
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'org.freedesktop.login1.5' command

$ man org.freedesktop.login1.5

ORG.FREEDESKTOP.LOGIN1(5) org.freedesktop.login1 ORG.FREEDESKTOP.LOGIN1(5)

NAME

 org.freedesktop.login1 - The D-Bus interface of systemd-logind

INTRODUCTION

 systemd-logind.service(8) is a system service that keeps track of user

 logins and seats.

 The daemon provides both a C library interface as well as a D-Bus

 interface. The library interface may be used to introspect and watch

 the state of user logins and seats. The bus interface provides the same

 functionality but in addition may also be used to make changes to the

 system state. For more information please consult sd-login(3).

THE MANAGER OBJECT

 The service exposes the following interfaces on the Manager object on

 the bus:

 node /org/freedesktop/login1 {

 interface org.freedesktop.login1.Manager {

 methods:

 GetSession(in s session_id,

 out o object_path);

 GetSessionByPID(in u pid,

 out o object_path);

 GetUser(in u uid,

 out o object_path); Page 1/26

 GetUserByPID(in u pid,

 out o object_path);

 GetSeat(in s seat_id,

 out o object_path);

 ListSessions(out a(susso) sessions);

 ListUsers(out a(uso) users);

 ListSeats(out a(so) seats);

 ListInhibitors(out a(ssssuu) inhibitors);

 @org.freedesktop.systemd1.Privileged("true")

 CreateSession(in u uid,

 in u pid,

 in s service,

 in s type,

 in s class,

 in s desktop,

 in s seat_id,

 in u vtnr,

 in s tty,

 in s display,

 in b remote,

 in s remote_user,

 in s remote_host,

 in a(sv) properties,

 out s session_id,

 out o object_path,

 out s runtime_path,

 out h fifo_fd,

 out u uid,

 out s seat_id,

 out u vtnr,

 out b existing);

 @org.freedesktop.systemd1.Privileged("true")

 ReleaseSession(in s session_id); Page 2/26

 ActivateSession(in s session_id);

 ActivateSessionOnSeat(in s session_id,

 in s seat_id);

 LockSession(in s session_id);

 UnlockSession(in s session_id);

 LockSessions();

 UnlockSessions();

 KillSession(in s session_id,

 in s who,

 in i signal_number);

 KillUser(in u uid,

 in i signal_number);

 TerminateSession(in s session_id);

 TerminateUser(in u uid);

 TerminateSeat(in s seat_id);

 SetUserLinger(in u uid,

 in b enable,

 in b interactive);

 AttachDevice(in s seat_id,

 in s sysfs_path,

 in b interactive);

 FlushDevices(in b interactive);

 PowerOff(in b interactive);

 PowerOffWithFlags(in t flags);

 Reboot(in b interactive);

 RebootWithFlags(in t flags);

 Halt(in b interactive);

 HaltWithFlags(in t flags);

 Suspend(in b interactive);

 SuspendWithFlags(in t flags);

 Hibernate(in b interactive);

 HibernateWithFlags(in t flags);

 HybridSleep(in b interactive); Page 3/26

 HybridSleepWithFlags(in t flags);

 SuspendThenHibernate(in b interactive);

 SuspendThenHibernateWithFlags(in t flags);

 CanPowerOff(out s result);

 CanReboot(out s result);

 CanHalt(out s result);

 CanSuspend(out s result);

 CanHibernate(out s result);

 CanHybridSleep(out s result);

 CanSuspendThenHibernate(out s result);

 ScheduleShutdown(in s type,

 in t usec);

 CancelScheduledShutdown(out b cancelled);

 Inhibit(in s what,

 in s who,

 in s why,

 in s mode,

 out h pipe_fd);

 CanRebootParameter(out s result);

 SetRebootParameter(in s parameter);

 CanRebootToFirmwareSetup(out s result);

 SetRebootToFirmwareSetup(in b enable);

 CanRebootToBootLoaderMenu(out s result);

 SetRebootToBootLoaderMenu(in t timeout);

 CanRebootToBootLoaderEntry(out s result);

 SetRebootToBootLoaderEntry(in s boot_loader_entry);

