
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-install.1' command

$ man npm-install.1

NPM-INSTALL(1) NPM-INSTALL(1)

NAME

 npm-install - Install a package

 Synopsis

 npm install [<package-spec> ...]

 aliases: add, i, in, ins, inst, insta, instal, isnt, isnta, isntal, isntall

 Description

 This command installs a package and any packages that it depends on. If

 the package has a package-lock, or an npm shrinkwrap file, or a yarn

 lock file, the installation of dependencies will be driven by that, re?

 specting the following order of precedence:

 ? npm-shrinkwrap.json

 ? package-lock.json

 ? yarn.lock

 See package-lock.json /configuring-npm/package-lock-json and npm help

 shrinkwrap.

 A package is:

 ? a) a folder containing a program described by a package.json /config?

 uring-npm/package-json file

 ? b) a gzipped tarball containing (a)

 ? c) a url that resolves to (b)

 ? d) a <name>@<version> that is published on the registry (see npm help

 registry) with (c) Page 1/16

 ? e) a <name>@<tag> (see npm help dist-tag) that points to (d)

 ? f) a <name> that has a "latest" tag satisfying (e)

 ? g) a <git remote url> that resolves to (a)

 Even if you never publish your package, you can still get a lot of ben?

 efits of using npm if you just want to write a node program (a), and

 perhaps if you also want to be able to easily install it elsewhere af?

 ter packing it up into a tarball (b).

 ? npm install (in a package directory, no arguments):

 Install the dependencies to the local node_modules folder.

 In global mode (ie, with -g or --global appended to the command),

 it installs the current package context (ie, the current working

 directory) as a global package.

 By default, npm install will install all modules listed as

 dependencies in package.json /configuring-npm/package-json.

 With the --production flag (or when the NODE_ENV environment

 variable is set to production), npm will not install modules listed

 in devDependencies. To install all modules listed in both

 dependencies and devDependencies when NODE_ENV environment

 variable is set to production, you can use --production=false.

 NOTE: The --production flag has no particular meaning when adding a

 dependency to a project.

 ? npm install <folder>:

 If <folder> sits inside the root of your project, its dependencies

 will be installed and may

 be hoisted to the top-level node_modules as they would for other

 types of dependencies. If <folder> sits outside the root of your

 project,

 npm will not install the package dependencies in the directory

 <folder>,

 but it will create a symlink to <folder>. NOTE: If you want to in?

 stall the content of a directory like a package from the registry in?

 stead of creating a link, you would need to use the --install-links

 option. Page 2/16

 Example:

 npm install ../../other-package --install-links

 npm install ./sub-package

 ? npm install <tarball file>:

 Install a package that is sitting on the filesystem. Note: if you

 just

 want to link a dev directory into your npm root, you can do this

 more

 easily by using npm help link.

 Tarball requirements:

 ? The filename must use .tar, .tar.gz, or .tgz as the extension.

 ? The package contents should reside in a subfolder inside the tar?

 ball (usually it is called package/). npm strips one directory

 layer when installing the package (an equivalent of tar x

 --strip-components=1 is run).

 ? The package must contain a package.json file with name and version

 properties. Example:

 npm install ./package.tgz

 ? npm install <tarball url>:

 Fetch the tarball url, and then install it. In order to distin?

 guish between

 this and other options, the argument must start with "http://" or

 "https://"

 Example:

 npm install https://github.com/indexzero/forever/tarball/v0.5.6

 ? npm install [<@scope>/]<name>:

 Do a <name>@<tag> install, where <tag> is the "tag" config. (See

 npm help config. The config's default value is latest.)

 In most cases, this will install the version of the modules tagged

 as

 latest on the npm registry.

 Example:

 npm install sax Page 3/16

 npm install saves any specified packages into dependencies by de?

 fault.

 Additionally, you can control where and how they get saved with some

 additional flags:

 ? -P, --save-prod: Package will appear in your dependencies.

 This is the default unless -D or -O are present.

 ? -D, --save-dev: Package will appear in your devDependencies.

 ? -O, --save-optional: Package will appear in your optionalDe?

 pendencies.

 ? --no-save: Prevents saving to dependencies. When using any of

 the above options to save dependencies to your package.json,

 there are two additional, optional flags:

 ? -E, --save-exact: Saved dependencies will be configured with

 an exact version rather than using npm's default semver range

 operator.

