
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'package-lock-json.5' command

$ man package-lock-json.5

PACKAGE-LOCK.JSON(5) PACKAGE-LOCK.JSON(5)

NAME

 package-lock.json - A manifestation of the manifest

 Description

 package-lock.json is automatically generated for any operations where

 npm modifies either the node_modules tree, or package.json. It de?

 scribes the exact tree that was generated, such that subsequent in?

 stalls are able to generate identical trees, regardless of intermediate

 dependency updates.

 This file is intended to be committed into source repositories, and

 serves various purposes:

 ? Describe a single representation of a dependency tree such that team?

 mates, deployments, and continuous integration are guaranteed to in?

 stall exactly the same dependencies.

 ? Provide a facility for users to "time-travel" to previous states of

 node_modules without having to commit the directory itself.

 ? Facilitate greater visibility of tree changes through readable source

 control diffs.

 ? Optimize the installation process by allowing npm to skip repeated

 metadata resolutions for previously-installed packages.

 ? As of npm v7, lockfiles include enough information to gain a complete

 picture of the package tree, reducing the need to read package.json

 files, and allowing for significant performance improvements. Page 1/6

 package-lock.json vs npm-shrinkwrap.json

 Both of these files have the same format, and perform similar functions

 in the root of a project.

 The difference is that package-lock.json cannot be published, and it

 will be ignored if found in any place other than the root project.

 In contrast, npm-shrinkwrap.json /configuring-npm/npm-shrinkwrap-json

 allows publication, and defines the dependency tree from the point en?

 countered. This is not recommended unless deploying a CLI tool or oth?

 erwise using the publication process for producing production packages.

 If both package-lock.json and npm-shrinkwrap.json are present in the

 root of a project, npm-shrinkwrap.json will take precedence and pack?

 age-lock.json will be ignored.

 Hidden Lockfiles

 In order to avoid processing the node_modules folder repeatedly, npm as

 of v7 uses a "hidden" lockfile present in node_modules/.pack?

 age-lock.json. This contains information about the tree, and is used

 in lieu of reading the entire node_modules hierarchy provided that the

 following conditions are met:

 ? All package folders it references exist in the node_modules hierar?

 chy.

 ? No package folders exist in the node_modules hierarchy that are not

 listed in the lockfile.

 ? The modified time of the file is at least as recent as all of the

 package folders it references.

 That is, the hidden lockfile will only be relevant if it was created as

 part of the most recent update to the package tree. If another CLI mu?

 tates the tree in any way, this will be detected, and the hidden lock?

 file will be ignored.

 Note that it is possible to manually change the contents of a package

 in such a way that the modified time of the package folder is unaf?

 fected. For example, if you add a file to node_modules/foo/lib/bar.js,

 then the modified time on node_modules/foo will not reflect this

 change. If you are manually editing files in node_modules, it is gen? Page 2/6

 erally best to delete the file at node_modules/.package-lock.json.

 As the hidden lockfile is ignored by older npm versions, it does not

 contain the backwards compatibility affordances present in "normal"

 lockfiles. That is, it is lockfileVersion: 3, rather than lockfileVer?

 sion: 2.

 Handling Old Lockfiles

 When npm detects a lockfile from npm v6 or before during the package

 installation process, it is automatically updated to fetch missing in?

 formation from either the node_modules tree or (in the case of empty

 node_modules trees or very old lockfile formats) the npm registry.

 File Format

 name

 The name of the package this is a package-lock for. This will match

 what's in package.json.

 version

 The version of the package this is a package-lock for. This will match

 what's in package.json.

 lockfileVersion

 An integer version, starting at 1 with the version number of this docu?

 ment whose semantics were used when generating this package-lock.json.

 Note that the file format changed significantly in npm v7 to track in?

 formation that would have otherwise required looking in node_modules or

 the npm registry. Lockfiles generated by npm v7 will contain lock?

 fileVersion: 2.

 ? No version provided: an "ancient" shrinkwrap file from a version of

 npm prior to npm v5.

 ? 1: The lockfile version used by npm v5 and v6.

 ? 2: The lockfile version used by npm v7, which is backwards compatible

 to v1 lockfiles.

 ? 3: The lockfile version used by npm v7, without backwards compatibil?

 ity affordances. This is used for the hidden lockfile at node_mod?

 ules/.package-lock.json, and will likely be used in a future version

 of npm, once support for npm v6 is no longer relevant. Page 3/6

 npm will always attempt to get whatever data it can out of a lockfile,

 even if it is not a version that it was designed to support.

 packages

 This is an object that maps package locations to an object containing

 the information about that package.

