_NO_AUTO_CAPTURE

 s for PCRE2_DOTALL

 x for PCRE2_EXTENDED

 xx for PCRE2_EXTENDED_MORE

 For example, (?im) sets caseless, multiline matching. It is also possi?

 ble to unset these options by preceding the relevant letters with a hy?

 phen, for example (?-im). The two "extended" options are not indepen?

 dent; unsetting either one cancels the effects of both of them.

 A combined setting and unsetting such as (?im-sx), which sets

 PCRE2_CASELESS and PCRE2_MULTILINE while unsetting PCRE2_DOTALL and

 PCRE2_EXTENDED, is also permitted. Only one hyphen may appear in the

 options string. If a letter appears both before and after the hyphen,

 the option is unset. An empty options setting "(?)" is allowed. Need?

 less to say, it has no effect.

 If the first character following (? is a circumflex, it causes all of

 the above options to be unset. Thus, (?^) is equivalent to (?-imnsx).

 Letters may follow the circumflex to cause some options to be re-in?

 stated, but a hyphen may not appear. Page 36/83

 The PCRE2-specific options PCRE2_DUPNAMES and PCRE2_UNGREEDY can be

 changed in the same way as the Perl-compatible options by using the

 characters J and U respectively. However, these are not unset by (?^).

 When one of these option changes occurs at top level (that is, not in?

 side group parentheses), the change applies to the remainder of the

 pattern that follows. An option change within a group (see below for a

 description of groups) affects only that part of the group that follows

 it, so

 (a(?i)b)c

 matches abc and aBc and no other strings (assuming PCRE2_CASELESS is

 not used). By this means, options can be made to have different set?

 tings in different parts of the pattern. Any changes made in one alter?

 native do carry on into subsequent branches within the same group. For

 example,

 (a(?i)b|c)

 matches "ab", "aB", "c", and "C", even though when matching "C" the

 first branch is abandoned before the option setting. This is because

 the effects of option settings happen at compile time. There would be

 some very weird behaviour otherwise.

 As a convenient shorthand, if any option settings are required at the

 start of a non-capturing group (see the next section), the option let?

 ters may appear between the "?" and the ":". Thus the two patterns

 (?i:saturday|sunday)

 (?:(?i)saturday|sunday)

 match exactly the same set of strings.

 Note: There are other PCRE2-specific options, applying to the whole

 pattern, which can be set by the application when the compiling func?

 tion is called. In addition, the pattern can contain special leading

 sequences such as (*CRLF) to override what the application has set or

 what has been defaulted. Details are given in the section entitled

 "Newline sequences" above. There are also the (*UTF) and (*UCP) leading

 sequences that can be used to set UTF and Unicode property modes; they

 are equivalent to setting the PCRE2_UTF and PCRE2_UCP options, respec? Page 37/83

 tively. However, the application can set the PCRE2_NEVER_UTF and

 PCRE2_NEVER_UCP options, which lock out the use of the (*UTF) and

 (*UCP) sequences.

GROUPS

 Groups are delimited by parentheses (round brackets), which can be

 nested. Turning part of a pattern into a group does two things:

 1. It localizes a set of alternatives. For example, the pattern

 cat(aract|erpillar|)

 matches "cataract", "caterpillar", or "cat". Without the parentheses,

 it would match "cataract", "erpillar" or an empty string.

 2. It creates a "capture group". This means that, when the whole pat?

 tern matches, the portion of the subject string that matched the group

 is passed back to the caller, separately from the portion that matched

 the whole pattern. (This applies only to the traditional matching

 function; the DFA matching function does not support capturing.)

 Opening parentheses are counted from left to right (starting from 1) to

 obtain numbers for capture groups. For example, if the string "the red

 king" is matched against the pattern

 the ((red|white) (king|queen))

 the captured substrings are "red king", "red", and "king", and are num?

 bered 1, 2, and 3, respectively.

 The fact that plain parentheses fulfil two functions is not always

 helpful. There are often times when grouping is required without cap?

 turing. If an opening parenthesis is followed by a question mark and a

 colon, the group does not do any capturing, and is not counted when

 computing the number of any subsequent capture groups. For example, if

 the string "the white queen" is matched against the pattern

 the ((?:red|white) (king|queen))

 the captured substrings are "white queen" and "queen", and are numbered

 1 and 2. The maximum number of capture groups is 65535.

 As a convenient shorthand, if any option settings are required at the

 start of a non-capturing group, the option letters may appear between

 the "?" and the ":". Thus the two patterns Page 38/83

 (?i:saturday|sunday)

 (?:(?i)saturday|sunday)

 match exactly the same set of strings. Because alternative branches are

 tried from left to right, and options are not reset until the end of

 the group is reached, an option setting in one branch does affect sub?

 sequent branches, so the above patterns match "SUNDAY" as well as "Sat?

 urday".

DUPLICATE GROUP NUMBERS

 Perl 5.10 introduced a feature whereby each alternative in a group uses

 the same numbers for its capturing parentheses. Such a group starts

 with (?| and is itself a non-capturing group. For example, consider

 this pattern:

 (?|(Sat)ur|(Sun))day

 Because the two alternatives are inside a (?| group, both sets of cap?

 turing parentheses are numbered one. Thus, when the pattern matches,

 you can look at captured substring number one, whichever alternative

 matched. This construct is useful when you want to capture part, but

 not all, of one of a number of alternatives. Inside a (?| group, paren?

 theses are numbered as usual, but the number is reset at the start of

 each branch. The numbers of any capturing parentheses that follow the

 whole group start after the highest number used in any branch. The fol?

 lowing example is taken from the Perl documentation. The numbers under?

 neath show in which buffer the captured content will be stored.

 # before ---------------branch-reset----------- after

 / (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x

 # 1 2 2 3 2 3 4

 A backreference to a capture group uses the most recent value that is

 set for the group. The following pattern matches "abcabc" or "defdef":

 /(?|(abc)|(def))\1/

 In contrast, a subroutine call to a capture group always refers to the

 first one in the pattern with the given number. The following pattern

 matches "abcabc" or "defabc":

 /(?|(abc)|(def))(?1)/ Page 39/83

 A relative reference such as (?-1) is no different: it is just a conve?

 nient way of computing an absolute group number.

 If a condition test for a group's having matched refers to a non-unique

 number, the test is true if any group with that number has matched.

 An alternative approach to using this "branch reset" feature is to use

 duplicate named groups, as described in the next section.

NAMED CAPTURE GROUPS

 Identifying capture groups by number is simple, but it can be very hard

 to keep track of the numbers in complicated patterns. Furthermore, if

 an expression is modified, the numbers may change. To help with this

 difficulty, PCRE2 supports the naming of capture groups. This feature

 was not added to Perl until release 5.10. Python had the feature ear?

 lier, and PCRE1 introduced it at release 4.0, using the Python syntax.

 PCRE2 supports both the Perl and the Python syntax.

 In PCRE2, a capture group can be named in one of three ways:

 (?<name>...) or (?'name'...) as in Perl, or (?P<name>...) as in Python.

 Names may be up to 32 code units long. When PCRE2_UTF is not set, they

 may contain only ASCII alphanumeric characters and underscores, but

 must start with a non-digit. When PCRE2_UTF is set, the syntax of group

 names is extended to allow any Unicode letter or Unicode decimal digit.

 In other words, group names must match one of these patterns:

 ^[_A-Za-z][_A-Za-z0-9]*\z when PCRE2_UTF is not set

 ^[_\p{L}][_\p{L}\p{Nd}]*\z when PCRE2_UTF is set

 References to capture groups from other parts of the pattern, such as

 backreferences, recursion, and conditions, can all be made by name as

 well as by number.

 Named capture groups are allocated numbers as well as names, exactly as

 if the names were not present. In both PCRE2 and Perl, capture groups

 are primarily identified by numbers; any names are just aliases for

 these numbers. The PCRE2 API provides function calls for extracting the

 complete name-to-number translation table from a compiled pattern, as

 well as convenience functions for extracting captured substrings by

 name. Page 40/83

 Warning: When more than one capture group has the same number, as de?

 scribed in the previous section, a name given to one of them applies to

 all of them. Perl allows identically numbered groups to have different

 names. Consider this pattern, where there are two capture groups, both

 numbered 1:

 (?|(?<AA>aa)|(?<BB>bb))

 Perl allows this, with both names AA and BB as aliases of group 1.

 Thus, after a successful match, both names yield the same value (either

 "aa" or "bb").

 In an attempt to reduce confusion, PCRE2 does not allow the same group

 number to be associated with more than one name. The example above pro?

 vokes a compile-time error. However, there is still scope for confu?

 sion. Consider this pattern:

 (?|(?<AA>aa)|(bb))

 Although the second group number 1 is not explicitly named, the name AA

 is still an alias for any group 1. Whether the pattern matches "aa" or

 "bb", a reference by name to group AA yields the matched string.

 By default, a name must be unique within a pattern, except that dupli?

 cate names are permitted for groups with the same number, for example:

 (?|(?<AA>aa)|(?<AA>bb))

 The duplicate name constraint can be disabled by setting the PCRE2_DUP?

 NAMES option at compile time, or by the use of (?J) within the pattern,

 as described in the section entitled "Internal Option Setting" above.

 Duplicate names can be useful for patterns where only one instance of

 the named capture group can match. Suppose you want to match the name

 of a weekday, either as a 3-letter abbreviation or as the full name,

 and in both cases you want to extract the abbreviation. This pattern

 (ignoring the line breaks) does the job:

 (?J)

 (?<DN>Mon|Fri|Sun)(?:day)?|

 (?<DN>Tue)(?:sday)?|

 (?<DN>Wed)(?:nesday)?|

 (?<DN>Thu)(?:rsday)?| Page 41/83

 (?<DN>Sat)(?:urday)?

 There are five capture groups, but only one is ever set after a match.

 The convenience functions for extracting the data by name returns the

 substring for the first (and in this example, the only) group of that

 name that matched. This saves searching to find which numbered group it

 was. (An alternative way of solving this problem is to use a "branch

 reset" group, as described in the previous section.)