 ? -B, --save-bundle: Saved dependencies will also be added to

 your bundleDependencies list. Further, if you have an

 npm-shrinkwrap.json or package-lock.json then it will be up?

 dated as well. <scope> is optional. The package will be down?

 loaded from the registry associated with the specified scope.

 If no registry is associated with the given scope the default

 registry is assumed. See npm help scope. Note: if you do not

 include the @-symbol on your scope name, npm will interpret

 this as a GitHub repository instead, see below. Scopes names

 must also be followed by a slash. Examples:

 npm install sax

 npm install githubname/reponame

 npm install @myorg/privatepackage

 npm install node-tap --save-dev

 npm install dtrace-provider --save-optional

 npm install readable-stream --save-exact

 npm install ansi-regex --save-bundle

 ? Note*: If there is a file or folder named <name> in the cur? Page 4/16

 rent working directory, then it will try to install that, and

 only try to fetch the package by name if it is not valid.

 ? npm install <alias>@npm:<name>:

 Install a package under a custom alias. Allows multiple versions of

 a same-name package side-by-side, more convenient import names for

 packages with otherwise long ones, and using git forks replacements

 or forked npm packages as replacements. Aliasing works only on your

 project and does not rename packages in transitive dependencies.

 Aliases should follow the naming conventions stated in

 validate-npm-package-name https://www.npmjs.com/package/vali?

 date-npm-package-name#naming-rules.

 Examples:

 npm install my-react@npm:react

 npm install jquery2@npm:jquery@2

 npm install jquery3@npm:jquery@3

 npm install npa@npm:npm-package-arg

 ? npm install [<@scope>/]<name>@<tag>:

 Install the version of the package that is referenced by the speci?

 fied tag.

 If the tag does not exist in the registry data for that package,

 then this

 will fail.

 Example:

 npm install sax@latest

 npm install @myorg/mypackage@latest

 ? npm install [<@scope>/]<name>@<version>:

 Install the specified version of the package. This will fail if

 the

 version has not been published to the registry.

 Example:

 npm install sax@0.1.1

 npm install @myorg/privatepackage@1.5.0

 ? npm install [<@scope>/]<name>@<version range>: Page 5/16

 Install a version of the package matching the specified version

 range.

 This will follow the same rules for resolving dependencies de?

 scribed in

 package.json /configuring-npm/package-json.

 Note that most version ranges must be put in quotes so that your

 shell

 will treat it as a single argument.

 Example:

 npm install sax@">=0.1.0 <0.2.0"

 npm install @myorg/privatepackage@"16 - 17"

 ? npm install <git remote url>:

 Installs the package from the hosted git provider, cloning it with

 git. For a full git remote url, only that URL will be attempted.

 <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish> | #semver:<semver>]

 <protocol> is one of git, git+ssh, git+http, git+https, or

 git+file.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can be any valid semver range or exact version, and npm will look for

 any tags or refs matching that range in the remote repository, much

 as

 it would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then the default branch of the

 repository is used.

 If the repository makes use of submodules, those submodules will be

 cloned as well.

 If the package being installed contains a prepare script, its

 dependencies and devDependencies will be installed, and the prepare

 script will be run, before the package is packaged and installed.

 The following git environment variables are recognized by npm and

 will

 be added to the environment when running git: Page 6/16

 ? GIT_ASKPASS

 ? GIT_EXEC_PATH

 ? GIT_PROXY_COMMAND

 ? GIT_SSH

 ? GIT_SSH_COMMAND

 ? GIT_SSL_CAINFO

 ? GIT_SSL_NO_VERIFY See the git man page for details. Examples:

 npm install git+ssh://git@github.com:npm/cli.git#v1.0.27

 npm install git+ssh://git@github.com:npm/cli#pull/273

 npm install git+ssh://git@github.com:npm/cli#semver:^5.0

 npm install git+https://isaacs@github.com/npm/cli.git

 npm install git://github.com/npm/cli.git#v1.0.27

 GIT_SSH_COMMAND='ssh -i ~/.ssh/custom_ident' npm install git+ssh://git@github.com:npm/cli.git

 ? npm install <githubname>/<githubrepo>[#<commit-ish>]:

 ? npm install github:<githubname>/<githubrepo>[#<commit-ish>]:

 Install the package at https://github.com/githubname/githubrepo by

 attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can be any valid semver range or exact version, and npm will look

 for

 any tags or refs matching that range in the remote repository, much

 as

 it would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then the default branch is used.