 SetWallMessage(in s wall_message,

 in b enable);

 signals:

 SessionNew(s session_id,

 o object_path);

 SessionRemoved(s session_id,

 o object_path); Page 4/26

 UserNew(u uid,

 o object_path);

 UserRemoved(u uid,

 o object_path);

 SeatNew(s seat_id,

 o object_path);

 SeatRemoved(s seat_id,

 o object_path);

 PrepareForShutdown(b start);

 PrepareForSleep(b start);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 @org.freedesktop.systemd1.Privileged("true")

 readwrite b EnableWallMessages = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 @org.freedesktop.systemd1.Privileged("true")

 readwrite s WallMessage = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u NAutoVTs = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as KillOnlyUsers = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as KillExcludeUsers = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b KillUserProcesses = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s RebootParameter = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b RebootToFirmwareSetup = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t RebootToBootLoaderMenu = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s RebootToBootLoaderEntry = '...'; Page 5/26

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as BootLoaderEntries = ['...', ...];

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 readonly s BlockInhibited = '...';

 readonly s DelayInhibited = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t InhibitDelayMaxUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t UserStopDelayUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandlePowerKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandlePowerKeyLongPress = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleRebootKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleRebootKeyLongPress = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleSuspendKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleSuspendKeyLongPress = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleHibernateKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleHibernateKeyLongPress = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitch = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitchExternalPower = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitchDocked = '...'; Page 6/26

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t HoldoffTimeoutUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s IdleAction = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t IdleActionUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b PreparingForShutdown = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b PreparingForSleep = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (st) ScheduledShutdown = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b Docked = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b LidClosed = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b OnExternalPower = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b RemoveIPC = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t RuntimeDirectorySize = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t RuntimeDirectoryInodesMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t InhibitorsMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t NCurrentInhibitors = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t SessionsMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t NCurrentSessions = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const") Page 7/26

 readonly t StopIdleSessionUSec = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 GetSession() may be used to get the session object path for the session

 with the specified ID. Similarly, GetUser() and GetSeat() get the user

 and seat objects, respectively. GetSessionByPID() and GetUserByPID()

 get the session/user object the specified PID belongs to if there is

 any.

 ListSessions() returns an array of all current sessions. The structures

 in the array consist of the following fields: session id, user id, user

 name, seat id, session object path. If a session does not have a seat

 attached, the seat id field will be an empty string.

 ListUsers() returns an array of all currently logged in users. The

 structures in the array consist of the following fields: user id, user

 name, user object path.

 ListSeats() returns an array of all currently available seats. The

 structure in the array consists of the following fields: seat id, seat

 object path.

 ListInhibitors() lists all currently active inhibitors. It returns an

 array of structures consisting of what, who, why, mode, uid (user ID),

 and pid (process ID).

 CreateSession() and ReleaseSession() may be used to open or close login

 sessions. These calls should never be invoked directly by clients.

 Creating/closing sessions is exclusively the job of PAM and its

 pam_systemd(8) module.

 ActivateSession() brings the session with the specified ID into the

 foreground. ActivateSessionOnSeat() does the same, but only if the

 seat id matches.

 LockSession() asks the session with the specified ID to activate the Page 8/26

 screen lock. UnlockSession() asks the session with the specified ID to

 remove an active screen lock, if there is any. This is implemented by

 sending out the Lock() and Unlock() signals from the respective session

 object which session managers are supposed to listen on.

 LockSessions() asks all sessions to activate their screen locks. This

 may be used to lock access to the entire machine in one action.

 Similarly, UnlockSessions() asks all sessions to deactivate their

 screen locks.

 KillSession() may be used to send a Unix signal to one or all processes

 of a session. As arguments it takes the session id, either the string

 "leader" or "all" and a signal number. If "leader" is passed only the

 session "leader" is killed. If "all" is passed all processes of the

 session are killed.

 KillUser() may be used to send a Unix signal to all processes of a

 user. As arguments it takes the user id and a signal number.

 TerminateSession(), TerminateUser(), TerminateSeat() may be used to

 forcibly terminate one specific session, all processes of a user, and

 all sessions attached to a specific seat, respectively. The session,

 user, and seat are identified by their respective IDs.

