
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'nm-settings-nmcli.5' command

$ man nm-settings-nmcli.5

NM-SETTINGS-NMCLI(5) Configuration NM-SETTINGS-NMCLI(5)

NAME

 nm-settings-nmcli - Description of settings and properties of

 NetworkManager connection profiles for nmcli

DESCRIPTION

 NetworkManager is based on a concept of connection profiles, sometimes

 referred to as connections only. These connection profiles contain a

 network configuration. When NetworkManager activates a connection

 profile on a network device the configuration will be applied and an

 active network connection will be established. Users are free to create

 as many connection profiles as they see fit. Thus they are flexible in

 having various network configurations for different networking needs.

 NetworkManager provides an API for configuring connection profiles, for

 activating them to configure the network, and inspecting the current

 network configuration. The command line tool nmcli is a client

 application to NetworkManager that uses this API. See nmcli(1) for

 details.

 With commands like nmcli connection add, nmcli connection modify and

 nmcli connection show, connection profiles can be created, modified and

 inspected. A profile consists of properties. On D-Bus this follows the

 format as described by nm-settings-dbus(5), while this manual page

 describes the settings format how they are expected by nmcli.

 The settings and properties shown in tables below list all available Page 1/112

 connection configuration options. However, note that not all settings

 are applicable to all connection types. nmcli connection editor has

 also a built-in describe command that can display description of

 particular settings and properties of this page.

 The setting and property can be abbreviated provided they are unique.

 The list below also shows aliases that can be used unqualified instead

 of the full name. For example connection.interface-name and ifname

 refer to the same property.

 connection setting

 General Connection Profile Settings.

 Properties:

 auth-retries

 The number of retries for the authentication. Zero means to try

 indefinitely; -1 means to use a global default. If the global

 default is not set, the authentication retries for 3 times before

 failing the connection.

 Currently, this only applies to 802-1x authentication.

 Format: int32

 autoconnect

 Alias: autoconnect

 Whether or not the connection should be automatically connected by

 NetworkManager when the resources for the connection are available.

 TRUE to automatically activate the connection, FALSE to require

 manual intervention to activate the connection.

 Autoconnect happens when the circumstances are suitable. That means

 for example that the device is currently managed and not active.

 Autoconnect thus never replaces or competes with an already active

 profile.

 Note that autoconnect is not implemented for VPN profiles. See

 "secondaries" as an alternative to automatically connect VPN

 profiles.

 If multiple profiles are ready to autoconnect on the same device,

 the one with the better "connection.autoconnect-priority" is Page 2/112

 chosen. If the priorities are equal, then the most recently

 connected profile is activated. If the profiles were not connected

 earlier or their "connection.timestamp" is identical, the choice is

 undefined.

 Depending on "connection.multi-connect", a profile can

 (auto)connect only once at a time or multiple times.

 Format: boolean

 autoconnect-priority

 The autoconnect priority in range -999 to 999. If the connection is

 set to autoconnect, connections with higher priority will be

 preferred. The higher number means higher priority. Defaults to 0.

 Note that this property only matters if there are more than one

 candidate profile to select for autoconnect. In case of equal

 priority, the profile used most recently is chosen.

 Format: int32

 autoconnect-retries

 The number of times a connection should be tried when

 autoactivating before giving up. Zero means forever, -1 means the

 global default (4 times if not overridden). Setting this to 1 means

 to try activation only once before blocking autoconnect. Note that

 after a timeout, NetworkManager will try to autoconnect again.

 Format: int32

 autoconnect-slaves

 Whether or not slaves of this connection should be automatically

 brought up when NetworkManager activates this connection. This only

 has a real effect for master connections. The properties

 "autoconnect", "autoconnect-priority" and "autoconnect-retries" are

 unrelated to this setting. The permitted values are: 0: leave slave

 connections untouched, 1: activate all the slave connections with

 this connection, -1: default. If -1 (default) is set, global

 connection.autoconnect-slaves is read to determine the real value.

 If it is default as well, this fallbacks to 0.

 Format: NMSettingConnectionAutoconnectSlaves (int32) Page 3/112

 dns-over-tls

 Whether DNSOverTls (dns-over-tls) is enabled for the connection.