 As with regular git dependencies, dependencies and devDependencies

 will be installed if the package has a prepare script before the

 package is done installing.

 Examples:

 npm install mygithubuser/myproject

 npm install github:mygithubuser/myproject

 ? npm install gist:[<githubname>/]<gistID>[#<com?

 mit-ish>|#semver:<semver>]: Page 7/16

 Install the package at https://gist.github.com/gistID by attempting

 to

 clone it using git. The GitHub username associated with the gist is

 optional and will not be saved in package.json.

 As with regular git dependencies, dependencies and devDependencies

 will

 be installed if the package has a prepare script before the package

 is

 done installing.

 Example:

 npm install gist:101a11beef

 ? npm install bitbucket:<bitbucketname>/<bitbucketrepo>[#<commit-ish>]:

 Install the package at https://bitbucket.org/bitbucketname/bitbuck?

 etrepo

 by attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can

 be any valid semver range or exact version, and npm will look for

 any tags

 or refs matching that range in the remote repository, much as it

 would for a

 registry dependency. If neither #<commit-ish> or #semver:<semver>

 is

 specified, then master is used.

 As with regular git dependencies, dependencies and devDependencies

 will

 be installed if the package has a prepare script before the package

 is

 done installing.

 Example:

 npm install bitbucket:mybitbucketuser/myproject

 ? npm install gitlab:<gitlabname>/<gitlabrepo>[#<commit-ish>]: Page 8/16

 Install the package at https://gitlab.com/gitlabname/gitlabrepo

 by attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can

 be any valid semver range or exact version, and npm will look for

 any tags

 or refs matching that range in the remote repository, much as it

 would for a

 registry dependency. If neither #<commit-ish> or #semver:<semver>

 is

 specified, then master is used.

 As with regular git dependencies, dependencies and devDependencies

 will

 be installed if the package has a prepare script before the package

 is

 done installing.

 Example:

 npm install gitlab:mygitlabuser/myproject

 npm install gitlab:myusr/myproj#semver:^5.0

 You may combine multiple arguments and even multiple types of argu?

 ments. For example:

 npm install sax@">=0.1.0 <0.2.0" bench supervisor

 The --tag argument will apply to all of the specified install targets.

 If a tag with the given name exists, the tagged version is preferred

 over newer versions.

 The --dry-run argument will report in the usual way what the install

 would have done without actually installing anything.

 The --package-lock-only argument will only update the pack?

 age-lock.json, instead of checking node_modules and downloading depen?

 dencies.

 The -f or --force argument will force npm to fetch remote resources

 even if a local copy exists on disk. Page 9/16

 npm install sax --force

 Configuration

 See the npm help config help doc. Many of the configuration params

 have some effect on installation, since that's most of what npm does.

 These are some of the most common options related to installation.

 save

 ? Default: true unless when using npm update where it defaults to false

 ? Type: Boolean

 Save installed packages to a package.json file as dependencies.

 When used with the npm rm command, removes the dependency from pack?

 age.json.

 Will also prevent writing to package-lock.json if set to false.

 save-exact

 ? Default: false

 ? Type: Boolean

 Dependencies saved to package.json will be configured with an exact

 version rather than using npm's default semver range operator.

 global

 ? Default: false

 ? Type: Boolean

 Operates in "global" mode, so that packages are installed into the pre?

 fix folder instead of the current working directory. See npm help fold?

 ers for more on the differences in behavior.

 ? packages are installed into the {prefix}/lib/node_modules folder, in?

 stead of the current working directory.

 ? bin files are linked to {prefix}/bin

 ? man pages are linked to {prefix}/share/man

 global-style

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package into your local node_modules folder

 with the same layout it uses with the global node_modules folder. Only

 your direct dependencies will show in node_modules and everything they Page 10/16

 depend on will be flattened in their node_modules folders. This obvi?

 ously will eliminate some deduping. If used with legacy-bundling,

 legacy-bundling will be preferred.

 legacy-bundling

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package such that versions of npm prior to

 1.4, such as the one included with node 0.8, can install the package.

 This eliminates all automatic deduping. If used with global-style this

 option will be preferred.