 SetUserLinger() enables or disables user lingering. If enabled, the

 runtime directory of a user is kept around and they may continue to run

 processes while logged out. If disabled, the runtime directory goes

 away as soon as they log out. SetUserLinger() expects three arguments:

 the UID, a boolean whether to enable/disable and a boolean controlling

 the polkit[1] authorization interactivity (see below). Note that the

 user linger state is persistently stored on disk.

 AttachDevice() may be used to assign a specific device to a specific

 seat. The device is identified by its /sys/ path and must be eligible

 for seat assignments. AttachDevice() takes three arguments: the seat

 id, the sysfs path, and a boolean for controlling polkit interactivity

 (see below). Device assignments are persistently stored on disk. To

 create a new seat, simply specify a previously unused seat id. For more

 information about the seat assignment logic see sd-login(3). Page 9/26

 FlushDevices() removes all explicit seat assignments for devices,

 resetting all assignments to the automatic defaults. The only argument

 it takes is the polkit interactivity boolean (see below).

 PowerOff(), Reboot(), Halt(), Suspend(), and Hibernate() result in the

 system being powered off, rebooted, halted (shut down without turning

 off power), suspended (the system state is saved to RAM and the CPU is

 turned off), or hibernated (the system state is saved to disk and the

 machine is powered down). HybridSleep() results in the system entering

 a hybrid-sleep mode, i.e. the system is both hibernated and suspended.

 SuspendThenHibernate() results in the system being suspended, then

 later woken using an RTC timer and hibernated. The only argument is the

 polkit interactivity boolean interactive (see below). The main purpose

 of these calls is that they enforce polkit policy and hence allow

 powering off/rebooting/suspending/hibernating even by unprivileged

 users. They also enforce inhibition locks for non-privileged users. UIs

 should expose these calls as the primary mechanism to

 poweroff/reboot/suspend/hibernate the machine. Methods

 PowerOffWithFlags(), RebootWithFlags(), HaltWithFlags(),

 SuspendWithFlags(), HibernateWithFlags(), HybridSleepWithFlags() and

 SuspendThenHibernateWithFlags() add flags to allow for extendability,

 defined as follows:

 #define SD_LOGIND_ROOT_CHECK_INHIBITORS (UINT64_C(1) << 0)

 #define SD_LOGIND_KEXEC_REBOOT (UINT64_C(1) << 1)

 When the flags is 0 then these methods behave just like the versions

 without flags. When SD_LOGIND_ROOT_CHECK_INHIBITORS (0x01) is set,

 active inhibitors are honoured for privileged users too. When

 SD_LOGIND_KEXEC_REBOOT (0x02) is set, then RebootWithFlags() perform

 kexec reboot if kexec kernel is loaded.

 SetRebootParameter() sets a parameter for a subsequent reboot

 operation. See the description of reboot in systemctl(1) and reboot(2)

 for more information.

 SetRebootToFirmwareSetup(), SetRebootToBootLoaderMenu(), and

 SetRebootToBootLoaderEntry() configure the action to be taken from the Page 10/26

 boot loader after a reboot: respectively entering firmware setup mode,

 the boot loader menu, or a specific boot loader entry. See systemctl(1)

 for the corresponding command line interface.

 CanPowerOff(), CanReboot(), CanHalt(), CanSuspend(), CanHibernate(),

 CanHybridSleep(), CanSuspendThenHibernate(), CanRebootParameter(),

 CanRebootToFirmwareSetup(), CanRebootToBootLoaderMenu(), and

 CanRebootToBootLoaderEntry() test whether the system supports the

 respective operation and whether the calling user is allowed to execute

 it. Returns one of "na", "yes", "no", and "challenge". If "na" is

 returned, the operation is not available because hardware, kernel, or

 drivers do not support it. If "yes" is returned, the operation is

 supported and the user may execute the operation without further

 authentication. If "no" is returned, the operation is available but the

 user is not allowed to execute the operation. If "challenge" is

 returned, the operation is available but only after authorization.