 The root project is typically listed with a key of "", and all other

 packages are listed with their relative paths from the root project

 folder.

 Package descriptors have the following fields:

 ? version: The version found in package.json

 ? resolved: The place where the package was actually resolved from. In

 the case of packages fetched from the registry, this will be a url to

 a tarball. In the case of git dependencies, this will be the full

 git url with commit sha. In the case of link dependencies, this will

 be the location of the link target. registry.npmjs.org is a magic

 value meaning "the currently configured registry".

 ? integrity: A sha512 or sha1 Standard Subresource Integrity

 https://w3c.github.io/webappsec/specs/subresourceintegrity/ string

 for the artifact that was unpacked in this location.

 ? link: A flag to indicate that this is a symbolic link. If this is

 present, no other fields are specified, since the link target will

 also be included in the lockfile.

 ? dev, optional, devOptional: If the package is strictly part of the

 devDependencies tree, then dev will be true. If it is strictly part

 of the optionalDependencies tree, then optional will be set. If it

 is both a dev dependency and an optional dependency of a non-dev de?

 pendency, then devOptional will be set. (An optional dependency of a

 dev dependency will have both dev and optional set.)

 ? inBundle: A flag to indicate that the package is a bundled depen?

 dency.

 ? hasInstallScript: A flag to indicate that the package has a prein?

 stall, install, or postinstall script.

 ? hasShrinkwrap: A flag to indicate that the package has an Page 4/6

 npm-shrinkwrap.json file.

 ? bin, license, engines, dependencies, optionalDependencies: fields

 from package.json

 dependencies

 Legacy data for supporting versions of npm that use lockfileVersion: 1.

 This is a mapping of package names to dependency objects. Because the

 object structure is strictly hierarchical, symbolic link dependencies

 are somewhat challenging to represent in some cases.

 npm v7 ignores this section entirely if a packages section is present,

 but does keep it up to date in order to support switching between npm

 v6 and npm v7.

 Dependency objects have the following fields:

 ? version: a specifier that varies depending on the nature of the pack?

 age, and is usable in fetching a new copy of it.

 ? bundled dependencies: Regardless of source, this is a version num?

 ber that is purely for informational purposes.

 ? registry sources: This is a version number. (eg, 1.2.3)

 ? git sources: This is a git specifier with resolved committish. (eg,

 git+https://exam?

 ple.com/foo/bar#115311855adb0789a0466714ed48a1499ffea97e)

 ? http tarball sources: This is the URL of the tarball. (eg,

 https://example.com/example-1.3.0.tgz)

 ? local tarball sources: This is the file URL of the tarball. (eg

 file:///opt/storage/example-1.3.0.tgz)

 ? local link sources: This is the file URL of the link. (eg

 file:libs/our-module)

 ? integrity: A sha512 or sha1 Standard Subresource Integrity

 https://w3c.github.io/webappsec/specs/subresourceintegrity/ string

 for the artifact that was unpacked in this location. For git depen?

 dencies, this is the commit sha.

 ? resolved: For registry sources this is path of the tarball relative

 to the registry URL. If the tarball URL isn't on the same server as

 the registry URL then this is a complete URL. registry.npmjs.org is a Page 5/6

 magic value meaning "the currently configured registry".

 ? bundled: If true, this is the bundled dependency and will be in?

 stalled by the parent module. When installing, this module will be

 extracted from the parent module during the extract phase, not in?

 stalled as a separate dependency.

 ? dev: If true then this dependency is either a development dependency

 ONLY of the top level module or a transitive dependency of one. This

 is false for dependencies that are both a development dependency of

 the top level and a transitive dependency of a non-development depen?

 dency of the top level.

 ? optional: If true then this dependency is either an optional depen?

 dency ONLY of the top level module or a transitive dependency of one.

 This is false for dependencies that are both an optional dependency

 of the top level and a transitive dependency of a non-optional depen?

 dency of the top level.

 ? requires: This is a mapping of module name to version. This is a

 list of everything this module requires, regardless of where it will

 be installed. The version should match via normal matching rules a

 dependency either in our dependencies or in a level higher than us.

 ? dependencies: The dependencies of this dependency, exactly as at the

 top level.

 See also

 ? npm help shrinkwrap

 ? npm-shrinkwrap.json /configuring-npm/npm-shrinkwrap-json

 ? package.json /configuring-npm/package-json

 ? npm help install

 February 2023 PACKAGE-LOCK.JSON(5)

Page 6/6