 DNSOverTls is a technology which uses TLS to encrypt dns traffic.

 The permitted values are: "yes" (2) use DNSOverTls and disabled

 fallback, "opportunistic" (1) use DNSOverTls but allow fallback to

 unencrypted resolution, "no" (0) don't ever use DNSOverTls. If

 unspecified "default" depends on the plugin used. Systemd-resolved

 uses global setting.

 This feature requires a plugin which supports DNSOverTls.

 Otherwise, the setting has no effect. One such plugin is

 dns-systemd-resolved.

 Format: int32

 gateway-ping-timeout

 If greater than zero, delay success of IP addressing until either

 the timeout is reached, or an IP gateway replies to a ping.

 Format: uint32

 id

 Alias: con-name

 A human readable unique identifier for the connection, like "Work

 Wi-Fi" or "T-Mobile 3G".

 Format: string

 interface-name

 Alias: ifname

 The name of the network interface this connection is bound to. If

 not set, then the connection can be attached to any interface of

 the appropriate type (subject to restrictions imposed by other

 settings).

 For software devices this specifies the name of the created device.

 For connection types where interface names cannot easily be made

 persistent (e.g. mobile broadband or USB Ethernet), this property

 should not be used. Setting this property restricts the interfaces

 a connection can be used with, and if interface names change or are

 reordered the connection may be applied to the wrong interface. Page 4/112

 Format: string

 lldp

 Whether LLDP is enabled for the connection.

 Format: int32

 llmnr

 Whether Link-Local Multicast Name Resolution (LLMNR) is enabled for

 the connection. LLMNR is a protocol based on the Domain Name System

 (DNS) packet format that allows both IPv4 and IPv6 hosts to perform

 name resolution for hosts on the same local link.

 The permitted values are: "yes" (2) register hostname and resolving

 for the connection, "no" (0) disable LLMNR for the interface,

 "resolve" (1) do not register hostname but allow resolving of LLMNR

 host names If unspecified, "default" ultimately depends on the DNS

 plugin (which for systemd-resolved currently means "yes").

 This feature requires a plugin which supports LLMNR. Otherwise, the

 setting has no effect. One such plugin is dns-systemd-resolved.

 Format: int32

 master

 Alias: master

 Interface name of the master device or UUID of the master

 connection.

 Format: string

 mdns

 Whether mDNS is enabled for the connection.

 The permitted values are: "yes" (2) register hostname and resolving

 for the connection, "no" (0) disable mDNS for the interface,

 "resolve" (1) do not register hostname but allow resolving of mDNS

 host names and "default" (-1) to allow lookup of a global default

 in NetworkManager.conf. If unspecified, "default" ultimately

 depends on the DNS plugin (which for systemd-resolved currently

 means "no").

 This feature requires a plugin which supports mDNS. Otherwise, the

 setting has no effect. One such plugin is dns-systemd-resolved. Page 5/112

 Format: int32

 metered

 Whether the connection is metered.

 When updating this property on a currently activated connection,

 the change takes effect immediately.

 Format: NMMetered (int32)

 mptcp-flags

 Whether to configure MPTCP endpoints and the address flags. If

 MPTCP is enabled in NetworkManager, it will configure the addresses

 of the interface as MPTCP endpoints. Note that IPv4 loopback

 addresses (127.0.0.0/8), IPv4 link local addresses

 (169.254.0.0/16), the IPv6 loopback address (::1), IPv6 link local

 addresses (fe80::/10), IPv6 unique local addresses (ULA, fc00::/7)

 and IPv6 privacy extension addresses (rfc3041, ipv6.ip6-privacy)

 will be excluded from being configured as endpoints.

 If "disabled" (0x1), MPTCP handling for the interface is disabled

 and no endpoints are registered.

 The "enabled" (0x2) flag means that MPTCP handling is enabled. This

 flag can also be implied from the presence of other flags.

 Even when enabled, MPTCP handling will by default still be disabled

 unless "/proc/sys/net/mptcp/enabled" sysctl is on. NetworkManager

 does not change the sysctl and this is up to the administrator or

 distribution. To configure endpoints even if the sysctl is

 disabled, "also-without-sysctl" (0x4) flag can be used. In that

 case, NetworkManager doesn't look at the sysctl and configures

 endpoints regardless.