 ScheduleShutdown() schedules a shutdown operation type at time usec in

 microseconds since the UNIX epoch. type can be one of "poweroff",

 "dry-poweroff", "reboot", "dry-reboot", "halt", and "dry-halt". (The

 "dry-" variants do not actually execute the shutdown action.)

 CancelScheduledShutdown() cancels a scheduled shutdown. The output

 parameter cancelled is true if a shutdown operation was scheduled.

 SetWallMessage() sets the wall message (the message that will be sent

 out to all terminals and stored in a utmp(5) record) for a subsequent

 scheduled shutdown operation. The parameter wall_message specifies the

 shutdown reason (and may be empty) which will be included in the

 shutdown message. The parameter enable specifies whether to print a

 wall message on shutdown.

 Inhibit() creates an inhibition lock. It takes four parameters: what,

 who, why, and mode. what is one or more of "shutdown", "sleep",

 "idle", "handle-power-key", "handle-suspend-key",

 "handle-hibernate-key", "handle-lid-switch", separated by colons, for

 inhibiting poweroff/reboot, suspend/hibernate, the automatic idle

 logic, or hardware key handling. who should be a short human readable Page 11/26

 string identifying the application taking the lock. why should be a

 short human readable string identifying the reason why the lock is

 taken. Finally, mode is either "block" or "delay" which encodes whether

 the inhibit shall be consider mandatory or whether it should just delay

 the operation to a certain maximum time. The method returns a file

 descriptor. The lock is released the moment this file descriptor and

 all its duplicates are closed. For more information on the inhibition

 logic see Inhibitor Locks[2].

 Signals

 Whenever the inhibition state or idle hint changes, PropertyChanged

 signals are sent out to which clients can subscribe.

 The SessionNew, SessionRemoved, UserNew, UserRemoved, SeatNew, and

 SeatRemoved signals are sent each time a session is created or removed,

 a user logs in or out, or a seat is added or removed. They each contain

 the ID of the object plus the object path.

 The PrepareForShutdown() and PrepareForSleep() signals are sent right

 before (with the argument "true") or after (with the argument "false")

 the system goes down for reboot/poweroff and suspend/hibernate,

 respectively. This may be used by applications to save data on disk,

 release memory, or do other jobs that should be done shortly before

 shutdown/sleep, in conjunction with delay inhibitor locks. After

 completion of this work they should release their inhibition locks in

 order to not delay the operation any further. For more information see

 Inhibitor Locks[2].

 Properties

 Most properties simply reflect the configuration, see logind.conf(5).

 This includes: NAutoVTs, KillOnlyUsers, KillExcludeUsers,

 KillUserProcesses, IdleAction, InhibitDelayMaxUSec, InhibitorsMax,

 UserStopDelayUSec, HandlePowerKey, HandleSuspendKey,

 HandleHibernateKey, HandleLidSwitch, HandleLidSwitchExternalPower,

 HandleLidSwitchDocked, IdleActionUSec, HoldoffTimeoutUSec, RemoveIPC,

 RuntimeDirectorySize, RuntimeDirectoryInodesMax, InhibitorsMax, and

 SessionsMax. Page 12/26

 The IdleHint property reflects the idle hint state of the system. If

 the system is idle it might get into automatic suspend or shutdown

 depending on the configuration.

 IdleSinceHint and IdleSinceHintMonotonic encode the timestamps of the

 last change of the idle hint boolean, in CLOCK_REALTIME and

 CLOCK_MONOTONIC timestamps, respectively, in microseconds since the

 epoch.

 The BlockInhibited and DelayInhibited properties encode the currently

 active locks of the respective modes. They are colon separated lists of

 "shutdown", "sleep", and "idle" (see above).

 NCurrentSessions and NCurrentInhibitors contain the number of currently

 registered sessions and inhibitors.

 The BootLoaderEntries property contains a list of boot loader entries.

 This includes boot loader entries defined in configuration and any

 additional loader entries reported by the boot loader. See systemd-

 boot(7) for more information.

 The PreparingForShutdown and PreparingForSleep boolean properties are

 true during the interval between the two PrepareForShutdown and

 PrepareForSleep signals respectively. Note that these properties do not

 send out PropertyChanged signals.

 The RebootParameter property shows the value set with the

 SetRebootParameter() method described above.