 If you make a backreference to a non-unique named group from elsewhere

 in the pattern, the groups to which the name refers are checked in the

 order in which they appear in the overall pattern. The first one that

 is set is used for the reference. For example, this pattern matches

 both "foofoo" and "barbar" but not "foobar" or "barfoo":

 (?J)(?:(?<n>foo)|(?<n>bar))\k<n>

 If you make a subroutine call to a non-unique named group, the one that

 corresponds to the first occurrence of the name is used. In the absence

 of duplicate numbers this is the one with the lowest number.

 If you use a named reference in a condition test (see the section about

 conditions below), either to check whether a capture group has matched,

 or to check for recursion, all groups with the same name are tested. If

 the condition is true for any one of them, the overall condition is

 true. This is the same behaviour as testing by number. For further de?

 tails of the interfaces for handling named capture groups, see the

 pcre2api documentation.

REPETITION

 Repetition is specified by quantifiers, which can follow any of the

 following items:

 a literal data character

 the dot metacharacter

 the \C escape sequence

 the \R escape sequence

 the \X escape sequence

 an escape such as \d or \pL that matches a single character

 a character class Page 42/83

 a backreference

 a parenthesized group (including lookaround assertions)

 a subroutine call (recursive or otherwise)

 The general repetition quantifier specifies a minimum and maximum num?

 ber of permitted matches, by giving the two numbers in curly brackets

 (braces), separated by a comma. The numbers must be less than 65536,

 and the first must be less than or equal to the second. For example,

 z{2,4}

 matches "zz", "zzz", or "zzzz". A closing brace on its own is not a

 special character. If the second number is omitted, but the comma is

 present, there is no upper limit; if the second number and the comma

 are both omitted, the quantifier specifies an exact number of required

 matches. Thus

 [aeiou]{3,}

 matches at least 3 successive vowels, but may match many more, whereas

 \d{8}

 matches exactly 8 digits. An opening curly bracket that appears in a

 position where a quantifier is not allowed, or one that does not match

 the syntax of a quantifier, is taken as a literal character. For exam?

 ple, {,6} is not a quantifier, but a literal string of four characters.

 In UTF modes, quantifiers apply to characters rather than to individual

 code units. Thus, for example, \x{100}{2} matches two characters, each

 of which is represented by a two-byte sequence in a UTF-8 string. Simi?

 larly, \X{3} matches three Unicode extended grapheme clusters, each of

 which may be several code units long (and they may be of different

 lengths).

 The quantifier {0} is permitted, causing the expression to behave as if

 the previous item and the quantifier were not present. This may be use?

 ful for capture groups that are referenced as subroutines from else?

 where in the pattern (but see also the section entitled "Defining cap?

 ture groups for use by reference only" below). Except for parenthesized

 groups, items that have a {0} quantifier are omitted from the compiled

 pattern. Page 43/83

 For convenience, the three most common quantifiers have single-charac?

 ter abbreviations:

 * is equivalent to {0,}

 + is equivalent to {1,}

 ? is equivalent to {0,1}

 It is possible to construct infinite loops by following a group that

 can match no characters with a quantifier that has no upper limit, for

 example:

 (a?)*

 Earlier versions of Perl and PCRE1 used to give an error at compile

 time for such patterns. However, because there are cases where this can

 be useful, such patterns are now accepted, but whenever an iteration of

 such a group matches no characters, matching moves on to the next item

 in the pattern instead of repeatedly matching an empty string. This

 does not prevent backtracking into any of the iterations if a subse?

 quent item fails to match.

 By default, quantifiers are "greedy", that is, they match as much as

 possible (up to the maximum number of permitted times), without causing

 the rest of the pattern to fail. The classic example of where this

 gives problems is in trying to match comments in C programs. These ap?

 pear between /* and */ and within the comment, individual * and / char?

 acters may appear. An attempt to match C comments by applying the pat?

 tern

 /*.**/

 to the string

 /* first comment */ not comment /* second comment */

 fails, because it matches the entire string owing to the greediness of

 the .* item. However, if a quantifier is followed by a question mark,

 it ceases to be greedy, and instead matches the minimum number of times

 possible, so the pattern

 /*.*?*/

 does the right thing with the C comments. The meaning of the various

 quantifiers is not otherwise changed, just the preferred number of Page 44/83

 matches. Do not confuse this use of question mark with its use as a

 quantifier in its own right. Because it has two uses, it can sometimes

 appear doubled, as in

 \d??\d

 which matches one digit by preference, but can match two if that is the

 only way the rest of the pattern matches.

 If the PCRE2_UNGREEDY option is set (an option that is not available in

 Perl), the quantifiers are not greedy by default, but individual ones

 can be made greedy by following them with a question mark. In other

 words, it inverts the default behaviour.

 When a parenthesized group is quantified with a minimum repeat count

 that is greater than 1 or with a limited maximum, more memory is re?

 quired for the compiled pattern, in proportion to the size of the mini?

 mum or maximum.

 If a pattern starts with .* or .{0,} and the PCRE2_DOTALL option

 (equivalent to Perl's /s) is set, thus allowing the dot to match new?

 lines, the pattern is implicitly anchored, because whatever follows

 will be tried against every character position in the subject string,

 so there is no point in retrying the overall match at any position af?

 ter the first. PCRE2 normally treats such a pattern as though it were

 preceded by \A.

 In cases where it is known that the subject string contains no new?

 lines, it is worth setting PCRE2_DOTALL in order to obtain this opti?

 mization, or alternatively, using ^ to indicate anchoring explicitly.

 However, there are some cases where the optimization cannot be used.

 When .* is inside capturing parentheses that are the subject of a

 backreference elsewhere in the pattern, a match at the start may fail

 where a later one succeeds. Consider, for example:

 (.*)abc\1

 If the subject is "xyz123abc123" the match point is the fourth charac?

 ter. For this reason, such a pattern is not implicitly anchored.

 Another case where implicit anchoring is not applied is when the lead?

 ing .* is inside an atomic group. Once again, a match at the start may Page 45/83

 fail where a later one succeeds. Consider this pattern:

 (?>.*?a)b

 It matches "ab" in the subject "aab". The use of the backtracking con?

 trol verbs (*PRUNE) and (*SKIP) also disable this optimization, and

 there is an option, PCRE2_NO_DOTSTAR_ANCHOR, to do so explicitly.

 When a capture group is repeated, the value captured is the substring

 that matched the final iteration. For example, after

 (tweedle[dume]{3}\s*)+

 has matched "tweedledum tweedledee" the value of the captured substring

 is "tweedledee". However, if there are nested capture groups, the cor?

 responding captured values may have been set in previous iterations.

 For example, after

 (a|(b))+

 matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

 With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")

 repetition, failure of what follows normally causes the repeated item

 to be re-evaluated to see if a different number of repeats allows the

 rest of the pattern to match. Sometimes it is useful to prevent this,

 either to change the nature of the match, or to cause it fail earlier

 than it otherwise might, when the author of the pattern knows there is

 no point in carrying on.

 Consider, for example, the pattern \d+foo when applied to the subject

 line

 123456bar

 After matching all 6 digits and then failing to match "foo", the normal

 action of the matcher is to try again with only 5 digits matching the

 \d+ item, and then with 4, and so on, before ultimately failing.

 "Atomic grouping" (a term taken from Jeffrey Friedl's book) provides

 the means for specifying that once a group has matched, it is not to be

 re-evaluated in this way.

 If we use atomic grouping for the previous example, the matcher gives

 up immediately on failing to match "foo" the first time. The notation Page 46/83

 is a kind of special parenthesis, starting with (?> as in this example:

 (?>\d+)foo

 Perl 5.28 introduced an experimental alphabetic form starting with (*

 which may be easier to remember:

 (*atomic:\d+)foo

 This kind of parenthesized group "locks up" the part of the pattern it

 contains once it has matched, and a failure further into the pattern is

 prevented from backtracking into it. Backtracking past it to previous

 items, however, works as normal.

 An alternative description is that a group of this type matches exactly

 the string of characters that an identical standalone pattern would

 match, if anchored at the current point in the subject string.

 Atomic groups are not capture groups. Simple cases such as the above

 example can be thought of as a maximizing repeat that must swallow ev?

 erything it can. So, while both \d+ and \d+? are prepared to adjust

 the number of digits they match in order to make the rest of the pat?

 tern match, (?>\d+) can only match an entire sequence of digits.

 Atomic groups in general can of course contain arbitrarily complicated

 expressions, and can be nested. However, when the contents of an atomic

 group is just a single repeated item, as in the example above, a sim?

 pler notation, called a "possessive quantifier" can be used. This con?

 sists of an additional + character following a quantifier. Using this

 notation, the previous example can be rewritten as

 \d++foo

 Note that a possessive quantifier can be used with an entire group, for

 example:

 (abc|xyz){2,3}+

 Possessive quantifiers are always greedy; the setting of the PCRE2_UN?

 GREEDY option is ignored. They are a convenient notation for the sim?

 pler forms of atomic group. However, there is no difference in the

 meaning of a possessive quantifier and the equivalent atomic group,

 though there may be a performance difference; possessive quantifiers

 should be slightly faster. Page 47/83

 The possessive quantifier syntax is an extension to the Perl 5.8 syn?

 tax. Jeffrey Friedl originated the idea (and the name) in the first

 edition of his book. Mike McCloskey liked it, so implemented it when he

 built Sun's Java package, and PCRE1 copied it from there. It found its

 way into Perl at release 5.10.

 PCRE2 has an optimization that automatically "possessifies" certain

 simple pattern constructs. For example, the sequence A+B is treated as

 A++B because there is no point in backtracking into a sequence of A's

 when B must follow. This feature can be disabled by the PCRE2_NO_AUTO?

 POSSESS option, or starting the pattern with (*NO_AUTO_POSSESS).

