
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-ls.1' command

$ man npm-ls.1

NPM-LS(1) NPM-LS(1)

NAME

 npm-ls - List installed packages

 Synopsis

 npm ls <package-spec>

 alias: list

 Description

 This command will print to stdout all the versions of packages that are

 installed, as well as their dependencies when --all is specified, in a

 tree structure.

 Note: to get a "bottoms up" view of why a given package is included in

 the tree at all, use npm help explain.

 Positional arguments are name@version-range identifiers, which will

 limit the results to only the paths to the packages named. Note that

 nested packages will also show the paths to the specified packages.

 For example, running npm ls promzard in npm's source tree will show:

 npm@8.19.4 /path/to/npm

 ??? init-package-json@0.0.4

 ??? promzard@0.1.5

 It will print out extraneous, missing, and invalid packages.

 If a project specifies git urls for dependencies these are shown in

 parentheses after the name@version to make it easier for users to rec?

 ognize potential forks of a project. Page 1/6

 The tree shown is the logical dependency tree, based on package depen?

 dencies, not the physical layout of your node_modules folder.

 When run as ll or la, it shows extended information by default.

 Note: Design Changes Pending

 The npm ls command's output and behavior made a ton of sense when npm

 created a node_modules folder that naively nested every dependency. In

 such a case, the logical dependency graph and physical tree of packages

 on disk would be roughly identical.

 With the advent of automatic install-time deduplication of dependencies

 in npm v3, the ls output was modified to display the logical dependency

 graph as a tree structure, since this was more useful to most users.

 However, without using npm ls -l, it became impossible to show where a

 package was actually installed much of the time!

 With the advent of automatic installation of peerDependencies in npm

 v7, this gets even more curious, as peerDependencies are logically "un?

 derneath" their dependents in the dependency graph, but are always

 physically at or above their location on disk.

 Also, in the years since npm got an ls command (in version 0.0.2!), de?

 pendency graphs have gotten much larger as a general rule. Therefore,

 in order to avoid dumping an excessive amount of content to the termi?

 nal, npm ls now only shows the top level dependencies, unless --all is

 provided.

 A thorough re-examination of the use cases, intention, behavior, and

 output of this command, is currently underway. Expect significant

 changes to at least the default human-readable npm ls output in npm v8.

 Configuration

 all

 ? Default: false

 ? Type: Boolean

 When running npm outdated and npm ls, setting --all will show all out?

 dated or installed packages, rather than only those directly depended

 upon by the current project.

 json Page 2/6

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before

 saving them to your package.json.

 Not supported by all npm commands.

 long

 ? Default: false

 ? Type: Boolean

 Show extended information in ls, search, and help-search.

 parseable

 ? Default: false

 ? Type: Boolean

 Output parseable results from commands that write to standard output.

 For npm search, this will be tab-separated table format.

 global

 ? Default: false

 ? Type: Boolean

 Operates in "global" mode, so that packages are installed into the pre?

 fix folder instead of the current working directory. See npm help fold?

 ers for more on the differences in behavior.

 ? packages are installed into the {prefix}/lib/node_modules folder, in?

 stead of the current working directory.

 ? bin files are linked to {prefix}/bin

 ? man pages are linked to {prefix}/share/man

 depth

 ? Default: Infinity if --all is set, otherwise 1

 ? Type: null or Number

 The depth to go when recursing packages for npm ls.

 If not set, npm ls will show only the immediate dependencies of the

 root project. If --all is set, then npm will show all dependencies by

 default.

 omit Page 3/6

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'pro?

 duction', otherwise empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the pack?

 age-lock.json or npm-shrinkwrap.json file. They are just not physically

 installed on disk.

 If a package type appears in both the --include and --omit lists, then

 it will be included.

 If the resulting omit list includes 'dev', then the NODE_ENV environ?

 ment variable will be set to 'production' for all lifecycle scripts.

 link

 ? Default: false

 ? Type: Boolean

 Used with npm ls, limiting output to only those packages that are

 linked.

 package-lock-only

 ? Default: false

 ? Type: Boolean

 If set to true, the current operation will only use the pack?

 age-lock.json, ignoring node_modules.

 For update this means only the package-lock.json will be updated, in?

 stead of checking node_modules and downloading dependencies.

 For list this means the output will be based on the tree described by

 the package-lock.json, rather than the contents of node_modules.

 unicode

 ? Default: false on windows, true on mac/unix systems with a unicode

 locale, as defined by the LC_ALL, LC_CTYPE, or LANG environment vari?

 ables.

 ? Type: Boolean

 When set to true, npm uses unicode characters in the tree output. When

 false, it uses ascii characters instead of unicode glyphs.

 workspace Page 4/6

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate Page 5/6

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 install-links

 ? Default: false

 ? Type: Boolean

 When set file: protocol dependencies that exist outside of the project

 root will be packed and installed as regular dependencies instead of

 creating a symlink. This option has no effect on workspaces.

 See Also

 ? npm help "package spec"

 ? npm help explain

 ? npm help config

 ? npm help npmrc

 ? npm help folders

 ? npm help explain

 ? npm help install

 ? npm help link

 ? npm help prune

 ? npm help outdated

 ? npm help update

 February 2023 NPM-LS(1)

Page 6/6