 Even when enabled, NetworkManager will only configure MPTCP

 endpoints for a certain address family, if there is a unicast

 default route (0.0.0.0/0 or ::/0) in the main routing table. The

 flag "also-without-default-route" (0x8) can override that.

 When MPTCP handling is enabled then endpoints are configured with

 the specified address flags "signal" (0x10), "subflow" (0x20),

 "backup" (0x40), "fullmesh" (0x80). See ip-mptcp(8) manual for Page 6/112

 additional information about the flags.

 If the flags are zero (0x0), the global connection default from

 NetworkManager.conf is honored. If still unspecified, the fallback

 is "enabled,subflow". Note that this means that MPTCP is by default

 done depending on the "/proc/sys/net/mptcp/enabled" sysctl.

 NetworkManager does not change the MPTCP limits nor enable MPTCP

 via "/proc/sys/net/mptcp/enabled". That is a host configuration

 which the admin can change via sysctl and ip-mptcp.

 Strict reverse path filtering (rp_filter) breaks many MPTCP use

 cases, so when MPTCP handling for IPv4 addresses on the interface

 is enabled, NetworkManager would loosen the strict reverse path

 filtering (1) to the loose setting (2).

 Format: uint32

 mud-url

 If configured, set to a Manufacturer Usage Description (MUD) URL

 that points to manufacturer-recommended network policies for IoT

 devices. It is transmitted as a DHCPv4 or DHCPv6 option. The value

 must be a valid URL starting with "https://".

 The special value "none" is allowed to indicate that no MUD URL is

 used.

 If the per-profile value is unspecified (the default), a global

 connection default gets consulted. If still unspecified, the

 ultimate default is "none".

 Format: string

 multi-connect

 Specifies whether the profile can be active multiple times at a

 particular moment. The value is of type NMConnectionMultiConnect.

 Format: int32

 permissions

 An array of strings defining what access a given user has to this

 connection. If this is NULL or empty, all users are allowed to

 access this connection; otherwise users are allowed if and only if

 they are in this list. When this is not empty, the connection can Page 7/112

 be active only when one of the specified users is logged into an

 active session. Each entry is of the form "[type]:[id]:[reserved]";

 for example, "user:dcbw:blah".

 At this time only the "user" [type] is allowed. Any other values

 are ignored and reserved for future use. [id] is the username that

 this permission refers to, which may not contain the ":" character.

 Any [reserved] information present must be ignored and is reserved

 for future use. All of [type], [id], and [reserved] must be valid

 UTF-8.

 Format: array of string

 read-only

 FALSE if the connection can be modified using the provided settings

 service's D-Bus interface with the right privileges, or TRUE if the

 connection is read-only and cannot be modified.

 Format: boolean

 secondaries

 List of connection UUIDs that should be activated when the base

 connection itself is activated. Currently, only VPN connections are

 supported.

 Format: array of string

 slave-type

 Alias: slave-type

 Setting name of the device type of this slave's master connection

 (eg, "bond"), or NULL if this connection is not a slave.

 Format: string

 stable-id

 This represents the identity of the connection used for various

 purposes. It allows to configure multiple profiles to share the

 identity. Also, the stable-id can contain placeholders that are

 substituted dynamically and deterministically depending on the

 context.

 The stable-id is used for generating IPv6 stable private addresses

 with ipv6.addr-gen-mode=stable-privacy. It is also used to seed the Page 8/112

 generated cloned MAC address for ethernet.cloned-mac-address=stable

 and wifi.cloned-mac-address=stable. It is also used as DHCP client

 identifier with ipv4.dhcp-client-id=stable and to derive the DHCP

 DUID with ipv6.dhcp-duid=stable-[llt,ll,uuid].

 Note that depending on the context where it is used, other

 parameters are also seeded into the generation algorithm. For

 example, a per-host key is commonly also included, so that

 different systems end up generating different IDs. Or with

 ipv6.addr-gen-mode=stable-privacy, also the device's name is

 included, so that different interfaces yield different addresses.