 When a pattern contains an unlimited repeat inside a group that can it?

 self be repeated an unlimited number of times, the use of an atomic

 group is the only way to avoid some failing matches taking a very long

 time indeed. The pattern

 (\D+|<\d+>)*[!?]

 matches an unlimited number of substrings that either consist of non-

 digits, or digits enclosed in <>, followed by either ! or ?. When it

 matches, it runs quickly. However, if it is applied to

 aa

 it takes a long time before reporting failure. This is because the

 string can be divided between the internal \D+ repeat and the external

 * repeat in a large number of ways, and all have to be tried. (The ex?

 ample uses [!?] rather than a single character at the end, because both

 PCRE2 and Perl have an optimization that allows for fast failure when a

 single character is used. They remember the last single character that

 is required for a match, and fail early if it is not present in the

 string.) If the pattern is changed so that it uses an atomic group,

 like this:

 ((?>\D+)|<\d+>)*[!?]

 sequences of non-digits cannot be broken, and failure happens quickly.

BACKREFERENCES

 Outside a character class, a backslash followed by a digit greater than

 0 (and possibly further digits) is a backreference to a capture group Page 48/83

 earlier (that is, to its left) in the pattern, provided there have been

 that many previous capture groups.

 However, if the decimal number following the backslash is less than 8,

 it is always taken as a backreference, and causes an error only if

 there are not that many capture groups in the entire pattern. In other

 words, the group that is referenced need not be to the left of the ref?

 erence for numbers less than 8. A "forward backreference" of this type

 can make sense when a repetition is involved and the group to the right

 has participated in an earlier iteration.

 It is not possible to have a numerical "forward backreference" to a

 group whose number is 8 or more using this syntax because a sequence

 such as \50 is interpreted as a character defined in octal. See the

 subsection entitled "Non-printing characters" above for further details

 of the handling of digits following a backslash. Other forms of back?

 referencing do not suffer from this restriction. In particular, there

 is no problem when named capture groups are used (see below).

 Another way of avoiding the ambiguity inherent in the use of digits

 following a backslash is to use the \g escape sequence. This escape

 must be followed by a signed or unsigned number, optionally enclosed in

 braces. These examples are all identical:

 (ring), \1

 (ring), \g1

 (ring), \g{1}

 An unsigned number specifies an absolute reference without the ambigu?

 ity that is present in the older syntax. It is also useful when literal

 digits follow the reference. A signed number is a relative reference.

 Consider this example:

 (abc(def)ghi)\g{-1}

 The sequence \g{-1} is a reference to the most recently started capture

 group before \g, that is, is it equivalent to \2 in this example. Simi?

 larly, \g{-2} would be equivalent to \1. The use of relative references

 can be helpful in long patterns, and also in patterns that are created

 by joining together fragments that contain references within them? Page 49/83

 selves.

 The sequence \g{+1} is a reference to the next capture group. This kind

 of forward reference can be useful in patterns that repeat. Perl does

 not support the use of + in this way.

 A backreference matches whatever actually most recently matched the

 capture group in the current subject string, rather than anything at

 all that matches the group (see "Groups as subroutines" below for a way

 of doing that). So the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsibility", but

 not "sense and responsibility". If caseful matching is in force at the

 time of the backreference, the case of letters is relevant. For exam?

 ple,

 ((?i)rah)\s+\1

 matches "rah rah" and "RAH RAH", but not "RAH rah", even though the

 original capture group is matched caselessly.

 There are several different ways of writing backreferences to named

 capture groups. The .NET syntax \k{name} and the Perl syntax \k<name>

 or \k'name' are supported, as is the Python syntax (?P=name). Perl

 5.10's unified backreference syntax, in which \g can be used for both

 numeric and named references, is also supported. We could rewrite the

 above example in any of the following ways:

 (?<p1>(?i)rah)\s+\k<p1>

 (?'p1'(?i)rah)\s+\k{p1}

 (?P<p1>(?i)rah)\s+(?P=p1)

 (?<p1>(?i)rah)\s+\g{p1}

 A capture group that is referenced by name may appear in the pattern

 before or after the reference.

 There may be more than one backreference to the same group. If a group

 has not actually been used in a particular match, backreferences to it

 always fail by default. For example, the pattern

 (a|(bc))\2

 always fails if it starts to match "a" rather than "bc". However, if Page 50/83

 the PCRE2_MATCH_UNSET_BACKREF option is set at compile time, a backref?

 erence to an unset value matches an empty string.

 Because there may be many capture groups in a pattern, all digits fol?

 lowing a backslash are taken as part of a potential backreference num?

 ber. If the pattern continues with a digit character, some delimiter

 must be used to terminate the backreference. If the PCRE2_EXTENDED or

 PCRE2_EXTENDED_MORE option is set, this can be white space. Otherwise,

 the \g{} syntax or an empty comment (see "Comments" below) can be used.

 Recursive backreferences

 A backreference that occurs inside the group to which it refers fails

 when the group is first used, so, for example, (a\1) never matches.

 However, such references can be useful inside repeated groups. For ex?

 ample, the pattern

 (a|b\1)+

 matches any number of "a"s and also "aba", "ababbaa" etc. At each iter?

 ation of the group, the backreference matches the character string cor?

 responding to the previous iteration. In order for this to work, the

 pattern must be such that the first iteration does not need to match

 the backreference. This can be done using alternation, as in the exam?

 ple above, or by a quantifier with a minimum of zero.

 For versions of PCRE2 less than 10.25, backreferences of this type used

 to cause the group that they reference to be treated as an atomic

 group. This restriction no longer applies, and backtracking into such

 groups can occur as normal.

ASSERTIONS

 An assertion is a test on the characters following or preceding the

 current matching point that does not consume any characters. The simple

 assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described

 above.

 More complicated assertions are coded as parenthesized groups. There

 are two kinds: those that look ahead of the current position in the

 subject string, and those that look behind it, and in each case an as?

 sertion may be positive (must match for the assertion to be true) or Page 51/83

 negative (must not match for the assertion to be true). An assertion

 group is matched in the normal way, and if it is true, matching contin?

 ues after it, but with the matching position in the subject string re?

 set to what it was before the assertion was processed.

 The Perl-compatible lookaround assertions are atomic. If an assertion

 is true, but there is a subsequent matching failure, there is no back?

 tracking into the assertion. However, there are some cases where non-

 atomic assertions can be useful. PCRE2 has some support for these, de?

 scribed in the section entitled "Non-atomic assertions" below, but they

 are not Perl-compatible.

 A lookaround assertion may appear as the condition in a conditional

 group (see below). In this case, the result of matching the assertion

 determines which branch of the condition is followed.

 Assertion groups are not capture groups. If an assertion contains cap?

 ture groups within it, these are counted for the purposes of numbering

 the capture groups in the whole pattern. Within each branch of an as?

 sertion, locally captured substrings may be referenced in the usual

 way. For example, a sequence such as (.)\g{-1} can be used to check

 that two adjacent characters are the same.

 When a branch within an assertion fails to match, any substrings that

 were captured are discarded (as happens with any pattern branch that

 fails to match). A negative assertion is true only when all its

 branches fail to match; this means that no captured substrings are ever

 retained after a successful negative assertion. When an assertion con?

 tains a matching branch, what happens depends on the type of assertion.

 For a positive assertion, internally captured substrings in the suc?

 cessful branch are retained, and matching continues with the next pat?

 tern item after the assertion. For a negative assertion, a matching

 branch means that the assertion is not true. If such an assertion is

 being used as a condition in a conditional group (see below), captured

 substrings are retained, because matching continues with the "no"

 branch of the condition. For other failing negative assertions, control

 passes to the previous backtracking point, thus discarding any captured Page 52/83

 strings within the assertion.

 Most assertion groups may be repeated; though it makes no sense to as?

 sert the same thing several times, the side effect of capturing in pos?

 itive assertions may occasionally be useful. However, an assertion that

 forms the condition for a conditional group may not be quantified.

 PCRE2 used to restrict the repetition of assertions, but from release

 10.35 the only restriction is that an unlimited maximum repetition is

 changed to be one more than the minimum. For example, {3,} is treated

 as {3,4}.

 Alphabetic assertion names

 Traditionally, symbolic sequences such as (?= and (?<= have been used

 to specify lookaround assertions. Perl 5.28 introduced some experimen?

 tal alphabetic alternatives which might be easier to remember. They all

 start with (* instead of (? and must be written using lower case let?

 ters. PCRE2 supports the following synonyms:

 (*positive_lookahead: or (*pla: is the same as (?=

 (*negative_lookahead: or (*nla: is the same as (?!

 (*positive_lookbehind: or (*plb: is the same as (?<=

 (*negative_lookbehind: or (*nlb: is the same as (?<!

 For example, (*pla:foo) is the same assertion as (?=foo). In the fol?

 lowing sections, the various assertions are described using the origi?

 nal symbolic forms.

 Lookahead assertions

 Lookahead assertions start with (?= for positive assertions and (?! for

 negative assertions. For example,

 \w+(?=;)

 matches a word followed by a semicolon, but does not include the semi?

 colon in the match, and

 foo(?!bar)

 matches any occurrence of "foo" that is not followed by "bar". Note

 that the apparently similar pattern

 (?!foo)bar

 does not find an occurrence of "bar" that is preceded by something Page 53/83

 other than "foo"; it finds any occurrence of "bar" whatsoever, because

 the assertion (?!foo) is always true when the next three characters are

 "bar". A lookbehind assertion is needed to achieve the other effect.

 If you want to force a matching failure at some point in a pattern, the

 most convenient way to do it is with (?!) because an empty string al?

 ways matches, so an assertion that requires there not to be an empty

 string must always fail. The backtracking control verb (*FAIL) or (*F)

 is a synonym for (?!).

