
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-version.1' command

$ man npm-version.1

NPM-VERSION(1) NPM-VERSION(1)

NAME

 npm-version - Bump a package version

 Synopsis

 npm version [<newversion> | major | minor | patch | premajor | preminor | prepatch | prerelease | from-git]

 alias: verison

 Configuration

 allow-same-version

 ? Default: false

 ? Type: Boolean

 Prevents throwing an error when npm version is used to set the new ver?

 sion to the same value as the current version.

 commit-hooks

 ? Default: true

 ? Type: Boolean

 Run git commit hooks when using the npm version command.

 git-tag-version

 ? Default: true

 ? Type: Boolean

 Tag the commit when using the npm version command. Setting this to

 false results in no commit being made at all.

 json

 ? Default: false Page 1/5

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before

 saving them to your package.json.

 Not supported by all npm commands.

 preid

 ? Default: ""

 ? Type: String

 The "prerelease identifier" to use as a prefix for the "prerelease"

 part of a semver. Like the rc in 1.2.0-rc.8.

 sign-git-tag

 ? Default: false

 ? Type: Boolean

 If set to true, then the npm version command will tag the version using

 -s to add a signature.

 Note that git requires you to have set up GPG keys in your git configs

 for this to work properly.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces Page 2/5

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 workspaces-update

 ? Default: true

 ? Type: Boolean

 If set to true, the npm cli will run an update after operations that

 may possibly change the workspaces installed to the node_modules

 folder.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 Description

 Run this in a package directory to bump the version and write the new

 data back to package.json, package-lock.json, and, if present,

 npm-shrinkwrap.json.

 The newversion argument should be a valid semver string, a valid second

 argument to semver.inc https://github.com/npm/node-semver#functions

 (one of patch, minor, major, prepatch, preminor, premajor, prerelease), Page 3/5

 or from-git. In the second case, the existing version will be incre?

 mented by 1 in the specified field. from-git will try to read the lat?

 est git tag, and use that as the new npm version.

 If run in a git repo, it will also create a version commit and tag.

 This behavior is controlled by git-tag-version (see below), and can be

 disabled on the command line by running npm --no-git-tag-version ver?

 sion. It will fail if the working directory is not clean, unless the

 -f or --force flag is set.

 If supplied with -m or --message config option, npm will use it as a

 commit message when creating a version commit. If the message config

 contains %s then that will be replaced with the resulting version num?

 ber. For example:

 npm version patch -m "Upgrade to %s for reasons"

 If the sign-git-tag config is set, then the tag will be signed using

 the -s flag to git. Note that you must have a default GPG key set up

 in your git config for this to work properly. For example:

 $ npm config set sign-git-tag true

 $ npm version patch

 You need a passphrase to unlock the secret key for

 user: "isaacs (http://blog.izs.me/) <i@izs.me>"

 2048-bit RSA key, ID 6C481CF6, created 2010-08-31

 Enter passphrase:

 If preversion, version, or postversion are in the scripts property of

 the package.json, they will be executed as part of running npm version.

 The exact order of execution is as follows:

 1. Check to make sure the git working directory is clean before we get

 started. Your scripts may add files to the commit in future steps.

 This step is skipped if the --force flag is set.

 2. Run the preversion script. These scripts have access to the old ver?

 sion in package.json. A typical use would be running your full test

 suite before deploying. Any files you want added to the commit

 should be explicitly added using git add.

 3. Bump version in package.json as requested (patch, minor, major, Page 4/5

 etc).

 4. Run the version script. These scripts have access to the new version

 in package.json (so they can incorporate it into file headers in

 generated files for example). Again, scripts should explicitly add

 generated files to the commit using git add.

 5. Commit and tag.

 6. Run the postversion script. Use it to clean up the file system or

 automatically push the commit and/or tag.

 Take the following example:

 {

 "scripts": {

 "preversion": "npm test",

 "version": "npm run build && git add -A dist",

 "postversion": "git push && git push --tags && rm -rf build/temp"

 }

 }

 This runs all your tests and proceeds only if they pass. Then runs your

 build script, and adds everything in the dist directory to the commit.

 After the commit, it pushes the new commit and tag up to the server,

 and deletes the build/temp directory.

 See Also

 ? npm help init

 ? npm help run-script

 ? npm help scripts

 ? package.json /configuring-npm/package-json

 ? npm help config

 February 2023 NPM-VERSION(1)

Page 5/5

