
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-global.5' command

$ man npm-global.5

FOLDERS(5) FOLDERS(5)

NAME

 folders - Folder Structures Used by npm

 Description

 npm puts various things on your computer. That's its job.

 This document will tell you what it puts where.

 tl;dr

 ? Local install (default): puts stuff in ./node_modules of the current

 package root.

 ? Global install (with -g): puts stuff in /usr/local or wherever node

 is installed.

 ? Install it locally if you're going to require() it.

 ? Install it globally if you're going to run it on the command line.

 ? If you need both, then install it in both places, or use npm link.

 prefix Configuration

 The prefix config defaults to the location where node is installed. On

 most systems, this is /usr/local. On Windows, it's %AppData%\npm. On

 Unix systems, it's one level up, since node is typically installed at

 {prefix}/bin/node rather than {prefix}/node.exe.

 When the global flag is set, npm installs things into this prefix.

 When it is not set, it uses the root of the current package, or the

 current working directory if not in a package already.

 Node Modules Page 1/6

 Packages are dropped into the node_modules folder under the prefix.

 When installing locally, this means that you can require("packagename")

 to load its main module, or require("packagename/lib/path/to/sub/mod?

 ule") to load other modules.

 Global installs on Unix systems go to {prefix}/lib/node_modules.

 Global installs on Windows go to {prefix}/node_modules (that is, no lib

 folder.)

 Scoped packages are installed the same way, except they are grouped to?

 gether in a sub-folder of the relevant node_modules folder with the

 name of that scope prefix by the @ symbol, e.g. npm install @my?

 org/package would place the package in {prefix}/node_modules/@my?

 org/package. See npm help scope for more details.

 If you wish to require() a package, then install it locally.

 Executables

 When in global mode, executables are linked into {prefix}/bin on Unix,

 or directly into {prefix} on Windows. Ensure that path is in your ter?

 minal's PATH environment to run them.

 When in local mode, executables are linked into ./node_modules/.bin so

 that they can be made available to scripts run through npm. (For exam?

 ple, so that a test runner will be in the path when you run npm test.)

 Man Pages

 When in global mode, man pages are linked into {prefix}/share/man.

 When in local mode, man pages are not installed.

 Man pages are not installed on Windows systems.

 Cache

 See npm help cache. Cache files are stored in ~/.npm on Posix, or %Ap?

 pData%/npm-cache on Windows.

 This is controlled by the cache configuration param.

 Temp Files

 Temporary files are stored by default in the folder specified by the

 tmp config, which defaults to the TMPDIR, TMP, or TEMP environment

 variables, or /tmp on Unix and c:\windows\temp on Windows.

 Temp files are given a unique folder under this root for each run of Page 2/6

 the program, and are deleted upon successful exit.

 More Information

 When installing locally, npm first tries to find an appropriate prefix

 folder. This is so that npm install foo@1.2.3 will install to the sen?

 sible root of your package, even if you happen to have cded into some

 other folder.

 Starting at the $PWD, npm will walk up the folder tree checking for a

 folder that contains either a package.json file, or a node_modules

 folder. If such a thing is found, then that is treated as the effec?

 tive "current directory" for the purpose of running npm commands.

 (This behavior is inspired by and similar to git's .git-folder seeking

 logic when running git commands in a working dir.)

 If no package root is found, then the current folder is used.

 When you run npm install foo@1.2.3, then the package is loaded into the

 cache, and then unpacked into ./node_modules/foo. Then, any of foo's

 dependencies are similarly unpacked into ./node_modules/foo/node_mod?

 ules/....

 Any bin files are symlinked to ./node_modules/.bin/, so that they may

 be found by npm scripts when necessary.

 Global Installation

 If the global configuration is set to true, then npm will install pack?

 ages "globally".

 For global installation, packages are installed roughly the same way,

 but using the folders described above.

 Cycles, Conflicts, and Folder Parsimony

 Cycles are handled using the property of node's module system that it

 walks up the directories looking for node_modules folders. So, at ev?

 ery stage, if a package is already installed in an ancestor node_mod?

 ules folder, then it is not installed at the current location.

 Consider the case above, where foo -> bar -> baz. Imagine if, in addi?

 tion to that, baz depended on bar, so you'd have: foo -> bar -> baz ->

 bar -> baz However, since the folder structure is: foo/node_mod?

 ules/bar/node_modules/baz, there's no need to put another copy of bar Page 3/6

 into .../baz/node_modules, since when it calls require("bar"), it will

 get the copy that is installed in foo/node_modules/bar.

 This shortcut is only used if the exact same version would be installed

 in multiple nested node_modules folders. It is still possible to have

 a/node_modules/b/node_modules/a if the two "a" packages are different

 versions. However, without repeating the exact same package multiple

 times, an infinite regress will always be prevented.

 Another optimization can be made by installing dependencies at the

 highest level possible, below the localized "target" folder.

 Example

 Consider this dependency graph:

 foo

 +-- blerg@1.2.5

 +-- bar@1.2.3

 | +-- blerg@1.x (latest=1.3.7)

 | +-- baz@2.x

 | | `-- quux@3.x

 | | `-- bar@1.2.3 (cycle)

 | `-- asdf@*

 `-- baz@1.2.3

 `-- quux@3.x

 `-- bar

 In this case, we might expect a folder structure like this:

 foo

 +-- node_modules

 +-- blerg (1.2.5) <---[A]

 +-- bar (1.2.3) <---[B]

 | `-- node_modules

 | +-- baz (2.0.2) <---[C]

 | | `-- node_modules

 | | `-- quux (3.2.0)

 | `-- asdf (2.3.4)

 `-- baz (1.2.3) <---[D] Page 4/6

 `-- node_modules

 `-- quux (3.2.0) <---[E]

 Since foo depends directly on bar@1.2.3 and baz@1.2.3, those are in?

 stalled in foo's node_modules folder.

 Even though the latest copy of blerg is 1.3.7, foo has a specific de?

 pendency on version 1.2.5. So, that gets installed at [A]. Since the

 parent installation of blerg satisfies bar's dependency on blerg@1.x,

 it does not install another copy under [B].

 Bar [B] also has dependencies on baz and asdf, so those are installed

 in bar's node_modules folder. Because it depends on baz@2.x, it cannot

 re-use the baz@1.2.3 installed in the parent node_modules folder [D],

 and must install its own copy [C].

 Underneath bar, the baz -> quux -> bar dependency creates a cycle.

 However, because bar is already in quux's ancestry [B], it does not un?

 pack another copy of bar into that folder.

 Underneath foo -> baz [D], quux's [E] folder tree is empty, because its

 dependency on bar is satisfied by the parent folder copy installed at

 [B].

 For a graphical breakdown of what is installed where, use npm ls.

 Publishing

 Upon publishing, npm will look in the node_modules folder. If any of

 the items there are not in the bundleDependencies array, then they will

 not be included in the package tarball.

 This allows a package maintainer to install all of their dependencies

 (and dev dependencies) locally, but only re-publish those items that

 cannot be found elsewhere. See package.json /configuring-npm/pack?

 age-json for more information.

 See also

 ? package.json /configuring-npm/package-json

 ? npm help install

 ? npm help pack

 ? npm help cache

 ? npm help config Page 5/6

 ? npm help npmrc

 ? npm help config

 ? npm help publish

 February 2023 FOLDERS(5)

Page 6/6