 The per-host key is the identity of your machine and stored in

 /var/lib/NetworkManager/secret_key. See NetworkManager(8) manual

 about the secret-key and the host identity.

 The '$' character is treated special to perform dynamic

 substitutions at runtime. Currently, supported are "${CONNECTION}",

 "${DEVICE}", "${MAC}", "${BOOT}", "${RANDOM}". These effectively

 create unique IDs per-connection, per-device, per-boot, or every

 time. Note that "${DEVICE}" corresponds to the interface name of

 the device and "${MAC}" is the permanent MAC address of the device.

 Any unrecognized patterns following '$' are treated verbatim,

 however are reserved for future use. You are thus advised to avoid

 '$' or escape it as "$$". For example, set it to

 "${CONNECTION}-${BOOT}-${DEVICE}" to create a unique id for this

 connection that changes with every reboot and differs depending on

 the interface where the profile activates.

 If the value is unset, a global connection default is consulted. If

 the value is still unset, the default is similar to "${CONNECTION}"

 and uses a unique, fixed ID for the connection.

 Format: string

 timestamp

 The time, in seconds since the Unix Epoch, that the connection was

 last _successfully_ fully activated.

 NetworkManager updates the connection timestamp periodically when Page 9/112

 the connection is active to ensure that an active connection has

 the latest timestamp. The property is only meant for reading

 (changes to this property will not be preserved).

 Format: uint64

 type

 Alias: type

 Base type of the connection. For hardware-dependent connections,

 should contain the setting name of the hardware-type specific

 setting (ie, "802-3-ethernet" or "802-11-wireless" or "bluetooth",

 etc), and for non-hardware dependent connections like VPN or

 otherwise, should contain the setting name of that setting type

 (ie, "vpn" or "bridge", etc).

 Format: string

 uuid

 A universally unique identifier for the connection, for example

 generated with libuuid. It should be assigned when the connection

 is created, and never changed as long as the connection still

 applies to the same network. For example, it should not be changed

 when the "id" property or NMSettingIP4Config changes, but might

 need to be re-created when the Wi-Fi SSID, mobile broadband network

 provider, or "type" property changes.

 The UUID must be in the format

 "2815492f-7e56-435e-b2e9-246bd7cdc664" (ie, contains only

 hexadecimal characters and "-").

 Format: a valid RFC4122 universally unique identifier (UUID).

 wait-activation-delay

 Time in milliseconds to wait for connection to be considered

 activated. The wait will start after the pre-up dispatcher event.

 The value 0 means no wait time. The default value is -1, which

 currently has the same meaning as no wait time.

 Format: int32

 wait-device-timeout

 Timeout in milliseconds to wait for device at startup. During boot, Page 10/112

 devices may take a while to be detected by the driver. This

 property will cause to delay NetworkManager-wait-online.service and

 nm-online to give the device a chance to appear. This works by

 waiting for the given timeout until a compatible device for the

 profile is available and managed.

 The value 0 means no wait time. The default value is -1, which

 currently has the same meaning as no wait time.

 Format: int32

 zone

 The trust level of a the connection. Free form case-insensitive

 string (for example "Home", "Work", "Public"). NULL or unspecified

 zone means the connection will be placed in the default zone as

 defined by the firewall.

 When updating this property on a currently activated connection,

 the change takes effect immediately.

 Format: string

 6lowpan setting

 6LoWPAN Settings.

 Properties:

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID from which this 6LowPAN interface should be created.

 Format: string

 802-1x setting

 IEEE 802.1x Authentication Settings.

 Properties:

 altsubject-matches

 List of strings to be matched against the altSubjectName of the

 certificate presented by the authentication server. If the list is

 empty, no verification of the server certificate's altSubjectName

 is performed.

 Format: array of string Page 11/112

 anonymous-identity

 Anonymous identity string for EAP authentication methods. Used as

 the unencrypted identity with EAP types that support different

 tunneled identity like EAP-TTLS.

 Format: string

 auth-timeout

 A timeout for the authentication. Zero means the global default; if

 the global default is not set, the authentication timeout is 25

 seconds.

 Format: int32

 ca-cert

 Contains the CA certificate if used by the EAP method specified in

 the "eap" property.