 Lookbehind assertions

 Lookbehind assertions start with (?<= for positive assertions and (?<!

 for negative assertions. For example,

 (?<!foo)bar

 does find an occurrence of "bar" that is not preceded by "foo". The

 contents of a lookbehind assertion are restricted such that all the

 strings it matches must have a fixed length. However, if there are sev?

 eral top-level alternatives, they do not all have to have the same

 fixed length. Thus

 (?<=bullock|donkey)

 is permitted, but

 (?<!dogs?|cats?)

 causes an error at compile time. Branches that match different length

 strings are permitted only at the top level of a lookbehind assertion.

 This is an extension compared with Perl, which requires all branches to

 match the same length of string. An assertion such as

 (?<=ab(c|de))

 is not permitted, because its single top-level branch can match two

 different lengths, but it is acceptable to PCRE2 if rewritten to use

 two top-level branches:

 (?<=abc|abde)

 In some cases, the escape sequence \K (see above) can be used instead

 of a lookbehind assertion to get round the fixed-length restriction.

 The implementation of lookbehind assertions is, for each alternative,

 to temporarily move the current position back by the fixed length and Page 54/83

 then try to match. If there are insufficient characters before the cur?

 rent position, the assertion fails.

 In UTF-8 and UTF-16 modes, PCRE2 does not allow the \C escape (which

 matches a single code unit even in a UTF mode) to appear in lookbehind

 assertions, because it makes it impossible to calculate the length of

 the lookbehind. The \X and \R escapes, which can match different num?

 bers of code units, are never permitted in lookbehinds.

 "Subroutine" calls (see below) such as (?2) or (?&X) are permitted in

 lookbehinds, as long as the called capture group matches a fixed-length

 string. However, recursion, that is, a "subroutine" call into a group

 that is already active, is not supported.

 Perl does not support backreferences in lookbehinds. PCRE2 does support

 them, but only if certain conditions are met. The PCRE2_MATCH_UN?

 SET_BACKREF option must not be set, there must be no use of (?| in the

 pattern (it creates duplicate group numbers), and if the backreference

 is by name, the name must be unique. Of course, the referenced group

 must itself match a fixed length substring. The following pattern

 matches words containing at least two characters that begin and end

 with the same character:

 \b(\w)\w++(?<=\1)

 Possessive quantifiers can be used in conjunction with lookbehind as?

 sertions to specify efficient matching of fixed-length strings at the

 end of subject strings. Consider a simple pattern such as

 abcd$

 when applied to a long string that does not match. Because matching

 proceeds from left to right, PCRE2 will look for each "a" in the sub?

 ject and then see if what follows matches the rest of the pattern. If

 the pattern is specified as

 ^.*abcd$

 the initial .* matches the entire string at first, but when this fails

 (because there is no following "a"), it backtracks to match all but the

 last character, then all but the last two characters, and so on. Once

 again the search for "a" covers the entire string, from right to left, Page 55/83

 so we are no better off. However, if the pattern is written as

 ^.*+(?<=abcd)

 there can be no backtracking for the .*+ item because of the possessive

 quantifier; it can match only the entire string. The subsequent lookbe?

 hind assertion does a single test on the last four characters. If it

 fails, the match fails immediately. For long strings, this approach

 makes a significant difference to the processing time.

 Using multiple assertions

 Several assertions (of any sort) may occur in succession. For example,

 (?<=\d{3})(?<!999)foo

 matches "foo" preceded by three digits that are not "999". Notice that

 each of the assertions is applied independently at the same point in

 the subject string. First there is a check that the previous three

 characters are all digits, and then there is a check that the same

 three characters are not "999". This pattern does not match "foo" pre?

 ceded by six characters, the first of which are digits and the last

 three of which are not "999". For example, it doesn't match "123abc?

 foo". A pattern to do that is

 (?<=\d{3}...)(?<!999)foo

 This time the first assertion looks at the preceding six characters,

 checking that the first three are digits, and then the second assertion

 checks that the preceding three characters are not "999".

 Assertions can be nested in any combination. For example,

 (?<=(?<!foo)bar)baz

 matches an occurrence of "baz" that is preceded by "bar" which in turn

 is not preceded by "foo", while

 (?<=\d{3}(?!999)...)foo

 is another pattern that matches "foo" preceded by three digits and any

 three characters that are not "999".

NON-ATOMIC ASSERTIONS

 The traditional Perl-compatible lookaround assertions are atomic. That

 is, if an assertion is true, but there is a subsequent matching fail?

 ure, there is no backtracking into the assertion. However, there are Page 56/83

 some cases where non-atomic positive assertions can be useful. PCRE2

 provides these using the following syntax:

 (*non_atomic_positive_lookahead: or (*napla: or (?*

 (*non_atomic_positive_lookbehind: or (*naplb: or (?<*

 Consider the problem of finding the right-most word in a string that

 also appears earlier in the string, that is, it must appear at least

 twice in total. This pattern returns the required result as captured

 substring 1:

 ^(?x)(*napla: .* \b(\w++)) (?> .*? \b\1\b){2}

 For a subject such as "word1 word2 word3 word2 word3 word4" the result

 is "word3". How does it work? At the start, ^(?x) anchors the pattern

 and sets the "x" option, which causes white space (introduced for read?

 ability) to be ignored. Inside the assertion, the greedy .* at first

 consumes the entire string, but then has to backtrack until the rest of

 the assertion can match a word, which is captured by group 1. In other

 words, when the assertion first succeeds, it captures the right-most

 word in the string.

 The current matching point is then reset to the start of the subject,

 and the rest of the pattern match checks for two occurrences of the

 captured word, using an ungreedy .*? to scan from the left. If this

 succeeds, we are done, but if the last word in the string does not oc?

 cur twice, this part of the pattern fails. If a traditional atomic

 lookhead (?= or (*pla: had been used, the assertion could not be re-en?

 tered, and the whole match would fail. The pattern would succeed only

 if the very last word in the subject was found twice.

 Using a non-atomic lookahead, however, means that when the last word

 does not occur twice in the string, the lookahead can backtrack and

 find the second-last word, and so on, until either the match succeeds,

 or all words have been tested.

 Two conditions must be met for a non-atomic assertion to be useful: the

 contents of one or more capturing groups must change after a backtrack

 into the assertion, and there must be a backreference to a changed

 group later in the pattern. If this is not the case, the rest of the Page 57/83

 pattern match fails exactly as before because nothing has changed, so

 using a non-atomic assertion just wastes resources.

 There is one exception to backtracking into a non-atomic assertion. If

 an (*ACCEPT) control verb is triggered, the assertion succeeds atomi?

 cally. That is, a subsequent match failure cannot backtrack into the

 assertion.

 Non-atomic assertions are not supported by the alternative matching

 function pcre2_dfa_match(). They are supported by JIT, but only if they

 do not contain any control verbs such as (*ACCEPT). (This may change in

 future). Note that assertions that appear as conditions for conditional

 groups (see below) must be atomic.

SCRIPT RUNS

 In concept, a script run is a sequence of characters that are all from

 the same Unicode script such as Latin or Greek. However, because some

 scripts are commonly used together, and because some diacritical and

 other marks are used with multiple scripts, it is not that simple.

 There is a full description of the rules that PCRE2 uses in the section

 entitled "Script Runs" in the pcre2unicode documentation.

 If part of a pattern is enclosed between (*script_run: or (*sr: and a

 closing parenthesis, it fails if the sequence of characters that it

 matches are not a script run. After a failure, normal backtracking oc?

 curs. Script runs can be used to detect spoofing attacks using charac?

 ters that look the same, but are from different scripts. The string

 "paypal.com" is an infamous example, where the letters could be a mix?

 ture of Latin and Cyrillic. This pattern ensures that the matched char?

 acters in a sequence of non-spaces that follow white space are a script

 run:

 \s+(*sr:\S+)

 To be sure that they are all from the Latin script (for example), a

 lookahead can be used:

 \s+(?=\p{Latin})(*sr:\S+)

 This works as long as the first character is expected to be a character

 in that script, and not (for example) punctuation, which is allowed Page 58/83

 with any script. If this is not the case, a more creative lookahead is

 needed. For example, if digits, underscore, and dots are permitted at

 the start:

 \s+(?=[0-9_.]*\p{Latin})(*sr:\S+)

 In many cases, backtracking into a script run pattern fragment is not

 desirable. The script run can employ an atomic group to prevent this.

 Because this is a common requirement, a shorthand notation is provided

 by (*atomic_script_run: or (*asr:

 (*asr:...) is the same as (*sr:(?>...))

 Note that the atomic group is inside the script run. Putting it outside

 would not prevent backtracking into the script run pattern.

 Support for script runs is not available if PCRE2 is compiled without

 Unicode support. A compile-time error is given if any of the above con?

 structs is encountered. Script runs are not supported by the alternate

 matching function, pcre2_dfa_match() because they use the same mecha?

 nism as capturing parentheses.

 Warning: The (*ACCEPT) control verb (see below) should not be used

 within a script run group, because it causes an immediate exit from the

 group, bypassing the script run checking.

CONDITIONAL GROUPS

 It is possible to cause the matching process to obey a pattern fragment

 conditionally or to choose between two alternative fragments, depending

 on the result of an assertion, or whether a specific capture group has

 already been matched. The two possible forms of conditional group are:

 (?(condition)yes-pattern)

 (?(condition)yes-pattern|no-pattern)

 If the condition is satisfied, the yes-pattern is used; otherwise the

 no-pattern (if present) is used. An absent no-pattern is equivalent to

 an empty string (it always matches). If there are more than two alter?

 natives in the group, a compile-time error occurs. Each of the two al?

 ternatives may itself contain nested groups of any form, including con?

 ditional groups; the restriction to two alternatives applies only at

 the level of the condition itself. This pattern fragment is an example Page 59/83

 where the alternatives are complex:

 (?(1) (A|B|C) | (D | (?(2)E|F) | E))

 There are five kinds of condition: references to capture groups, refer?

 ences to recursion, two pseudo-conditions called DEFINE and VERSION,

 and assertions.