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'pro?

 duction', otherwise empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the pack?

 age-lock.json or npm-shrinkwrap.json file. They are just not physically

 installed on disk.

 If a package type appears in both the --include and --omit lists, then

 it will be included.

 If the resulting omit list includes 'dev', then the NODE_ENV environ?

 ment variable will be set to 'production' for all lifecycle scripts.

 strict-peer-deps

 ? Default: false

 ? Type: Boolean

 If set to true, and --legacy-peer-deps is not set, then any conflicting

 peerDependencies will be treated as an install failure, even if npm

 could reasonably guess the appropriate resolution based on non-peer de?

 pendency relationships.

 By default, conflicting peerDependencies deep in the dependency graph

 will be resolved using the nearest non-peer dependency specification,

 even if doing so will result in some packages receiving a peer depen?

 dency outside the range set in their package's peerDependencies object. Page 11/16

 When such and override is performed, a warning is printed, explaining

 the conflict and the packages involved. If --strict-peer-deps is set,

 then this warning is treated as a failure.

 package-lock

 ? Default: true

 ? Type: Boolean

 If set to false, then ignore package-lock.json files when installing.

 This will also prevent writing package-lock.json if save is true.

 This configuration does not affect npm ci.

 foreground-scripts

 ? Default: false

 ? Type: Boolean

 Run all build scripts (ie, preinstall, install, and postinstall)

 scripts for installed packages in the foreground process, sharing stan?

 dard input, output, and error with the main npm process.

 Note that this will generally make installs run slower, and be much

 noisier, but can be useful for debugging.

 ignore-scripts

 ? Default: false

 ? Type: Boolean

 If true, npm does not run scripts specified in package.json files.

 Note that commands explicitly intended to run a particular script, such

 as npm start, npm stop, npm restart, npm test, and npm run-script will

 still run their intended script if ignore-scripts is set, but they will

 not run any pre- or post-scripts.

 audit

 ? Default: true

 ? Type: Boolean

 When "true" submit audit reports alongside the current npm command to

 the default registry and all registries configured for scopes. See the

 documentation for npm help audit for details on what is submitted.

 bin-links

 ? Default: true Page 12/16

 ? Type: Boolean

 Tells npm to create symlinks (or .cmd shims on Windows) for package ex?

 ecutables.

 Set to false to have it not do this. This can be used to work around

 the fact that some file systems don't support symlinks, even on osten?

 sibly Unix systems.

 fund

 ? Default: true

 ? Type: Boolean

 When "true" displays the message at the end of each npm install ac?

 knowledging the number of dependencies looking for funding. See npm

 help fund for details.

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it

 should only report what it would have done. This can be passed into any

 of the commands that modify your local installation, eg, install, up?

 date, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg

 dist-tags, owner, etc.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a Page 13/16

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 install-links

 ? Default: false

 ? Type: Boolean

 When set file: protocol dependencies that exist outside of the project

 root will be packed and installed as regular dependencies instead of

 creating a symlink. This option has no effect on workspaces.

 Algorithm

 Given a package{dep} structure: A{B,C}, B{C}, C{D}, the npm install al?

 gorithm produces: Page 14/16

 A

 +-- B

 +-- C

 +-- D

 That is, the dependency from B to C is satisfied by the fact that A al?

 ready caused C to be installed at a higher level. D is still installed

 at the top level because nothing conflicts with it.

 For A{B,C}, B{C,D@1}, C{D@2}, this algorithm produces:

 A

 +-- B

 +-- C

 `-- D@2

 +-- D@1

 Because B's D@1 will be installed in the top-level, C now has to in?

 stall D@2 privately for itself. This algorithm is deterministic, but

 different trees may be produced if two dependencies are requested for

 installation in a different order.

 See npm help folders for a more detailed description of the specific

 folder structures that npm creates.

 See Also

 ? npm help folders

 ? npm help update

 ? npm help audit

 ? npm help fund

 ? npm help link

 ? npm help rebuild

 ? npm help scripts

 ? npm help config

 ? npm help npmrc

 ? npm help registry

 ? npm help dist-tag

 ? npm help uninstall

 ? npm help shrinkwrap Page 15/16

 ? package.json /configuring-npm/package-json

 ? npm help workspaces

 February 2023 NPM-INSTALL(1)

Page 16/16

