
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-update.1' command

$ man npm-update.1

NPM-UPDATE(1) NPM-UPDATE(1)

NAME

 npm-update - Update packages

 Synopsis

 npm update [<pkg>...]

 aliases: up, upgrade, udpate

 Description

 This command will update all the packages listed to the latest version

 (specified by the tag config), respecting the semver constraints of

 both your package and its dependencies (if they also require the same

 package).

 It will also install missing packages.

 If the -g flag is specified, this command will update globally in?

 stalled packages.

 If no package name is specified, all packages in the specified location

 (global or local) will be updated.

 Note that by default npm update will not update the semver values of

 direct dependencies in your project package.json, if you want to also

 update values in package.json you can run: npm update --save (or add

 the save=true option to a npm help "configuration file" to make that

 the default behavior).

 Example

 For the examples below, assume that the current package is app and it Page 1/9

 depends on dependencies, dep1 (dep2, .. etc.). The published versions

 of dep1 are:

 {

 "dist-tags": { "latest": "1.2.2" },

 "versions": [

 "1.2.2",

 "1.2.1",

 "1.2.0",

 "1.1.2",

 "1.1.1",

 "1.0.0",

 "0.4.1",

 "0.4.0",

 "0.2.0"

]

 }

 Caret Dependencies

 If app's package.json contains:

 "dependencies": {

 "dep1": "^1.1.1"

 }

 Then npm update will install dep1@1.2.2, because 1.2.2 is latest and

 1.2.2 satisfies ^1.1.1.

 Tilde Dependencies

 However, if app's package.json contains:

 "dependencies": {

 "dep1": "~1.1.1"

 }

 In this case, running npm update will install dep1@1.1.2. Even though

 the latest tag points to 1.2.2, this version do not satisfy ~1.1.1,

 which is equivalent to >=1.1.1 <1.2.0. So the highest-sorting version

 that satisfies ~1.1.1 is used, which is 1.1.2.

 Caret Dependencies below 1.0.0 Page 2/9

 Suppose app has a caret dependency on a version below 1.0.0, for exam?

 ple:

 "dependencies": {

 "dep1": "^0.2.0"

 }

 npm update will install dep1@0.2.0, because there are no other versions

 which satisfy ^0.2.0.

 If the dependence were on ^0.4.0:

 "dependencies": {

 "dep1": "^0.4.0"

 }

 Then npm update will install dep1@0.4.1, because that is the high?

 est-sorting version that satisfies ^0.4.0 (>= 0.4.0 <0.5.0)

 Subdependencies

 Suppose your app now also has a dependency on dep2

 {

 "name": "my-app",

 "dependencies": {

 "dep1": "^1.0.0",

 "dep2": "1.0.0"

 }

 }

 and dep2 itself depends on this limited range of dep1

 {

 "name": "dep2",

 "dependencies": {

 "dep1": "~1.1.1"

 }

 }

 Then npm update will install dep1@1.1.2 because that is the highest

 version that dep2 allows. npm will prioritize having a single version

 of dep1 in your tree rather than two when that single version can sat?

 isfy the semver requirements of multiple dependencies in your tree. In Page 3/9

 this case if you really did need your package to use a newer version

 you would need to use npm install.

 Updating Globally-Installed Packages

 npm update -g will apply the update action to each globally installed

 package that is outdated -- that is, has a version that is different

 from wanted.

 Note: Globally installed packages are treated as if they are installed

 with a caret semver range specified. So if you require to update to

 latest you may need to run npm install -g [<pkg>...]

 NOTE: If a package has been upgraded to a version newer than latest, it

 will be downgraded.

 Configuration

 save

 ? Default: true unless when using npm update where it defaults to false

 ? Type: Boolean

 Save installed packages to a package.json file as dependencies.

 When used with the npm rm command, removes the dependency from pack?

 age.json.

 Will also prevent writing to package-lock.json if set to false.

 global

 ? Default: false

 ? Type: Boolean

 Operates in "global" mode, so that packages are installed into the pre?

 fix folder instead of the current working directory. See npm help fold?

 ers for more on the differences in behavior.

