
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'path_resolution.7' command

$ man path_resolution.7

PATH_RESOLUTION(7) Linux Programmer's Manual PATH_RESOLUTION(7)

NAME

 path_resolution - how a pathname is resolved to a file

DESCRIPTION

 Some UNIX/Linux system calls have as parameter one or more filenames.

 A filename (or pathname) is resolved as follows.

 Step 1: start of the resolution process

 If the pathname starts with the '/' character, the starting lookup di?

 rectory is the root directory of the calling process. A process inher?

 its its root directory from its parent. Usually this will be the root

 directory of the file hierarchy. A process may get a different root

 directory by use of the chroot(2) system call, or may temporarily use a

 different root directory by using openat2(2) with the RESOLVE_IN_ROOT

 flag set.

 A process may get an entirely private mount namespace in case it?or one

 of its ancestors?was started by an invocation of the clone(2) system

 call that had the CLONE_NEWNS flag set. This handles the '/' part of

 the pathname.

 If the pathname does not start with the '/' character, the starting

 lookup directory of the resolution process is the current working di?

 rectory of the process ? or in the case of openat(2)-style system

 calls, the dfd argument (or the current working directory if AT_FDCWD

 is passed as the dfd argument). The current working directory is in? Page 1/5

 herited from the parent, and can be changed by use of the chdir(2) sys?

 tem call.)

 Pathnames starting with a '/' character are called absolute pathnames.

 Pathnames not starting with a '/' are called relative pathnames.

 Step 2: walk along the path

 Set the current lookup directory to the starting lookup directory.

 Now, for each nonfinal component of the pathname, where a component is

 a substring delimited by '/' characters, this component is looked up in

 the current lookup directory.

 If the process does not have search permission on the current lookup

 directory, an EACCES error is returned ("Permission denied").

 If the component is not found, an ENOENT error is returned ("No such

 file or directory").

 If the component is found, but is neither a directory nor a symbolic

 link, an ENOTDIR error is returned ("Not a directory").

 If the component is found and is a directory, we set the current lookup

 directory to that directory, and go to the next component.

 If the component is found and is a symbolic link (symlink), we first

 resolve this symbolic link (with the current lookup directory as start?

 ing lookup directory). Upon error, that error is returned. If the re?

 sult is not a directory, an ENOTDIR error is returned. If the resolu?

 tion of the symbolic link is successful and returns a directory, we set

 the current lookup directory to that directory, and go to the next com?

 ponent. Note that the resolution process here can involve recursion if

 the prefix ('dirname') component of a pathname contains a filename that

 is a symbolic link that resolves to a directory (where the prefix com?

 ponent of that directory may contain a symbolic link, and so on). In

 order to protect the kernel against stack overflow, and also to protect

 against denial of service, there are limits on the maximum recursion

 depth, and on the maximum number of symbolic links followed. An ELOOP

 error is returned when the maximum is exceeded ("Too many levels of

 symbolic links").

 As currently implemented on Linux, the maximum number of symbolic links Page 2/5

 that will be followed while resolving a pathname is 40. In kernels be?

 fore 2.6.18, the limit on the recursion depth was 5. Starting with

 Linux 2.6.18, this limit was raised to 8. In Linux 4.2, the kernel's

 pathname-resolution code was reworked to eliminate the use of recur?

 sion, so that the only limit that remains is the maximum of 40 resolu?

 tions for the entire pathname.

 The resolution of symbolic links during this stage can be blocked by

 using openat2(2), with the RESOLVE_NO_SYMLINKS flag set.

 Step 3: find the final entry

 The lookup of the final component of the pathname goes just like that

 of all other components, as described in the previous step, with two

 differences: (i) the final component need not be a directory (at least

 as far as the path resolution process is concerned?it may have to be a

 directory, or a nondirectory, because of the requirements of the spe?

 cific system call), and (ii) it is not necessarily an error if the com?

 ponent is not found?maybe we are just creating it. The details on the

 treatment of the final entry are described in the manual pages of the

 specific system calls.

 . and ..

 By convention, every directory has the entries "." and "..", which re?

 fer to the directory itself and to its parent directory, respectively.

 The path resolution process will assume that these entries have their

 conventional meanings, regardless of whether they are actually present

 in the physical filesystem.

 One cannot walk up past the root: "/.." is the same as "/".

 Mount points

 After a "mount dev path" command, the pathname "path" refers to the

 root of the filesystem hierarchy on the device "dev", and no longer to

 whatever it referred to earlier.

 One can walk out of a mounted filesystem: "path/.." refers to the par?

 ent directory of "path", outside of the filesystem hierarchy on "dev".

 Traversal of mount points can be blocked by using openat2(2), with the

 RESOLVE_NO_XDEV flag set (though note that this also restricts bind Page 3/5

 mount traversal).

 Trailing slashes

 If a pathname ends in a '/', that forces resolution of the preceding

 component as in Step 2: it has to exist and resolve to a directory.

 Otherwise, a trailing '/' is ignored. (Or, equivalently, a pathname

 with a trailing '/' is equivalent to the pathname obtained by appending

 '.' to it.)

 Final symlink

 If the last component of a pathname is a symbolic link, then it depends

 on the system call whether the file referred to will be the symbolic

 link or the result of path resolution on its contents. For example,

 the system call lstat(2) will operate on the symlink, while stat(2) op?

 erates on the file pointed to by the symlink.

 Length limit

 There is a maximum length for pathnames. If the pathname (or some in?

 termediate pathname obtained while resolving symbolic links) is too

 long, an ENAMETOOLONG error is returned ("Filename too long").

 Empty pathname

 In the original UNIX, the empty pathname referred to the current direc?

 tory. Nowadays POSIX decrees that an empty pathname must not be re?

 solved successfully. Linux returns ENOENT in this case.

 Permissions

 The permission bits of a file consist of three groups of three bits;

 see chmod(1) and stat(2). The first group of three is used when the

 effective user ID of the calling process equals the owner ID of the

 file. The second group of three is used when the group ID of the file

 either equals the effective group ID of the calling process, or is one

 of the supplementary group IDs of the calling process (as set by set?

 groups(2)). When neither holds, the third group is used.

 Of the three bits used, the first bit determines read permission, the

 second write permission, and the last execute permission in case of or?

 dinary files, or search permission in case of directories.

 Linux uses the fsuid instead of the effective user ID in permission Page 4/5

 checks. Ordinarily the fsuid will equal the effective user ID, but the

 fsuid can be changed by the system call setfsuid(2).

 (Here "fsuid" stands for something like "filesystem user ID". The con?

 cept was required for the implementation of a user space NFS server at

 a time when processes could send a signal to a process with the same

 effective user ID. It is obsolete now. Nobody should use setf?

 suid(2).)

 Similarly, Linux uses the fsgid ("filesystem group ID") instead of the

 effective group ID. See setfsgid(2).

 Bypassing permission checks: superuser and capabilities

 On a traditional UNIX system, the superuser (root, user ID 0) is all-

 powerful, and bypasses all permissions restrictions when accessing

 files.

 On Linux, superuser privileges are divided into capabilities (see capa?

 bilities(7)). Two capabilities are relevant for file permissions

 checks: CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH. (A process has these

 capabilities if its fsuid is 0.)

 The CAP_DAC_OVERRIDE capability overrides all permission checking, but

 grants execute permission only when at least one of the file's three

 execute permission bits is set.

 The CAP_DAC_READ_SEARCH capability grants read and search permission on

 directories, and read permission on ordinary files.

SEE ALSO

 readlink(2), capabilities(7), credentials(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 PATH_RESOLUTION(7)

Page 5/5