 Checking for a used capture group by number

 If the text between the parentheses consists of a sequence of digits,

 the condition is true if a capture group of that number has previously

 matched. If there is more than one capture group with the same number

 (see the earlier section about duplicate group numbers), the condition

 is true if any of them have matched. An alternative notation is to pre?

 cede the digits with a plus or minus sign. In this case, the group num?

 ber is relative rather than absolute. The most recently opened capture

 group can be referenced by (?(-1), the next most recent by (?(-2), and

 so on. Inside loops it can also make sense to refer to subsequent

 groups. The next capture group can be referenced as (?(+1), and so on.

 (The value zero in any of these forms is not used; it provokes a com?

 pile-time error.)

 Consider the following pattern, which contains non-significant white

 space to make it more readable (assume the PCRE2_EXTENDED option) and

 to divide it into three parts for ease of discussion:

 (\()? [^()]+ (?(1) \))

 The first part matches an optional opening parenthesis, and if that

 character is present, sets it as the first captured substring. The sec?

 ond part matches one or more characters that are not parentheses. The

 third part is a conditional group that tests whether or not the first

 capture group matched. If it did, that is, if subject started with an

 opening parenthesis, the condition is true, and so the yes-pattern is

 executed and a closing parenthesis is required. Otherwise, since no-

 pattern is not present, the conditional group matches nothing. In other

 words, this pattern matches a sequence of non-parentheses, optionally

 enclosed in parentheses.

 If you were embedding this pattern in a larger one, you could use a Page 60/83

 relative reference:

 ...other stuff... (\()? [^()]+ (?(-1) \)) ...

 This makes the fragment independent of the parentheses in the larger

 pattern.

 Checking for a used capture group by name

 Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a

 used capture group by name. For compatibility with earlier versions of

 PCRE1, which had this facility before Perl, the syntax (?(name)...) is

 also recognized. Note, however, that undelimited names consisting of

 the letter R followed by digits are ambiguous (see the following sec?

 tion). Rewriting the above example to use a named group gives this:

 (?<OPEN> \()? [^()]+ (?(<OPEN>) \))

 If the name used in a condition of this kind is a duplicate, the test

 is applied to all groups of the same name, and is true if any one of

 them has matched.

 Checking for pattern recursion

 "Recursion" in this sense refers to any subroutine-like call from one

 part of the pattern to another, whether or not it is actually recur?

 sive. See the sections entitled "Recursive patterns" and "Groups as

 subroutines" below for details of recursion and subroutine calls.

 If a condition is the string (R), and there is no capture group with

 the name R, the condition is true if matching is currently in a recur?

 sion or subroutine call to the whole pattern or any capture group. If

 digits follow the letter R, and there is no group with that name, the

 condition is true if the most recent call is into a group with the

 given number, which must exist somewhere in the overall pattern. This

 is a contrived example that is equivalent to a+b:

 ((?(R1)a+|(?1)b))

 However, in both cases, if there is a capture group with a matching

 name, the condition tests for its being set, as described in the sec?

 tion above, instead of testing for recursion. For example, creating a

 group with the name R1 by adding (?<R1>) to the above pattern com?

 pletely changes its meaning. Page 61/83

 If a name preceded by ampersand follows the letter R, for example:

 (?(R&name)...)

 the condition is true if the most recent recursion is into a group of

 that name (which must exist within the pattern).

 This condition does not check the entire recursion stack. It tests only

 the current level. If the name used in a condition of this kind is a

 duplicate, the test is applied to all groups of the same name, and is

 true if any one of them is the most recent recursion.

 At "top level", all these recursion test conditions are false.

 Defining capture groups for use by reference only

 If the condition is the string (DEFINE), the condition is always false,

 even if there is a group with the name DEFINE. In this case, there may

 be only one alternative in the rest of the conditional group. It is al?

 ways skipped if control reaches this point in the pattern; the idea of

 DEFINE is that it can be used to define subroutines that can be refer?

 enced from elsewhere. (The use of subroutines is described below.) For

 example, a pattern to match an IPv4 address such as "192.168.23.245"

 could be written like this (ignore white space and line breaks):

 (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))

 \b (?&byte) (\.(?&byte)){3} \b

 The first part of the pattern is a DEFINE group inside which another

 group named "byte" is defined. This matches an individual component of

 an IPv4 address (a number less than 256). When matching takes place,

 this part of the pattern is skipped because DEFINE acts like a false

 condition. The rest of the pattern uses references to the named group

 to match the four dot-separated components of an IPv4 address, insist?

 ing on a word boundary at each end.

 Checking the PCRE2 version

 Programs that link with a PCRE2 library can check the version by call?

 ing pcre2_config() with appropriate arguments. Users of applications

 that do not have access to the underlying code cannot do this. A spe?

 cial "condition" called VERSION exists to allow such users to discover

 which version of PCRE2 they are dealing with by using this condition to Page 62/83

 match a string such as "yesno". VERSION must be followed either by "="

 or ">=" and a version number. For example:

 (?(VERSION>=10.4)yes|no)

 This pattern matches "yes" if the PCRE2 version is greater or equal to

 10.4, or "no" otherwise. The fractional part of the version number may

 not contain more than two digits.

 Assertion conditions

 If the condition is not in any of the above formats, it must be a

 parenthesized assertion. This may be a positive or negative lookahead

 or lookbehind assertion. However, it must be a traditional atomic as?

 sertion, not one of the PCRE2-specific non-atomic assertions.

 Consider this pattern, again containing non-significant white space,

 and with the two alternatives on the second line:

 (?(?=[^a-z]*[a-z])

 \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

 The condition is a positive lookahead assertion that matches an op?

 tional sequence of non-letters followed by a letter. In other words, it

 tests for the presence of at least one letter in the subject. If a let?

 ter is found, the subject is matched against the first alternative;

 otherwise it is matched against the second. This pattern matches

 strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are

 letters and dd are digits.

 When an assertion that is a condition contains capture groups, any cap?

 turing that occurs in a matching branch is retained afterwards, for

 both positive and negative assertions, because matching always contin?

 ues after the assertion, whether it succeeds or fails. (Compare non-

 conditional assertions, for which captures are retained only for posi?

 tive assertions that succeed.)

COMMENTS

 There are two ways of including comments in patterns that are processed

 by PCRE2. In both cases, the start of the comment must not be in a

 character class, nor in the middle of any other sequence of related

 characters such as (?: or a group name or number. The characters that Page 63/83

 make up a comment play no part in the pattern matching.

 The sequence (?# marks the start of a comment that continues up to the

 next closing parenthesis. Nested parentheses are not permitted. If the

 PCRE2_EXTENDED or PCRE2_EXTENDED_MORE option is set, an unescaped #

 character also introduces a comment, which in this case continues to

 immediately after the next newline character or character sequence in

 the pattern. Which characters are interpreted as newlines is controlled

 by an option passed to the compiling function or by a special sequence

 at the start of the pattern, as described in the section entitled "New?

 line conventions" above. Note that the end of this type of comment is a

 literal newline sequence in the pattern; escape sequences that happen

 to represent a newline do not count. For example, consider this pattern

 when PCRE2_EXTENDED is set, and the default newline convention (a sin?

 gle linefeed character) is in force:

 abc #comment \n still comment

 On encountering the # character, pcre2_compile() skips along, looking

 for a newline in the pattern. The sequence \n is still literal at this

 stage, so it does not terminate the comment. Only an actual character

 with the code value 0x0a (the default newline) does so.

RECURSIVE PATTERNS

 Consider the problem of matching a string in parentheses, allowing for

 unlimited nested parentheses. Without the use of recursion, the best

 that can be done is to use a pattern that matches up to some fixed

 depth of nesting. It is not possible to handle an arbitrary nesting

 depth.

 For some time, Perl has provided a facility that allows regular expres?

 sions to recurse (amongst other things). It does this by interpolating

 Perl code in the expression at run time, and the code can refer to the

 expression itself. A Perl pattern using code interpolation to solve the

 parentheses problem can be created like this:

 $re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

 The (?p{...}) item interpolates Perl code at run time, and in this case

 refers recursively to the pattern in which it appears. Page 64/83

 Obviously, PCRE2 cannot support the interpolation of Perl code. In?

 stead, it supports special syntax for recursion of the entire pattern,

 and also for individual capture group recursion. After its introduction

 in PCRE1 and Python, this kind of recursion was subsequently introduced

 into Perl at release 5.10.

 A special item that consists of (? followed by a number greater than

 zero and a closing parenthesis is a recursive subroutine call of the

 capture group of the given number, provided that it occurs inside that

 group. (If not, it is a non-recursive subroutine call, which is de?

 scribed in the next section.) The special item (?R) or (?0) is a recur?

 sive call of the entire regular expression.

 This PCRE2 pattern solves the nested parentheses problem (assume the

 PCRE2_EXTENDED option is set so that white space is ignored):

 \(([^()]++ | (?R))* \)

 First it matches an opening parenthesis. Then it matches any number of

 substrings which can either be a sequence of non-parentheses, or a re?

 cursive match of the pattern itself (that is, a correctly parenthesized

 substring). Finally there is a closing parenthesis. Note the use of a

 possessive quantifier to avoid backtracking into sequences of non-

 parentheses.

 If this were part of a larger pattern, you would not want to recurse

 the entire pattern, so instead you could use this:

 (\(([^()]++ | (?1))* \))

 We have put the pattern into parentheses, and caused the recursion to

 refer to them instead of the whole pattern.

 In a larger pattern, keeping track of parenthesis numbers can be

 tricky. This is made easier by the use of relative references. Instead

 of (?1) in the pattern above you can write (?-2) to refer to the second

 most recently opened parentheses preceding the recursion. In other

 words, a negative number counts capturing parentheses leftwards from

 the point at which it is encountered.

 Be aware however, that if duplicate capture group numbers are in use,

 relative references refer to the earliest group with the appropriate Page 65/83

 number. Consider, for example:

 (?|(a)|(b)) (c) (?-2)

 The first two capture groups (a) and (b) are both numbered 1, and group

 (c) is number 2. When the reference (?-2) is encountered, the second

 most recently opened parentheses has the number 1, but it is the first

 such group (the (a) group) to which the recursion refers. This would be

 the same if an absolute reference (?1) was used. In other words, rela?

 tive references are just a shorthand for computing a group number.