 ? packages are installed into the {prefix}/lib/node_modules folder, in?

 stead of the current working directory.

 ? bin files are linked to {prefix}/bin

 ? man pages are linked to {prefix}/share/man

 global-style

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package into your local node_modules folder Page 4/9

 with the same layout it uses with the global node_modules folder. Only

 your direct dependencies will show in node_modules and everything they

 depend on will be flattened in their node_modules folders. This obvi?

 ously will eliminate some deduping. If used with legacy-bundling,

 legacy-bundling will be preferred.

 legacy-bundling

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package such that versions of npm prior to

 1.4, such as the one included with node 0.8, can install the package.

 This eliminates all automatic deduping. If used with global-style this

 option will be preferred.

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'pro?

 duction', otherwise empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the pack?

 age-lock.json or npm-shrinkwrap.json file. They are just not physically

 installed on disk.

 If a package type appears in both the --include and --omit lists, then

 it will be included.

 If the resulting omit list includes 'dev', then the NODE_ENV environ?

 ment variable will be set to 'production' for all lifecycle scripts.

 strict-peer-deps

 ? Default: false

 ? Type: Boolean

 If set to true, and --legacy-peer-deps is not set, then any conflicting

 peerDependencies will be treated as an install failure, even if npm

 could reasonably guess the appropriate resolution based on non-peer de?

 pendency relationships.

 By default, conflicting peerDependencies deep in the dependency graph

 will be resolved using the nearest non-peer dependency specification, Page 5/9

 even if doing so will result in some packages receiving a peer depen?

 dency outside the range set in their package's peerDependencies object.

 When such and override is performed, a warning is printed, explaining

 the conflict and the packages involved. If --strict-peer-deps is set,

 then this warning is treated as a failure.

 package-lock

 ? Default: true

 ? Type: Boolean

 If set to false, then ignore package-lock.json files when installing.

 This will also prevent writing package-lock.json if save is true.

 This configuration does not affect npm ci.

 foreground-scripts

 ? Default: false

 ? Type: Boolean

 Run all build scripts (ie, preinstall, install, and postinstall)

 scripts for installed packages in the foreground process, sharing stan?

 dard input, output, and error with the main npm process.

 Note that this will generally make installs run slower, and be much

 noisier, but can be useful for debugging.

 ignore-scripts

 ? Default: false

 ? Type: Boolean

 If true, npm does not run scripts specified in package.json files.

 Note that commands explicitly intended to run a particular script, such

 as npm start, npm stop, npm restart, npm test, and npm run-script will

 still run their intended script if ignore-scripts is set, but they will

 not run any pre- or post-scripts.

 audit

 ? Default: true

 ? Type: Boolean

 When "true" submit audit reports alongside the current npm command to

 the default registry and all registries configured for scopes. See the

 documentation for npm help audit for details on what is submitted. Page 6/9

 bin-links

 ? Default: true

 ? Type: Boolean

 Tells npm to create symlinks (or .cmd shims on Windows) for package ex?

 ecutables.

 Set to false to have it not do this. This can be used to work around

 the fact that some file systems don't support symlinks, even on osten?

 sibly Unix systems.

 fund

 ? Default: true

 ? Type: Boolean

 When "true" displays the message at the end of each npm install ac?

 knowledging the number of dependencies looking for funding. See npm

 help fund for details.

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it

 should only report what it would have done. This can be passed into any

 of the commands that modify your local installation, eg, install, up?

 date, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg

 dist-tags, owner, etc.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all Page 7/9

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 install-links

 ? Default: false

 ? Type: Boolean

 When set file: protocol dependencies that exist outside of the project

 root will be packed and installed as regular dependencies instead of

 creating a symlink. This option has no effect on workspaces.

 See Also Page 8/9

 ? npm help install

 ? npm help outdated

 ? npm help shrinkwrap

 ? npm help registry

 ? npm help folders

 ? npm help ls

 February 2023 NPM-UPDATE(1)

Page 9/9

