
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-audit.1' command

$ man npm-audit.1

NPM-AUDIT(1) NPM-AUDIT(1)

NAME

 npm-audit - Run a security audit

 Synopsis

 npm audit [fix|signatures]

 Description

 The audit command submits a description of the dependencies configured

 in your project to your default registry and asks for a report of known

 vulnerabilities. If any vulnerabilities are found, then the impact and

 appropriate remediation will be calculated. If the fix argument is

 provided, then remediations will be applied to the package tree.

 The command will exit with a 0 exit code if no vulnerabilities were

 found.

 Note that some vulnerabilities cannot be fixed automatically and will

 require manual intervention or review. Also note that since npm audit

 fix runs a full-fledged npm install under the hood, all configs that

 apply to the installer will also apply to npm install -- so things like

 npm audit fix --package-lock-only will work as expected.

 By default, the audit command will exit with a non-zero code if any

 vulnerability is found. It may be useful in CI environments to include

 the --audit-level parameter to specify the minimum vulnerability level

 that will cause the command to fail. This option does not filter the

 report output, it simply changes the command's failure threshold. Page 1/10

 Audit Signatures

 To ensure the integrity of packages you download from the public npm

 registry, or any registry that supports signatures, you can verify the

 registry signatures of downloaded packages using the npm CLI.

 Registry signatures can be verified using the following audit command:

 $ npm audit signatures

 The npm CLI supports registry signatures and signing keys provided by

 any registry if the following conventions are followed:

 1. Signatures are provided in the package's packument in each published

 version within the dist object:

 "dist":{

 "..omitted..": "..omitted..",

 "signatures": [{

 "keyid": "SHA256:{{SHA256_PUBLIC_KEY}}",

 "sig": "a312b9c3cb4a1b693e8ebac5ee1ca9cc01f2661c14391917dcb111517f72370809..."

 }]

 }

 See this example https://registry.npmjs.org/light-cycle/1.4.3 of a

 signed package from the public npm registry.

 The sig is generated using the following template: ${pack?

 age.name}@${package.version}:${package.dist.integrity} and the keyid

 has to match one of the public signing keys below.

 1. Public signing keys are provided at registry-host.tld/-/npm/v1/keys

 in the following format:

 {

 "keys": [{

 "expires": null,

 "keyid": "SHA256:{{SHA256_PUBLIC_KEY}}",

 "keytype": "ecdsa-sha2-nistp256",

 "scheme": "ecdsa-sha2-nistp256",

 "key": "{{B64_PUBLIC_KEY}}"

 }]

 } Page 2/10

 Keys response:

 ? expires: null or a simplified extended ISO

 8601 format: YYYY-MM-DDTHH:mm:ss.sssZ

 ? keydid: sha256 fingerprint of the public key

 ? keytype: only ecdsa-sha2-nistp256 is currently supported by the npm

 CLI

 ? scheme: only ecdsa-sha2-nistp256 is currently supported by the npm

 CLI

 ? key: base64 encoded public key

 See this <a href="https://registry.npmjs.org/-/npm/v1/keys" tar?

 get="_blank">example key's response from the public npm registry.

 Audit Endpoints

 There are two audit endpoints that npm may use to fetch vulnerability

 information: the Bulk Advisory endpoint and the Quick Audit endpoint.

 Bulk Advisory Endpoint

 As of version 7, npm uses the much faster Bulk Advisory endpoint to op?

 timize the speed of calculating audit results.

 npm will generate a JSON payload with the name and list of versions of

 each package in the tree, and POST it to the default configured reg?

 istry at the path /-/npm/v1/security/advisories/bulk.

 Any packages in the tree that do not have a version field in their

 package.json file will be ignored. If any --omit options are specified

 (either via the --omit config, or one of the shorthands such as --pro?

 duction, --only=dev, and so on), then packages will be omitted from the

 submitted payload as appropriate.

 If the registry responds with an error, or with an invalid response,

 then npm will attempt to load advisory data from the Quick Audit end?

 point.

 The expected result will contain a set of advisory objects for each de?

 pendency that matches the advisory range. Each advisory object con?

 tains a name, url, id, severity, vulnerable_versions, and title.

 npm then uses these advisory objects to calculate vulnerabilities and Page 3/10

 meta-vulnerabilities of the dependencies within the tree.

 Quick Audit Endpoint

 If the Bulk Advisory endpoint returns an error, or invalid data, npm

 will attempt to load advisory data from the Quick Audit endpoint, which

 is considerably slower in most cases.

 The full package tree as found in package-lock.json is submitted, along

 with the following pieces of additional metadata:

 ? npm_version

 ? node_version

 ? platform

 ? arch

 ? node_env

 All packages in the tree are submitted to the Quick Audit endpoint.

 Omitted dependency types are skipped when generating the report.

 Scrubbing

 Out of an abundance of caution, npm versions 5 and 6 would "scrub" any

 packages from the submitted report if their name contained a / charac?

 ter, so as to avoid leaking the names of potentially private packages

 or git URLs.

 However, in practice, this resulted in audits often failing to properly

 detect meta-vulnerabilities, because the tree would appear to be in?

 valid due to missing dependencies, and prevented the detection of vul?

 nerabilities in package trees that used git dependencies or private

 modules.

 This scrubbing has been removed from npm as of version 7.