 Certificate data is specified using a "scheme"; three are currently

 supported: blob, path and pkcs#11 URL. When using the blob scheme

 this property should be set to the certificate's DER encoded data.

 When using the path scheme, this property should be set to the full

 UTF-8 encoded path of the certificate, prefixed with the string

 "file://" and ending with a terminating NUL byte. This property can

 be unset even if the EAP method supports CA certificates, but this

 allows man-in-the-middle attacks and is NOT recommended.

 Note that enabling NMSetting8021x:system-ca-certs will override

 this setting to use the built-in path, if the built-in path is not

 a directory.

 Format: byte array

 ca-cert-password

 The password used to access the CA certificate stored in "ca-cert"

 property. Only makes sense if the certificate is stored on a

 PKCS#11 token that requires a login.

 Format: string

 ca-cert-password-flags

 Flags indicating how to handle the "ca-cert-password" property.

 Format: NMSettingSecretFlags (uint32) Page 12/112

 ca-path

 UTF-8 encoded path to a directory containing PEM or DER formatted

 certificates to be added to the verification chain in addition to

 the certificate specified in the "ca-cert" property.

 If NMSetting8021x:system-ca-certs is enabled and the built-in CA

 path is an existing directory, then this setting is ignored.

 Format: string

 client-cert

 Contains the client certificate if used by the EAP method specified

 in the "eap" property.

 Certificate data is specified using a "scheme"; two are currently

 supported: blob and path. When using the blob scheme (which is

 backwards compatible with NM 0.7.x) this property should be set to

 the certificate's DER encoded data. When using the path scheme,

 this property should be set to the full UTF-8 encoded path of the

 certificate, prefixed with the string "file://" and ending with a

 terminating NUL byte.

 Format: byte array

 client-cert-password

 The password used to access the client certificate stored in

 "client-cert" property. Only makes sense if the certificate is

 stored on a PKCS#11 token that requires a login.

 Format: string

 client-cert-password-flags

 Flags indicating how to handle the "client-cert-password" property.

 Format: NMSettingSecretFlags (uint32)

 domain-match

 Constraint for server domain name. If set, this list of FQDNs is

 used as a match requirement for dNSName element(s) of the

 certificate presented by the authentication server. If a matching

 dNSName is found, this constraint is met. If no dNSName values are

 present, this constraint is matched against SubjectName CN using

 the same comparison. Multiple valid FQDNs can be passed as a ";" Page 13/112

 delimited list.

 Format: string

 domain-suffix-match

 Constraint for server domain name. If set, this FQDN is used as a

 suffix match requirement for dNSName element(s) of the certificate

 presented by the authentication server. If a matching dNSName is

 found, this constraint is met. If no dNSName values are present,

 this constraint is matched against SubjectName CN using same suffix

 match comparison. Since version 1.24, multiple valid FQDNs can be

 passed as a ";" delimited list.

 Format: string

 eap

 The allowed EAP method to be used when authenticating to the

 network with 802.1x. Valid methods are: "leap", "md5", "tls",

 "peap", "ttls", "pwd", and "fast". Each method requires different

 configuration using the properties of this setting; refer to

 wpa_supplicant documentation for the allowed combinations.

 Format: array of string

 identity

 Identity string for EAP authentication methods. Often the user's

 user or login name.

 Format: string

 optional

 Whether the 802.1X authentication is optional. If TRUE, the

 activation will continue even after a timeout or an authentication

 failure. Setting the property to TRUE is currently allowed only for

 Ethernet connections. If set to FALSE, the activation can continue

 only after a successful authentication.

 Format: boolean

 pac-file

 UTF-8 encoded file path containing PAC for EAP-FAST.

 Format: string

 password Page 14/112

 UTF-8 encoded password used for EAP authentication methods. If both

 the "password" property and the "password-raw" property are

 specified, "password" is preferred.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property.

 Format: NMSettingSecretFlags (uint32)

 password-raw

 Password used for EAP authentication methods, given as a byte array

 to allow passwords in other encodings than UTF-8 to be used. If

 both the "password" property and the "password-raw" property are

 specified, "password" is preferred.

