
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pcre2.3' command

$ man pcre2.3

PCRE2(3) Library Functions Manual PCRE2(3)

NAME

 PCRE2 - Perl-compatible regular expressions (revised API)

INTRODUCTION

 PCRE2 is the name used for a revised API for the PCRE library, which is

 a set of functions, written in C, that implement regular expression

 pattern matching using the same syntax and semantics as Perl, with just

 a few differences. After nearly two decades, the limitations of the

 original API were making development increasingly difficult. The new

 API is more extensible, and it was simplified by abolishing the sepa?

 rate "study" optimizing function; in PCRE2, patterns are automatically

 optimized where possible. Since forking from PCRE1, the code has been

 extensively refactored and new features introduced. The old library is

 now obsolete and is no longer maintained.

 As well as Perl-style regular expression patterns, some features that

 appeared in Python and the original PCRE before they appeared in Perl

 are available using the Python syntax. There is also some support for

 one or two .NET and Oniguruma syntax items, and there are options for

 requesting some minor changes that give better ECMAScript (aka Java?

 Script) compatibility.

 The source code for PCRE2 can be compiled to support strings of 8-bit,

 16-bit, or 32-bit code units, which means that up to three separate li?

 braries may be installed, one for each code unit size. The size of code Page 1/5

 unit is not related to the bit size of the underlying hardware. In a

 64-bit environment that also supports 32-bit applications, versions of

 PCRE2 that are compiled in both 64-bit and 32-bit modes may be needed.

 The original work to extend PCRE to 16-bit and 32-bit code units was

 done by Zoltan Herczeg and Christian Persch, respectively. In all three

 cases, strings can be interpreted either as one character per code

 unit, or as UTF-encoded Unicode, with support for Unicode general cate?

 gory properties. Unicode support is optional at build time (but is the

 default). However, processing strings as UTF code units must be enabled

 explicitly at run time. The version of Unicode in use can be discovered

 by running

 pcre2test -C

 The three libraries contain identical sets of functions, with names

 ending in _8, _16, or _32, respectively (for example, pcre2_com?

 pile_8()). However, by defining PCRE2_CODE_UNIT_WIDTH to be 8, 16, or

 32, a program that uses just one code unit width can be written using

 generic names such as pcre2_compile(), and the documentation is written

 assuming that this is the case.

 In addition to the Perl-compatible matching function, PCRE2 contains an

 alternative function that matches the same compiled patterns in a dif?

 ferent way. In certain circumstances, the alternative function has some

 advantages. For a discussion of the two matching algorithms, see the

 pcre2matching page.

 Details of exactly which Perl regular expression features are and are

 not supported by PCRE2 are given in separate documents. See the

 pcre2pattern and pcre2compat pages. There is a syntax summary in the

 pcre2syntax page.

 Some features of PCRE2 can be included, excluded, or changed when the

 library is built. The pcre2_config() function makes it possible for a

 client to discover which features are available. The features them?

 selves are described in the pcre2build page. Documentation about build?

 ing PCRE2 for various operating systems can be found in the README and

 NON-AUTOTOOLS_BUILD files in the source distribution. Page 2/5

 The libraries contains a number of undocumented internal functions and

 data tables that are used by more than one of the exported external

 functions, but which are not intended for use by external callers.

 Their names all begin with "_pcre2", which hopefully will not provoke

 any name clashes. In some environments, it is possible to control which

 external symbols are exported when a shared library is built, and in

 these cases the undocumented symbols are not exported.

SECURITY CONSIDERATIONS

 If you are using PCRE2 in a non-UTF application that permits users to

 supply arbitrary patterns for compilation, you should be aware of a

 feature that allows users to turn on UTF support from within a pattern.

 For example, an 8-bit pattern that begins with "(*UTF)" turns on UTF-8

 mode, which interprets patterns and subjects as strings of UTF-8 code

 units instead of individual 8-bit characters. This causes both the pat?

 tern and any data against which it is matched to be checked for UTF-8

 validity. If the data string is very long, such a check might use suf?

 ficiently many resources as to cause your application to lose perfor?

 mance.

 One way of guarding against this possibility is to use the pcre2_pat?

 tern_info() function to check the compiled pattern's options for

 PCRE2_UTF. Alternatively, you can set the PCRE2_NEVER_UTF option when

 calling pcre2_compile(). This causes a compile time error if the pat?

 tern contains a UTF-setting sequence.

 The use of Unicode properties for character types such as \d can also

 be enabled from within the pattern, by specifying "(*UCP)". This fea?

 ture can be disallowed by setting the PCRE2_NEVER_UCP option.

 If your application is one that supports UTF, be aware that validity

 checking can take time. If the same data string is to be matched many

 times, you can use the PCRE2_NO_UTF_CHECK option for the second and

 subsequent matches to avoid running redundant checks.

 The use of the \C escape sequence in a UTF-8 or UTF-16 pattern can lead

 to problems, because it may leave the current matching point in the

 middle of a multi-code-unit character. The PCRE2_NEVER_BACKSLASH_C op? Page 3/5

 tion can be used by an application to lock out the use of \C, causing a

 compile-time error if it is encountered. It is also possible to build

 PCRE2 with the use of \C permanently disabled.

 Another way that performance can be hit is by running a pattern that

 has a very large search tree against a string that will never match.

 Nested unlimited repeats in a pattern are a common example. PCRE2 pro?

 vides some protection against this: see the pcre2_set_match_limit()

 function in the pcre2api page. There is a similar function called

 pcre2_set_depth_limit() that can be used to restrict the amount of mem?

 ory that is used.

USER DOCUMENTATION

 The user documentation for PCRE2 comprises a number of different sec?

 tions. In the "man" format, each of these is a separate "man page". In

 the HTML format, each is a separate page, linked from the index page.

 In the plain text format, the descriptions of the pcre2grep and

 pcre2test programs are in files called pcre2grep.txt and pcre2test.txt,

 respectively. The remaining sections, except for the pcre2demo section

 (which is a program listing), and the short pages for individual func?

 tions, are concatenated in pcre2.txt, for ease of searching. The sec?

 tions are as follows:

 pcre2 this document

 pcre2-config show PCRE2 installation configuration information

 pcre2api details of PCRE2's native C API

 pcre2build building PCRE2

 pcre2callout details of the pattern callout feature

 pcre2compat discussion of Perl compatibility

 pcre2convert details of pattern conversion functions

 pcre2demo a demonstration C program that uses PCRE2

 pcre2grep description of the pcre2grep command (8-bit only)

 pcre2jit discussion of just-in-time optimization support

 pcre2limits details of size and other limits

 pcre2matching discussion of the two matching algorithms

 pcre2partial details of the partial matching facility Page 4/5

 pcre2pattern syntax and semantics of supported regular

 expression patterns

 pcre2perform discussion of performance issues

 pcre2posix the POSIX-compatible C API for the 8-bit library

 pcre2sample discussion of the pcre2demo program

 pcre2serialize details of pattern serialization

 pcre2syntax quick syntax reference

 pcre2test description of the pcre2test command

 pcre2unicode discussion of Unicode and UTF support

 In the "man" and HTML formats, there is also a short page for each C

 library function, listing its arguments and results.

AUTHOR

 Philip Hazel

 Retired from University Computing Service

 Cambridge, England.

 Putting an actual email address here is a spam magnet. If you want to

 email me, use my two names separated by a dot at gmail.com.

REVISION

 Last updated: 27 August 2021

 Copyright (c) 1997-2021 University of Cambridge.

PCRE2 10.38 27 August 2021 PCRE2(3)

Page 5/5