 It is also possible to refer to subsequent capture groups, by writing

 references such as (?+2). However, these cannot be recursive because

 the reference is not inside the parentheses that are referenced. They

 are always non-recursive subroutine calls, as described in the next

 section.

 An alternative approach is to use named parentheses. The Perl syntax

 for this is (?&name); PCRE1's earlier syntax (?P>name) is also sup?

 ported. We could rewrite the above example as follows:

 (?<pn> \(([^()]++ | (?&pn))* \))

 If there is more than one group with the same name, the earliest one is

 used.

 The example pattern that we have been looking at contains nested unlim?

 ited repeats, and so the use of a possessive quantifier for matching

 strings of non-parentheses is important when applying the pattern to

 strings that do not match. For example, when this pattern is applied to

 (aaa()

 it yields "no match" quickly. However, if a possessive quantifier is

 not used, the match runs for a very long time indeed because there are

 so many different ways the + and * repeats can carve up the subject,

 and all have to be tested before failure can be reported.

 At the end of a match, the values of capturing parentheses are those

 from the outermost level. If you want to obtain intermediate values, a

 callout function can be used (see below and the pcre2callout documenta?

 tion). If the pattern above is matched against

 (ab(cd)ef) Page 66/83

 the value for the inner capturing parentheses (numbered 2) is "ef",

 which is the last value taken on at the top level. If a capture group

 is not matched at the top level, its final captured value is unset,

 even if it was (temporarily) set at a deeper level during the matching

 process.

 Do not confuse the (?R) item with the condition (R), which tests for

 recursion. Consider this pattern, which matches text in angle brack?

 ets, allowing for arbitrary nesting. Only digits are allowed in nested

 brackets (that is, when recursing), whereas any characters are permit?

 ted at the outer level.

 < (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

 In this pattern, (?(R) is the start of a conditional group, with two

 different alternatives for the recursive and non-recursive cases. The

 (?R) item is the actual recursive call.

 Differences in recursion processing between PCRE2 and Perl

 Some former differences between PCRE2 and Perl no longer exist.

 Before release 10.30, recursion processing in PCRE2 differed from Perl

 in that a recursive subroutine call was always treated as an atomic

 group. That is, once it had matched some of the subject string, it was

 never re-entered, even if it contained untried alternatives and there

 was a subsequent matching failure. (Historical note: PCRE implemented

 recursion before Perl did.)

 Starting with release 10.30, recursive subroutine calls are no longer

 treated as atomic. That is, they can be re-entered to try unused alter?

 natives if there is a matching failure later in the pattern. This is

 now compatible with the way Perl works. If you want a subroutine call

 to be atomic, you must explicitly enclose it in an atomic group.

 Supporting backtracking into recursions simplifies certain types of re?

 cursive pattern. For example, this pattern matches palindromic strings:

 ^((.)(?1)\2|.?)$

 The second branch in the group matches a single central character in

 the palindrome when there are an odd number of characters, or nothing

 when there are an even number of characters, but in order to work it Page 67/83

 has to be able to try the second case when the rest of the pattern

 match fails. If you want to match typical palindromic phrases, the pat?

 tern has to ignore all non-word characters, which can be done like

 this:

 ^\W*+((.)\W*+(?1)\W*+\2|\W*+.?)\W*+$

 If run with the PCRE2_CASELESS option, this pattern matches phrases

 such as "A man, a plan, a canal: Panama!". Note the use of the posses?

 sive quantifier *+ to avoid backtracking into sequences of non-word

 characters. Without this, PCRE2 takes a great deal longer (ten times or

 more) to match typical phrases, and Perl takes so long that you think

 it has gone into a loop.

 Another way in which PCRE2 and Perl used to differ in their recursion

 processing is in the handling of captured values. Formerly in Perl,

 when a group was called recursively or as a subroutine (see the next

 section), it had no access to any values that were captured outside the

 recursion, whereas in PCRE2 these values can be referenced. Consider

 this pattern:

 ^(.)(\1|a(?2))

 This pattern matches "bab". The first capturing parentheses match "b",

 then in the second group, when the backreference \1 fails to match "b",

 the second alternative matches "a" and then recurses. In the recursion,

 \1 does now match "b" and so the whole match succeeds. This match used

 to fail in Perl, but in later versions (I tried 5.024) it now works.

GROUPS AS SUBROUTINES

 If the syntax for a recursive group call (either by number or by name)

 is used outside the parentheses to which it refers, it operates a bit

 like a subroutine in a programming language. More accurately, PCRE2

 treats the referenced group as an independent subpattern which it tries

 to match at the current matching position. The called group may be de?

 fined before or after the reference. A numbered reference can be abso?

 lute or relative, as in these examples:

 (...(absolute)...)...(?2)...

 (...(relative)...)...(?-1)... Page 68/83

 (...(?+1)...(relative)...

 An earlier example pointed out that the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsibility", but

 not "sense and responsibility". If instead the pattern

 (sens|respons)e and (?1)ibility

 is used, it does match "sense and responsibility" as well as the other

 two strings. Another example is given in the discussion of DEFINE

 above.

 Like recursions, subroutine calls used to be treated as atomic, but

 this changed at PCRE2 release 10.30, so backtracking into subroutine

 calls can now occur. However, any capturing parentheses that are set

 during the subroutine call revert to their previous values afterwards.

 Processing options such as case-independence are fixed when a group is

 defined, so if it is used as a subroutine, such options cannot be

 changed for different calls. For example, consider this pattern:

 (abc)(?i:(?-1))

 It matches "abcabc". It does not match "abcABC" because the change of

 processing option does not affect the called group.

 The behaviour of backtracking control verbs in groups when called as

 subroutines is described in the section entitled "Backtracking verbs in

 subroutines" below.

ONIGURUMA SUBROUTINE SYNTAX

 For compatibility with Oniguruma, the non-Perl syntax \g followed by a

 name or a number enclosed either in angle brackets or single quotes, is

 an alternative syntax for calling a group as a subroutine, possibly re?

 cursively. Here are two of the examples used above, rewritten using

 this syntax:

 (?<pn> \(((?>[^()]+) | \g<pn>)* \))

 (sens|respons)e and \g'1'ibility

 PCRE2 supports an extension to Oniguruma: if a number is preceded by a

 plus or a minus sign it is taken as a relative reference. For example:

 (abc)(?i:\g<-1>) Page 69/83

 Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not

 synonymous. The former is a backreference; the latter is a subroutine

 call.

CALLOUTS

 Perl has a feature whereby using the sequence (?{...}) causes arbitrary

 Perl code to be obeyed in the middle of matching a regular expression.

 This makes it possible, amongst other things, to extract different sub?

 strings that match the same pair of parentheses when there is a repeti?

 tion.

 PCRE2 provides a similar feature, but of course it cannot obey arbi?

 trary Perl code. The feature is called "callout". The caller of PCRE2

 provides an external function by putting its entry point in a match

 context using the function pcre2_set_callout(), and then passing that

 context to pcre2_match() or pcre2_dfa_match(). If no match context is

 passed, or if the callout entry point is set to NULL, callouts are dis?

 abled.

 Within a regular expression, (?C<arg>) indicates a point at which the

 external function is to be called. There are two kinds of callout:

 those with a numerical argument and those with a string argument. (?C)

 on its own with no argument is treated as (?C0). A numerical argument

 allows the application to distinguish between different callouts.

 String arguments were added for release 10.20 to make it possible for

 script languages that use PCRE2 to embed short scripts within patterns

 in a similar way to Perl.

 During matching, when PCRE2 reaches a callout point, the external func?

 tion is called. It is provided with the number or string argument of

 the callout, the position in the pattern, and one item of data that is

 also set in the match block. The callout function may cause matching to

 proceed, to backtrack, or to fail.

 By default, PCRE2 implements a number of optimizations at matching

 time, and one side-effect is that sometimes callouts are skipped. If

 you need all possible callouts to happen, you need to set options that

 disable the relevant optimizations. More details, including a complete Page 70/83

 description of the programming interface to the callout function, are

 given in the pcre2callout documentation.

 Callouts with numerical arguments

 If you just want to have a means of identifying different callout

 points, put a number less than 256 after the letter C. For example,

 this pattern has two callout points:

 (?C1)abc(?C2)def

 If the PCRE2_AUTO_CALLOUT flag is passed to pcre2_compile(), numerical

 callouts are automatically installed before each item in the pattern.

 They are all numbered 255. If there is a conditional group in the pat?

 tern whose condition is an assertion, an additional callout is inserted

 just before the condition. An explicit callout may also be set at this

 position, as in this example:

 (?(?C9)(?=a)abc|def)

 Note that this applies only to assertion conditions, not to other types

 of condition.

 Callouts with string arguments

 A delimited string may be used instead of a number as a callout argu?

 ment. The starting delimiter must be one of ` ' " ^ % # $ { and the

 ending delimiter is the same as the start, except for {, where the end?

 ing delimiter is }. If the ending delimiter is needed within the

 string, it must be doubled. For example:

 (?C'ab ''c'' d')xyz(?C{any text})pqr

 The doubling is removed before the string is passed to the callout

 function.

BACKTRACKING CONTROL

 There are a number of special "Backtracking Control Verbs" (to use

 Perl's terminology) that modify the behaviour of backtracking during

 matching. They are generally of the form (*VERB) or (*VERB:NAME). Some

 verbs take either form, and may behave differently depending on whether

 or not a name argument is present. The names are not required to be

 unique within the pattern.

 By default, for compatibility with Perl, a name is any sequence of Page 71/83

 characters that does not include a closing parenthesis. The name is not

 processed in any way, and it is not possible to include a closing

 parenthesis in the name. This can be changed by setting the

 PCRE2_ALT_VERBNAMES option, but the result is no longer Perl-compati?

 ble.