 Format: byte array

 password-raw-flags

 Flags indicating how to handle the "password-raw" property.

 Format: NMSettingSecretFlags (uint32)

 phase1-auth-flags

 Specifies authentication flags to use in "phase 1" outer

 authentication using NMSetting8021xAuthFlags options. The

 individual TLS versions can be explicitly disabled. TLS time checks

 can be also disabled. If a certain TLS disable flag is not set, it

 is up to the supplicant to allow or forbid it. The TLS options map

 to tls_disable_tlsv1_x and tls_disable_time_checks settings. See

 the wpa_supplicant documentation for more details.

 Format: uint32

 phase1-fast-provisioning

 Enables or disables in-line provisioning of EAP-FAST credentials

 when FAST is specified as the EAP method in the "eap" property.

 Recognized values are "0" (disabled), "1" (allow unauthenticated

 provisioning), "2" (allow authenticated provisioning), and "3"

 (allow both authenticated and unauthenticated provisioning). See

 the wpa_supplicant documentation for more details.

 Format: string Page 15/112

 phase1-peaplabel

 Forces use of the new PEAP label during key derivation. Some RADIUS

 servers may require forcing the new PEAP label to interoperate with

 PEAPv1. Set to "1" to force use of the new PEAP label. See the

 wpa_supplicant documentation for more details.

 Format: string

 phase1-peapver

 Forces which PEAP version is used when PEAP is set as the EAP

 method in the "eap" property. When unset, the version reported by

 the server will be used. Sometimes when using older RADIUS servers,

 it is necessary to force the client to use a particular PEAP

 version. To do so, this property may be set to "0" or "1" to force

 that specific PEAP version.

 Format: string

 phase2-altsubject-matches

 List of strings to be matched against the altSubjectName of the

 certificate presented by the authentication server during the inner

 "phase 2" authentication. If the list is empty, no verification of

 the server certificate's altSubjectName is performed.

 Format: array of string

 phase2-auth

 Specifies the allowed "phase 2" inner authentication method when an

 EAP method that uses an inner TLS tunnel is specified in the "eap"

 property. For TTLS this property selects one of the supported

 non-EAP inner methods: "pap", "chap", "mschap", "mschapv2" while

 "phase2-autheap" selects an EAP inner method. For PEAP this selects

 an inner EAP method, one of: "gtc", "otp", "md5" and "tls". Each

 "phase 2" inner method requires specific parameters for successful

 authentication; see the wpa_supplicant documentation for more

 details. Both "phase2-auth" and "phase2-autheap" cannot be

 specified.

 Format: string

 phase2-autheap Page 16/112

 Specifies the allowed "phase 2" inner EAP-based authentication

 method when TTLS is specified in the "eap" property. Recognized

 EAP-based "phase 2" methods are "md5", "mschapv2", "otp", "gtc",

 and "tls". Each "phase 2" inner method requires specific parameters

 for successful authentication; see the wpa_supplicant documentation

 for more details.

 Format: string

 phase2-ca-cert

 Contains the "phase 2" CA certificate if used by the EAP method

 specified in the "phase2-auth" or "phase2-autheap" properties.

 Certificate data is specified using a "scheme"; three are currently

 supported: blob, path and pkcs#11 URL. When using the blob scheme

 this property should be set to the certificate's DER encoded data.

 When using the path scheme, this property should be set to the full

 UTF-8 encoded path of the certificate, prefixed with the string

 "file://" and ending with a terminating NUL byte. This property can

 be unset even if the EAP method supports CA certificates, but this

 allows man-in-the-middle attacks and is NOT recommended.

 Note that enabling NMSetting8021x:system-ca-certs will override

 this setting to use the built-in path, if the built-in path is not

 a directory.

 Format: byte array

 phase2-ca-cert-password

 The password used to access the "phase2" CA certificate stored in

 "phase2-ca-cert" property. Only makes sense if the certificate is

 stored on a PKCS#11 token that requires a login.

 Format: string

 phase2-ca-cert-password-flags

 Flags indicating how to handle the "phase2-ca-cert-password"

 property.