 ScheduledShutdown shows the value pair set with the ScheduleShutdown()

 method described above.

 RebootToFirmwareSetup, RebootToBootLoaderMenu, and

 RebootToBootLoaderEntry are true when the resprective post-reboot

 operation was selected with SetRebootToFirmwareSetup,

 SetRebootToBootLoaderMenu, or SetRebootToBootLoaderEntry.

 The WallMessage and EnableWallMessages properties reflect the shutdown

 reason and wall message enablement switch which can be set with the

 SetWallMessage() method described above.

 Docked is true if the machine is connected to a dock. LidClosed is

 true when the lid (of a laptop) is closed. OnExternalPower is true Page 13/26

 when the machine is connected to an external power supply.

 Security

 A number of operations are protected via the polkit privilege system.

 SetUserLinger() requires the org.freedesktop.login1.set-user-linger

 privilege. AttachDevice() requires

 org.freedesktop.login1.attach-device and FlushDevices() requires

 org.freedesktop.login1.flush-devices. PowerOff(), Reboot(), Halt(),

 Suspend(), Hibernate() require org.freedesktop.login1.power-off,

 org.freedesktop.login1.power-off-multiple-sessions,

 org.freedesktop.login1.power-off-ignore-inhibit,

 org.freedesktop.login1.reboot,

 org.freedesktop.login1.reboot-multiple-sessions,

 org.freedesktop.login1.reboot-ignore-inhibit,

 org.freedesktop.login1.halt,

 org.freedesktop.login1.halt-multiple-sessions,

 org.freedesktop.login1.halt-ignore-inhibit,

 org.freedesktop.login1.suspend,

 org.freedesktop.login1.suspend-multiple-sessions,

 org.freedesktop.login1.suspend-ignore-inhibit,

 org.freedesktop.login1.hibernate,

 org.freedesktop.login1.hibernate-multiple-sessions,

 org.freedesktop.login1.hibernate-ignore-inhibit, respectively depending

 on whether there are other sessions around or active inhibits are

 present. HybridSleep() and SuspendThenHibernate() use the same

 privileges as Hibernate(). SetRebootParameter() requires

 org.freedesktop.login1.set-reboot-parameter.

 SetRebootToFirmwareSetup requires

 org.freedesktop.login1.set-reboot-to-firmware-setup.

 SetRebootToBootLoaderMenu requires

 org.freedesktop.login1.set-reboot-to-boot-loader-menu.

 SetRebootToBootLoaderEntry requires

 org.freedesktop.login1.set-reboot-to-boot-loader-entry.

 ScheduleShutdown and CancelScheduledShutdown require the same Page 14/26

 privileges (listed above) as the immediate poweroff/reboot/halt

 operations.

 Inhibit() is protected via one of

 org.freedesktop.login1.inhibit-block-shutdown,

 org.freedesktop.login1.inhibit-delay-shutdown,

 org.freedesktop.login1.inhibit-block-sleep,

 org.freedesktop.login1.inhibit-delay-sleep,

 org.freedesktop.login1.inhibit-block-idle,

 org.freedesktop.login1.inhibit-handle-power-key,

 org.freedesktop.login1.inhibit-handle-suspend-key,

 org.freedesktop.login1.inhibit-handle-hibernate-key,

 org.freedesktop.login1.inhibit-handle-lid-switch depending on the lock

 type and mode taken.

 The interactive boolean parameters can be used to control whether

 polkit should interactively ask the user for authentication credentials

 if required.

SEAT OBJECTS

 node /org/freedesktop/login1/seat/seat0 {

 interface org.freedesktop.login1.Seat {

 methods:

 Terminate();

 ActivateSession(in s session_id);

 SwitchTo(in u vtnr);

 SwitchToNext();

 SwitchToPrevious();

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Id = '...';

 readonly (so) ActiveSession = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b CanTTY = ...;

 readonly b CanGraphical = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false") Page 15/26

 readonly a(so) Sessions = [...];

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate() and ActivateSession() work similarly to TerminateSeat() and

 ActivationSessionOnSeat() on the Manager object.

 SwitchTo() switches to the session on the virtual terminal vtnr.