 When PCRE2_ALT_VERBNAMES is set, backslash processing is applied to

 verb names and only an unescaped closing parenthesis terminates the

 name. However, the only backslash items that are permitted are \Q, \E,

 and sequences such as \x{100} that define character code points. Char?

 acter type escapes such as \d are faulted.

 A closing parenthesis can be included in a name either as \) or between

 \Q and \E. In addition to backslash processing, if the PCRE2_EXTENDED

 or PCRE2_EXTENDED_MORE option is also set, unescaped whitespace in verb

 names is skipped, and #-comments are recognized, exactly as in the rest

 of the pattern. PCRE2_EXTENDED and PCRE2_EXTENDED_MORE do not affect

 verb names unless PCRE2_ALT_VERBNAMES is also set.

 The maximum length of a name is 255 in the 8-bit library and 65535 in

 the 16-bit and 32-bit libraries. If the name is empty, that is, if the

 closing parenthesis immediately follows the colon, the effect is as if

 the colon were not there. Any number of these verbs may occur in a pat?

 tern. Except for (*ACCEPT), they may not be quantified.

 Since these verbs are specifically related to backtracking, most of

 them can be used only when the pattern is to be matched using the tra?

 ditional matching function, because that uses a backtracking algorithm.

 With the exception of (*FAIL), which behaves like a failing negative

 assertion, the backtracking control verbs cause an error if encountered

 by the DFA matching function.

 The behaviour of these verbs in repeated groups, assertions, and in

 capture groups called as subroutines (whether or not recursively) is

 documented below.

 Optimizations that affect backtracking verbs

 PCRE2 contains some optimizations that are used to speed up matching by

 running some checks at the start of each match attempt. For example, it Page 72/83

 may know the minimum length of matching subject, or that a particular

 character must be present. When one of these optimizations bypasses the

 running of a match, any included backtracking verbs will not, of

 course, be processed. You can suppress the start-of-match optimizations

 by setting the PCRE2_NO_START_OPTIMIZE option when calling pcre2_com?

 pile(), or by starting the pattern with (*NO_START_OPT). There is more

 discussion of this option in the section entitled "Compiling a pattern"

 in the pcre2api documentation.

 Experiments with Perl suggest that it too has similar optimizations,

 and like PCRE2, turning them off can change the result of a match.

 Verbs that act immediately

 The following verbs act as soon as they are encountered.

 (*ACCEPT) or (*ACCEPT:NAME)

 This verb causes the match to end successfully, skipping the remainder

 of the pattern. However, when it is inside a capture group that is

 called as a subroutine, only that group is ended successfully. Matching

 then continues at the outer level. If (*ACCEPT) in triggered in a posi?

 tive assertion, the assertion succeeds; in a negative assertion, the

 assertion fails.

 If (*ACCEPT) is inside capturing parentheses, the data so far is cap?

 tured. For example:

 A((?:A|B(*ACCEPT)|C)D)

 This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap?

 tured by the outer parentheses.

 (*ACCEPT) is the only backtracking verb that is allowed to be quanti?

 fied because an ungreedy quantification with a minimum of zero acts

 only when a backtrack happens. Consider, for example,

 (A(*ACCEPT)??B)C

 where A, B, and C may be complex expressions. After matching "A", the

 matcher processes "BC"; if that fails, causing a backtrack, (*ACCEPT)

 is triggered and the match succeeds. In both cases, all but C is cap?

 tured. Whereas (*COMMIT) (see below) means "fail on backtrack", a re?

 peated (*ACCEPT) of this type means "succeed on backtrack". Page 73/83

 Warning: (*ACCEPT) should not be used within a script run group, be?

 cause it causes an immediate exit from the group, bypassing the script

 run checking.

 (*FAIL) or (*FAIL:NAME)

 This verb causes a matching failure, forcing backtracking to occur. It

 may be abbreviated to (*F). It is equivalent to (?!) but easier to

 read. The Perl documentation notes that it is probably useful only when

 combined with (?{}) or (??{}). Those are, of course, Perl features that

 are not present in PCRE2. The nearest equivalent is the callout fea?

 ture, as for example in this pattern:

 a+(?C)(*FAIL)

 A match with the string "aaaa" always fails, but the callout is taken

 before each backtrack happens (in this example, 10 times).

 (*ACCEPT:NAME) and (*FAIL:NAME) behave the same as (*MARK:NAME)(*AC?

 CEPT) and (*MARK:NAME)(*FAIL), respectively, that is, a (*MARK) is

 recorded just before the verb acts.

 Recording which path was taken

 There is one verb whose main purpose is to track how a match was ar?

 rived at, though it also has a secondary use in conjunction with ad?

 vancing the match starting point (see (*SKIP) below).

 (*MARK:NAME) or (*:NAME)

 A name is always required with this verb. For all the other backtrack?

 ing control verbs, a NAME argument is optional.

 When a match succeeds, the name of the last-encountered mark name on

 the matching path is passed back to the caller as described in the sec?

 tion entitled "Other information about the match" in the pcre2api docu?

 mentation. This applies to all instances of (*MARK) and other verbs,

 including those inside assertions and atomic groups. However, there are

 differences in those cases when (*MARK) is used in conjunction with

 (*SKIP) as described below.

 The mark name that was last encountered on the matching path is passed

 back. A verb without a NAME argument is ignored for this purpose. Here

 is an example of pcre2test output, where the "mark" modifier requests Page 74/83

 the retrieval and outputting of (*MARK) data:

 re> /X(*MARK:A)Y|X(*MARK:B)Z/mark

 data> XY

 0: XY

 MK: A

 XZ

 0: XZ

 MK: B

 The (*MARK) name is tagged with "MK:" in this output, and in this exam?

 ple it indicates which of the two alternatives matched. This is a more

 efficient way of obtaining this information than putting each alterna?

 tive in its own capturing parentheses.

 If a verb with a name is encountered in a positive assertion that is

 true, the name is recorded and passed back if it is the last-encoun?

 tered. This does not happen for negative assertions or failing positive

 assertions.

 After a partial match or a failed match, the last encountered name in

 the entire match process is returned. For example:

 re> /X(*MARK:A)Y|X(*MARK:B)Z/mark

 data> XP

 No match, mark = B

 Note that in this unanchored example the mark is retained from the

 match attempt that started at the letter "X" in the subject. Subsequent

 match attempts starting at "P" and then with an empty string do not get

 as far as the (*MARK) item, but nevertheless do not reset it.

 If you are interested in (*MARK) values after failed matches, you

 should probably set the PCRE2_NO_START_OPTIMIZE option (see above) to

 ensure that the match is always attempted.

 Verbs that act after backtracking

 The following verbs do nothing when they are encountered. Matching con?

 tinues with what follows, but if there is a subsequent match failure,

 causing a backtrack to the verb, a failure is forced. That is, back?

 tracking cannot pass to the left of the verb. However, when one of Page 75/83

 these verbs appears inside an atomic group or in a lookaround assertion

 that is true, its effect is confined to that group, because once the

 group has been matched, there is never any backtracking into it. Back?

 tracking from beyond an assertion or an atomic group ignores the entire

 group, and seeks a preceding backtracking point.

 These verbs differ in exactly what kind of failure occurs when back?

 tracking reaches them. The behaviour described below is what happens

 when the verb is not in a subroutine or an assertion. Subsequent sec?

 tions cover these special cases.

 (*COMMIT) or (*COMMIT:NAME)

 This verb causes the whole match to fail outright if there is a later

 matching failure that causes backtracking to reach it. Even if the pat?

 tern is unanchored, no further attempts to find a match by advancing

 the starting point take place. If (*COMMIT) is the only backtracking

 verb that is encountered, once it has been passed pcre2_match() is com?

 mitted to finding a match at the current starting point, or not at all.

 For example:

 a+(*COMMIT)b

 This matches "xxaab" but not "aacaab". It can be thought of as a kind

 of dynamic anchor, or "I've started, so I must finish."

 The behaviour of (*COMMIT:NAME) is not the same as (*MARK:NAME)(*COM?

 MIT). It is like (*MARK:NAME) in that the name is remembered for pass?

 ing back to the caller. However, (*SKIP:NAME) searches only for names

 that are set with (*MARK), ignoring those set by any of the other back?

 tracking verbs.

 If there is more than one backtracking verb in a pattern, a different

 one that follows (*COMMIT) may be triggered first, so merely passing

 (*COMMIT) during a match does not always guarantee that a match must be

 at this starting point.

 Note that (*COMMIT) at the start of a pattern is not the same as an an?

 chor, unless PCRE2's start-of-match optimizations are turned off, as

 shown in this output from pcre2test:

 re> /(*COMMIT)abc/ Page 76/83

 data> xyzabc

 0: abc

 data>

 re> /(*COMMIT)abc/no_start_optimize

 data> xyzabc

 No match

 For the first pattern, PCRE2 knows that any match must start with "a",

 so the optimization skips along the subject to "a" before applying the

 pattern to the first set of data. The match attempt then succeeds. The

 second pattern disables the optimization that skips along to the first

 character. The pattern is now applied starting at "x", and so the

 (*COMMIT) causes the match to fail without trying any other starting

 points.

 (*PRUNE) or (*PRUNE:NAME)

 This verb causes the match to fail at the current starting position in

 the subject if there is a later matching failure that causes backtrack?

 ing to reach it. If the pattern is unanchored, the normal "bumpalong"

 advance to the next starting character then happens. Backtracking can

 occur as usual to the left of (*PRUNE), before it is reached, or when

 matching to the right of (*PRUNE), but if there is no match to the

 right, backtracking cannot cross (*PRUNE). In simple cases, the use of

 (*PRUNE) is just an alternative to an atomic group or possessive quan?

 tifier, but there are some uses of (*PRUNE) that cannot be expressed in

 any other way. In an anchored pattern (*PRUNE) has the same effect as

 (*COMMIT).

 The behaviour of (*PRUNE:NAME) is not the same as (*MARK:NAME)(*PRUNE).