 Calculating Meta-Vulnerabilities and Remediations

 npm uses the @npmcli/metavuln-calculator http://npm.im/@npm?

 cli/metavuln-calculator module to turn a set of security advisories

 into a set of "vulnerability" objects. A "meta-vulnerability" is a de?

 pendency that is vulnerable by virtue of dependence on vulnerable ver?

 sions of a vulnerable package.

 For example, if the package foo is vulnerable in the range >=1.0.2

 <2.0.0, and the package bar depends on foo@^1.1.0, then that version of Page 4/10

 bar can only be installed by installing a vulnerable version of foo.

 In this case, bar is a "metavulnerability".

 Once metavulnerabilities for a given package are calculated, they are

 cached in the ~/.npm folder and only re-evaluated if the advisory range

 changes, or a new version of the package is published (in which case,

 the new version is checked for metavulnerable status as well).

 If the chain of metavulnerabilities extends all the way to the root

 project, and it cannot be updated without changing its dependency

 ranges, then npm audit fix will require the --force option to apply the

 remediation. If remediations do not require changes to the dependency

 ranges, then all vulnerable packages will be updated to a version that

 does not have an advisory or metavulnerability posted against it.

 Exit Code

 The npm audit command will exit with a 0 exit code if no vulnerabili?

 ties were found. The npm audit fix command will exit with 0 exit code

 if no vulnerabilities are found or if the remediation is able to suc?

 cessfully fix all vulnerabilities.

 If vulnerabilities were found the exit code will depend on the au?

 dit-level configuration setting.

 Examples

 Scan your project for vulnerabilities and automatically install any

 compatible updates to vulnerable dependencies:

 $ npm audit fix

 Run audit fix without modifying node_modules, but still updating the

 pkglock:

 $ npm audit fix --package-lock-only

 Skip updating devDependencies:

 $ npm audit fix --only=prod

 Have audit fix install SemVer-major updates to toplevel dependencies,

 not just SemVer-compatible ones:

 $ npm audit fix --force

 Do a dry run to get an idea of what audit fix will do, and also output

 install information in JSON format: Page 5/10

 $ npm audit fix --dry-run --json

 Scan your project for vulnerabilities and just show the details, with?

 out fixing anything:

 $ npm audit

 Get the detailed audit report in JSON format:

 $ npm audit --json

 Fail an audit only if the results include a vulnerability with a level

 of moderate or higher:

 $ npm audit --audit-level=moderate

 Configuration

 audit-level

 ? Default: null

 ? Type: null, "info", "low", "moderate", "high", "critical", or "none"

 The minimum level of vulnerability for npm audit to exit with a

 non-zero exit code.

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it

 should only report what it would have done. This can be passed into any

 of the commands that modify your local installation, eg, install, up?

 date, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg

 dist-tags, owner, etc.

 force

 ? Default: false

 ? Type: Boolean

 Removes various protections against unfortunate side effects, common

 mistakes, unnecessary performance degradation, and malicious input.

 ? Allow clobbering non-npm files in global installs.

 ? Allow the npm version command to work on an unclean git repository.

 ? Allow deleting the cache folder with npm cache clean.

 ? Allow installing packages that have an engines declaration requiring Page 6/10

 a different version of npm.

 ? Allow installing packages that have an engines declaration requiring

 a different version of node, even if --engine-strict is enabled.

 ? Allow npm audit fix to install modules outside your stated dependency

 range (including SemVer-major changes).

 ? Allow unpublishing all versions of a published package.

 ? Allow conflicting peerDependencies to be installed in the root

 project.

 ? Implicitly set --yes during npm init.

 ? Allow clobbering existing values in npm pkg

 ? Allow unpublishing of entire packages (not just a single version).

 If you don't have a clear idea of what you want to do, it is strongly

 recommended that you do not use this option!

 json

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before

 saving them to your package.json.

 Not supported by all npm commands.

 package-lock-only

 ? Default: false

 ? Type: Boolean

 If set to true, the current operation will only use the pack?

 age-lock.json, ignoring node_modules.

 For update this means only the package-lock.json will be updated, in?

 stead of checking node_modules and downloading dependencies.

 For list this means the output will be based on the tree described by

 the package-lock.json, rather than the contents of node_modules.

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'pro?

 duction', otherwise empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times) Page 7/10

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the pack?

 age-lock.json or npm-shrinkwrap.json file. They are just not physically

 installed on disk.

 If a package type appears in both the --include and --omit lists, then

 it will be included.

 If the resulting omit list includes 'dev', then the NODE_ENV environ?

 ment variable will be set to 'production' for all lifecycle scripts.

 foreground-scripts

 ? Default: false

 ? Type: Boolean

 Run all build scripts (ie, preinstall, install, and postinstall)

 scripts for installed packages in the foreground process, sharing stan?

 dard input, output, and error with the main npm process.

 Note that this will generally make installs run slower, and be much

 noisier, but can be useful for debugging.

 ignore-scripts

 ? Default: false

 ? Type: Boolean

 If true, npm does not run scripts specified in package.json files.

 Note that commands explicitly intended to run a particular script, such

 as npm start, npm stop, npm restart, npm test, and npm run-script will

 still run their intended script if ignore-scripts is set, but they will

 not run any pre- or post-scripts.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory Page 8/10

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 install-links

 ? Default: false

 ? Type: Boolean

 When set file: protocol dependencies that exist outside of the project

 root will be packed and installed as regular dependencies instead of

 creating a symlink. This option has no effect on workspaces. Page 9/10

 See Also

 ? npm help install

 ? npm help config

 February 2023 NPM-AUDIT(1)

Page 10/10