 SwitchToNext() and SwitchToPrevious() switch to, respectively, the next

 and previous sessions on the seat in the order of virtual terminals. If

 there is no active session, they switch to, respectively, the first and

 last session on the seat.

 Signals

 Whenever ActiveSession, Sessions, CanGraphical, CanTTY, or the idle

 state changes, PropertyChanged signals are sent out to which clients

 can subscribe.

 Properties

 The Id property encodes the ID of the seat.

 ActiveSession encodes the currently active session if there is one. It

 is a structure consisting of the session id and the object path.

 CanTTY encodes whether the session is suitable for text logins, and

 CanGraphical whether it is suitable for graphical sessions.

 The Sessions property is an array of all current sessions of this seat,

 each encoded in a structure consisting of the ID and the object path.

 The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties

 encode the idle state, similarly to the ones exposed on the Manager

 object, but specific for this seat.

USER OBJECTS Page 16/26

 node /org/freedesktop/login1/user/_1000 {

 interface org.freedesktop.login1.User {

 methods:

 Terminate();

 Kill(in i signal_number);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u UID = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u GID = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Name = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t Timestamp = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t TimestampMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RuntimePath = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Service = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Slice = '...';

 readonly (so) Display = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s State = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(so) Sessions = [...];

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b Linger = ...;

 }; Page 17/26

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate() and Kill() work similarly to the TerminateUser() and

 KillUser() methods on the manager object.

 Signals

 Whenever Sessions or the idle state changes, PropertyChanged signals

 are sent out to which clients can subscribe.

 Properties

 The UID and GID properties encode the Unix UID and primary GID of the

 user.

 The Name property encodes the user name.

 Timestamp and TimestampMonotonic encode the login time of the user in

 microseconds since the epoch, in the CLOCK_REALTIME and CLOCK_MONOTONIC

 clocks, respectively.

 RuntimePath encodes the runtime path of the user, i.e.

 $XDG_RUNTIME_DIR. For details see the XDG Basedir Specification[3].

 Service contains the unit name of the user systemd service of this

 user. Each logged in user is assigned a user service that runs a user

 systemd instance. This is usually an instance of user@.service.

 Slice contains the unit name of the user systemd slice of this user.

 Each logged in user gets a private slice.

 Display encodes which graphical session should be used as the primary

 UI display for the user. It is a structure encoding the session ID and

 the object path of the session to use.

 State encodes the user state and is one of "offline", "lingering",

 "online", "active", or "closing". See sd_uid_get_state(3) for more

 information about the states.

 Sessions is an array of structures encoding all current sessions of the

 user. Each structure consists of the ID and object path.

 The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties Page 18/26

 encode the idle hint state of the user, similarly to the Manager's

 properties, but specific for this user.

 The Linger property shows whether lingering is enabled for this user.

SESSION OBJECTS

 node /org/freedesktop/login1/session/1 {

 interface org.freedesktop.login1.Session {

 methods:

 Terminate();

 Activate();

 Lock();

 Unlock();

 SetIdleHint(in b idle);

 SetLockedHint(in b locked);

 Kill(in s who,

 in i signal_number);

 TakeControl(in b force);

 ReleaseControl();

 SetType(in s type);

 SetDisplay(in s display);

 TakeDevice(in u major,

 in u minor,

 out h fd,

 out b inactive);

 ReleaseDevice(in u major,

 in u minor);

 PauseDeviceComplete(in u major,

 in u minor);

 SetBrightness(in s subsystem,

 in s name,

 in u brightness);

 signals:

 PauseDevice(u major,

 u minor, Page 19/26

 s type);

 ResumeDevice(u major,

 u minor,

 h fd);

 Lock();

 Unlock();

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Id = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly (uo) User = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Name = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t Timestamp = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t TimestampMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u VTNr = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly (so) Seat = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s TTY = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Display = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b Remote = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RemoteHost = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RemoteUser = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Service = '...'; Page 20/26

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Desktop = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Scope = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u Leader = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u Audit = ...;

 readonly s Type = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Class = '...';

 readonly b Active = ...;

 readonly s State = '...';

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 readonly b LockedHint = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate(), Activate(), Lock(), Unlock(), and Kill() work similarly to

 the respective calls on the Manager object.