 It is like (*MARK:NAME) in that the name is remembered for passing back

 to the caller. However, (*SKIP:NAME) searches only for names set with

 (*MARK), ignoring those set by other backtracking verbs.

 (*SKIP)

 This verb, when given without a name, is like (*PRUNE), except that if

 the pattern is unanchored, the "bumpalong" advance is not to the next

 character, but to the position in the subject where (*SKIP) was encoun? Page 77/83

 tered. (*SKIP) signifies that whatever text was matched leading up to

 it cannot be part of a successful match if there is a later mismatch.

 Consider:

 a+(*SKIP)b

 If the subject is "aaaac...", after the first match attempt fails

 (starting at the first character in the string), the starting point

 skips on to start the next attempt at "c". Note that a possessive quan?

 tifier does not have the same effect as this example; although it would

 suppress backtracking during the first match attempt, the second at?

 tempt would start at the second character instead of skipping on to

 "c".

 If (*SKIP) is used to specify a new starting position that is the same

 as the starting position of the current match, or (by being inside a

 lookbehind) earlier, the position specified by (*SKIP) is ignored, and

 instead the normal "bumpalong" occurs.

 (*SKIP:NAME)

 When (*SKIP) has an associated name, its behaviour is modified. When

 such a (*SKIP) is triggered, the previous path through the pattern is

 searched for the most recent (*MARK) that has the same name. If one is

 found, the "bumpalong" advance is to the subject position that corre?

 sponds to that (*MARK) instead of to where (*SKIP) was encountered. If

 no (*MARK) with a matching name is found, the (*SKIP) is ignored.

 The search for a (*MARK) name uses the normal backtracking mechanism,

 which means that it does not see (*MARK) settings that are inside

 atomic groups or assertions, because they are never re-entered by back?

 tracking. Compare the following pcre2test examples:

 re> /a(?>(*MARK:X))(*SKIP:X)(*F)|(.)/

 data: abc

 0: a

 1: a

 data:

 re> /a(?:(*MARK:X))(*SKIP:X)(*F)|(.)/

 data: abc Page 78/83

 0: b

 1: b

 In the first example, the (*MARK) setting is in an atomic group, so it

 is not seen when (*SKIP:X) triggers, causing the (*SKIP) to be ignored.

 This allows the second branch of the pattern to be tried at the first

 character position. In the second example, the (*MARK) setting is not

 in an atomic group. This allows (*SKIP:X) to find the (*MARK) when it

 backtracks, and this causes a new matching attempt to start at the sec?

 ond character. This time, the (*MARK) is never seen because "a" does

 not match "b", so the matcher immediately jumps to the second branch of

 the pattern.

 Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It

 ignores names that are set by other backtracking verbs.

 (*THEN) or (*THEN:NAME)

 This verb causes a skip to the next innermost alternative when back?

 tracking reaches it. That is, it cancels any further backtracking

 within the current alternative. Its name comes from the observation

 that it can be used for a pattern-based if-then-else block:

 (COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

 If the COND1 pattern matches, FOO is tried (and possibly further items

 after the end of the group if FOO succeeds); on failure, the matcher

 skips to the second alternative and tries COND2, without backtracking

 into COND1. If that succeeds and BAR fails, COND3 is tried. If subse?

 quently BAZ fails, there are no more alternatives, so there is a back?

 track to whatever came before the entire group. If (*THEN) is not in?

 side an alternation, it acts like (*PRUNE).

 The behaviour of (*THEN:NAME) is not the same as (*MARK:NAME)(*THEN).

 It is like (*MARK:NAME) in that the name is remembered for passing back

 to the caller. However, (*SKIP:NAME) searches only for names set with

 (*MARK), ignoring those set by other backtracking verbs.

 A group that does not contain a | character is just a part of the en?

 closing alternative; it is not a nested alternation with only one al?

 ternative. The effect of (*THEN) extends beyond such a group to the en? Page 79/83

 closing alternative. Consider this pattern, where A, B, etc. are com?

 plex pattern fragments that do not contain any | characters at this

 level:

 A (B(*THEN)C) | D

 If A and B are matched, but there is a failure in C, matching does not

 backtrack into A; instead it moves to the next alternative, that is, D.

 However, if the group containing (*THEN) is given an alternative, it

 behaves differently:

 A (B(*THEN)C | (*FAIL)) | D

 The effect of (*THEN) is now confined to the inner group. After a fail?

 ure in C, matching moves to (*FAIL), which causes the whole group to

 fail because there are no more alternatives to try. In this case,

 matching does backtrack into A.

 Note that a conditional group is not considered as having two alterna?

 tives, because only one is ever used. In other words, the | character

 in a conditional group has a different meaning. Ignoring white space,

 consider:

 ^.*? (?(?=a) a | b(*THEN)c)

 If the subject is "ba", this pattern does not match. Because .*? is un?

 greedy, it initially matches zero characters. The condition (?=a) then

 fails, the character "b" is matched, but "c" is not. At this point,

 matching does not backtrack to .*? as might perhaps be expected from

 the presence of the | character. The conditional group is part of the

 single alternative that comprises the whole pattern, and so the match

 fails. (If there was a backtrack into .*?, allowing it to match "b",

 the match would succeed.)

 The verbs just described provide four different "strengths" of control

 when subsequent matching fails. (*THEN) is the weakest, carrying on the

 match at the next alternative. (*PRUNE) comes next, failing the match

 at the current starting position, but allowing an advance to the next

 character (for an unanchored pattern). (*SKIP) is similar, except that

 the advance may be more than one character. (*COMMIT) is the strongest,

 causing the entire match to fail. Page 80/83

 More than one backtracking verb

 If more than one backtracking verb is present in a pattern, the one

 that is backtracked onto first acts. For example, consider this pat?

 tern, where A, B, etc. are complex pattern fragments:

 (A(*COMMIT)B(*THEN)C|ABD)

 If A matches but B fails, the backtrack to (*COMMIT) causes the entire

 match to fail. However, if A and B match, but C fails, the backtrack to

 (*THEN) causes the next alternative (ABD) to be tried. This behaviour

 is consistent, but is not always the same as Perl's. It means that if

 two or more backtracking verbs appear in succession, all the the last

 of them has no effect. Consider this example:

 ...(*COMMIT)(*PRUNE)...

 If there is a matching failure to the right, backtracking onto (*PRUNE)

 causes it to be triggered, and its action is taken. There can never be

 a backtrack onto (*COMMIT).

 Backtracking verbs in repeated groups

 PCRE2 sometimes differs from Perl in its handling of backtracking verbs

 in repeated groups. For example, consider:

 /(a(*COMMIT)b)+ac/

 If the subject is "abac", Perl matches unless its optimizations are

 disabled, but PCRE2 always fails because the (*COMMIT) in the second

 repeat of the group acts.

 Backtracking verbs in assertions

 (*FAIL) in any assertion has its normal effect: it forces an immediate

 backtrack. The behaviour of the other backtracking verbs depends on

 whether or not the assertion is standalone or acting as the condition

 in a conditional group.

 (*ACCEPT) in a standalone positive assertion causes the assertion to

 succeed without any further processing; captured strings and a mark

 name (if set) are retained. In a standalone negative assertion, (*AC?

 CEPT) causes the assertion to fail without any further processing; cap?

 tured substrings and any mark name are discarded.

 If the assertion is a condition, (*ACCEPT) causes the condition to be Page 81/83

 true for a positive assertion and false for a negative one; captured

 substrings are retained in both cases.

 The remaining verbs act only when a later failure causes a backtrack to

 reach them. This means that, for the Perl-compatible assertions, their

 effect is confined to the assertion, because Perl lookaround assertions

 are atomic. A backtrack that occurs after such an assertion is complete

 does not jump back into the assertion. Note in particular that a

 (*MARK) name that is set in an assertion is not "seen" by an instance

 of (*SKIP:NAME) later in the pattern.

 PCRE2 now supports non-atomic positive assertions, as described in the

 section entitled "Non-atomic assertions" above. These assertions must

 be standalone (not used as conditions). They are not Perl-compatible.

 For these assertions, a later backtrack does jump back into the asser?

 tion, and therefore verbs such as (*COMMIT) can be triggered by back?

 tracks from later in the pattern.

 The effect of (*THEN) is not allowed to escape beyond an assertion. If

 there are no more branches to try, (*THEN) causes a positive assertion

 to be false, and a negative assertion to be true.

 The other backtracking verbs are not treated specially if they appear

 in a standalone positive assertion. In a conditional positive asser?

 tion, backtracking (from within the assertion) into (*COMMIT), (*SKIP),

 or (*PRUNE) causes the condition to be false. However, for both stand?

 alone and conditional negative assertions, backtracking into (*COMMIT),

 (*SKIP), or (*PRUNE) causes the assertion to be true, without consider?

 ing any further alternative branches.

 Backtracking verbs in subroutines

 These behaviours occur whether or not the group is called recursively.

 (*ACCEPT) in a group called as a subroutine causes the subroutine match

 to succeed without any further processing. Matching then continues af?

 ter the subroutine call. Perl documents this behaviour. Perl's treat?

 ment of the other verbs in subroutines is different in some cases.

 (*FAIL) in a group called as a subroutine has its normal effect: it

 forces an immediate backtrack. Page 82/83

 (*COMMIT), (*SKIP), and (*PRUNE) cause the subroutine match to fail

 when triggered by being backtracked to in a group called as a subrou?

 tine. There is then a backtrack at the outer level.

 (*THEN), when triggered, skips to the next alternative in the innermost

 enclosing group that has alternatives (its normal behaviour). However,

 if there is no such group within the subroutine's group, the subroutine

 match fails and there is a backtrack at the outer level.

SEE ALSO

 pcre2api(3), pcre2callout(3), pcre2matching(3), pcre2syntax(3),

 pcre2(3).

AUTHOR

 Philip Hazel

 Retired from University Computing Service

 Cambridge, England.

REVISION

 Last updated: 12 January 2022

 Copyright (c) 1997-2022 University of Cambridge.

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Page 83/83