 SetIdleHint() is called by the session object to update the idle state

 of the session whenever it changes.

 TakeControl() allows a process to take exclusive managed device

 access-control for that session. Only one D-Bus connection can be a

 controller for a given session at any time. If the force argument is

 set (root only), an existing controller is kicked out and replaced.

 Otherwise, this method fails if there is already a controller. Note

 that this method is limited to D-Bus users with the effective UID set Page 21/26

 to the user of the session or root.

 ReleaseControl() drops control of a given session. Closing the D-Bus

 connection implicitly releases control as well. See TakeControl() for

 more information. This method also releases all devices for which the

 controller requested ownership via TakeDevice().

 SetType() allows the type of the session to be changed dynamically. It

 can only be called by session's current controller. If TakeControl()

 has not been called, this method will fail. In addition, the session

 type will be reset to its original value once control is released,

 either by calling ReleaseControl() or closing the D-Bus connection.

 This should help prevent a session from entering an inconsistent state,

 for example if the controller crashes. The only argument type is the

 new session type.

 SetDisplay() allows the display name of the graphical session to be

 changed. This is useful if the display server is started as part of the

 session. It can only be called by session's current controller. If

 TakeControl() has not been called, this method will fail. The only

 argument display is the new display name.

 TakeDevice() allows a session controller to get a file descriptor for a

 specific device. Pass in the major and minor numbers of the character

 device and systemd-logind will return a file descriptor for the device.

 Only a limited set of device-types is currently supported (but may be

 extended). systemd-logind automatically mutes the file descriptor if

 the session is inactive and resumes it once the session is activated

 again. This guarantees that a session can only access session devices

 if the session is active. Note that this revoke/resume mechanism is

 asynchronous and may happen at any given time. This only works on

 devices that are attached to the seat of the given session. A process

 is not required to have direct access to the device node.

 systemd-logind only requires you to be the active session controller

 (see TakeControl()). Also note that any device can only be requested

 once. As long as you don't release it, further TakeDevice() calls will

 fail. Page 22/26

 ReleaseDevice() releases a device again (see TakeDevice()). This is

 also implicitly done by ReleaseControl() or when closing the D-Bus

 connection.

 PauseDeviceComplete() allows a session controller to synchronously

 pause a device after receiving a PauseDevice("pause") signal. Forced

 signals (or after an internal timeout) are automatically completed by

 systemd-logind asynchronously.

 SetLockedHint() may be used to set the "locked hint" to locked, i.e.

 information whether the session is locked. This is intended to be used

 by the desktop environment to tell systemd-logind when the session is

 locked and unlocked.

 SetBrightness() may be used to set the display brightness. This is

 intended to be used by the desktop environment and allows unprivileged

 programs to access hardware settings in a controlled way. The subsystem

 parameter specifies a kernel subsystem, either "backlight" or "leds".

 The name parameter specifies a device name under the specified

 subsystem. The brightness parameter specifies the brightness. The range

 is defined by individual drivers, see

 /sys/class/subsystem/name/max_brightness.

 Signals

 The active session controller exclusively gets PauseDevice and

 ResumeDevice events for any device it requested via TakeDevice(). They

 notify the controller whenever a device is paused or resumed. A device

 is never resumed if its session is inactive. Also note that PauseDevice

 signals are sent before the PropertyChanged signal for the Active

 state. The inverse is true for ResumeDevice. A device may remain paused

 for unknown reasons even though the Session is active.

 A PauseDevice signal carries the major and minor numbers and a string

 describing the type as arguments. force means the device was already

 paused by systemd-logind and the signal is only an asynchronous

 notification. pause means systemd-logind grants you a limited amount

 of time to pause the device. You must respond to this via

 PauseDeviceComplete(). This synchronous pausing mechanism is used for Page 23/26

 backwards-compatibility to VTs and systemd-logind is free to not make

 use of it. It is also free to send a forced PauseDevice if you don't

 respond in a timely manner (or for any other reason). gone means the

 device was unplugged from the system and you will no longer get any

 notifications about it. There is no need to call ReleaseDevice(). You

 may call TakeDevice() again if a new device is assigned the major+minor

 combination.

 ResumeDevice is sent whenever a session is active and a device is

 resumed. It carries the major/minor numbers as arguments and provides a

 new open file descriptor. You should switch to the new descriptor and

 close the old one. They are not guaranteed to have the same underlying

 open file descriptor in the kernel (except for a limited set of device

 types).

 Whenever Active or the idle state changes, PropertyChanged signals are

 sent out to which clients can subscribe.

 Lock/Unlock is sent when the session is asked to be

 screen-locked/unlocked. A session manager of the session should listen

 to this signal and act accordingly. This signal is sent out as a result

 of the Lock() and Unlock() methods, respectively.

 Properties

 Id encodes the session ID.

 User encodes the user ID of the user this session belongs to. This is a

 structure consisting of the Unix UID and the object path.

 Name encodes the user name.

 Timestamp and TimestampMonotonic encode the microseconds since the

 epoch when the session was created, in CLOCK_REALTIME or

 CLOCK_MONOTONIC, respectively.

 VTNr encodes the virtual terminal number of the session if there is

 any, 0 otherwise.

 Seat encodes the seat this session belongs to if there is any. This is

 a structure consisting of the ID and the seat object path.

 TTY encodes the kernel TTY path of the session if this is a text login.

 If not this is an empty string. Page 24/26

 Display encodes the X11 display name if this is a graphical login. If

 not, this is an empty string.

 Remote encodes whether the session is local or remote.

 RemoteHost and RemoteUser encode the remote host and user if this is a

 remote session, or an empty string otherwise.

 Service encodes the PAM service name that registered the session.

 Desktop describes the desktop environment running in the session (if

 known).

 Scope contains the systemd scope unit name of this session.

 Leader encodes the PID of the process that registered the session.

 Audit encodes the Kernel Audit session ID of the session if auditing is

 available.

 Type encodes the session type. It's one of "unspecified" (for cron PAM

 sessions and suchlike), "tty" (for text logins) or

 "x11"/"mir"/"wayland" (for graphical logins).

 Class encodes the session class. It's one of "user" (for normal user

 sessions), "greeter" (for display manager pseudo-sessions), or

 "lock-screen" (for display lock screens).

 Active is a boolean that is true if the session is active, i.e.

 currently in the foreground. This field is semi-redundant due to State.

 State encodes the session state and one of "online", "active", or

 "closing". See sd_session_get_state(3) for more information about the

 states.

 IdleHint, IdleSinceHint, and IdleSinceHintMonotonic encapsulate the

 idle hint state of this session, similarly to how the respective

 properties on the manager object do it for the whole system.

 LockedHint shows the locked hint state of this session, as set by the

 SetLockedHint() method described above.

EXAMPLES

 Example 1. Introspect the logind manager on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1

 or Page 25/26

 $ busctl introspect org.freedesktop.login1 /org/freedesktop/login1

 Example 2. Introspect the default seat on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/seat/seat0

 or

 $ busctl introspect org.freedesktop.login1 /org/freedesktop/login1/seat/seat0

 Seat "seat0" is the default seat, so it'll be present unless local

 configuration is made to reassign all devices to a different seat. The

 list of seats and users can be acquired with loginctl list-sessions.

 Example 3. Introspect a single user on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/user/_1000

 or

 $ busctl introspect org.freedesktop.login1 /org/freedesktop/login1/user/_1000

 Example 4. Introspect org.freedesktop.login1.Session on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/session/45

 or

 $ busctl introspect org.freedesktop.login1 /org/freedesktop/login1/session/45

VERSIONING

 These D-Bus interfaces follow the usual interface versioning

 guidelines[4].

NOTES

 1. polkit

 https://www.freedesktop.org/software/polkit/docs/latest/

 2. Inhibitor Locks

 https://www.freedesktop.org/wiki/Software/systemd/inhibit

 3. XDG Basedir Specification

 https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

 4. the usual interface versioning guidelines

 http://0pointer.de/blog/projects/versioning-dbus.html

systemd 252 ORG.FREEDESKTOP.LOGIN1(5)

Page 26/26