 Format: NMSettingSecretFlags (uint32)

 phase2-ca-path

 UTF-8 encoded path to a directory containing PEM or DER formatted Page 17/112

 certificates to be added to the verification chain in addition to

 the certificate specified in the "phase2-ca-cert" property.

 If NMSetting8021x:system-ca-certs is enabled and the built-in CA

 path is an existing directory, then this setting is ignored.

 Format: string

 phase2-client-cert

 Contains the "phase 2" client certificate if used by the EAP method

 specified in the "phase2-auth" or "phase2-autheap" properties.

 Certificate data is specified using a "scheme"; two are currently

 supported: blob and path. When using the blob scheme (which is

 backwards compatible with NM 0.7.x) this property should be set to

 the certificate's DER encoded data. When using the path scheme,

 this property should be set to the full UTF-8 encoded path of the

 certificate, prefixed with the string "file://" and ending with a

 terminating NUL byte. This property can be unset even if the EAP

 method supports CA certificates, but this allows man-in-the-middle

 attacks and is NOT recommended.

 Format: byte array

 phase2-client-cert-password

 The password used to access the "phase2" client certificate stored

 in "phase2-client-cert" property. Only makes sense if the

 certificate is stored on a PKCS#11 token that requires a login.

 Format: string

 phase2-client-cert-password-flags

 Flags indicating how to handle the "phase2-client-cert-password"

 property.

 Format: NMSettingSecretFlags (uint32)

 phase2-domain-match

 Constraint for server domain name. If set, this list of FQDNs is

 used as a match requirement for dNSName element(s) of the

 certificate presented by the authentication server during the inner

 "phase 2" authentication. If a matching dNSName is found, this

 constraint is met. If no dNSName values are present, this Page 18/112

 constraint is matched against SubjectName CN using the same

 comparison. Multiple valid FQDNs can be passed as a ";" delimited

 list.

 Format: string

 phase2-domain-suffix-match

 Constraint for server domain name. If set, this FQDN is used as a

 suffix match requirement for dNSName element(s) of the certificate

 presented by the authentication server during the inner "phase 2"

 authentication. If a matching dNSName is found, this constraint is

 met. If no dNSName values are present, this constraint is matched

 against SubjectName CN using same suffix match comparison. Since

 version 1.24, multiple valid FQDNs can be passed as a ";" delimited

 list.

 Format: string

 phase2-private-key

 Contains the "phase 2" inner private key when the "phase2-auth" or

 "phase2-autheap" property is set to "tls".

 Key data is specified using a "scheme"; two are currently

 supported: blob and path. When using the blob scheme and private

 keys, this property should be set to the key's encrypted PEM

 encoded data. When using private keys with the path scheme, this

 property should be set to the full UTF-8 encoded path of the key,

 prefixed with the string "file://" and ending with a terminating

 NUL byte. When using PKCS#12 format private keys and the blob

 scheme, this property should be set to the PKCS#12 data and the

 "phase2-private-key-password" property must be set to password used

 to decrypt the PKCS#12 certificate and key. When using PKCS#12

 files and the path scheme, this property should be set to the full

 UTF-8 encoded path of the key, prefixed with the string "file://"

 and ending with a terminating NUL byte, and as with the blob scheme

 the "phase2-private-key-password" property must be set to the

 password used to decode the PKCS#12 private key and certificate.

 Format: byte array Page 19/112

 phase2-private-key-password

 The password used to decrypt the "phase 2" private key specified in

 the "phase2-private-key" property when the private key either uses

 the path scheme, or is a PKCS#12 format key.

 Format: string

 phase2-private-key-password-flags

 Flags indicating how to handle the "phase2-private-key-password"

 property.

 Format: NMSettingSecretFlags (uint32)

 phase2-subject-match

 Substring to be matched against the subject of the certificate

 presented by the authentication server during the inner "phase 2"

 authentication. When unset, no verification of the authentication

 server certificate's subject is performed. This property provides

 little security, if any, and should not be used.

 This property is deprecated since version 1.2. Use

 "phase2-domain-suffix-match" instead.

 Format: string

 pin

 PIN used for EAP authentication methods.

 Format: string

 pin-flags

 Flags indicating how to handle the "pin" property.

 Format: NMSettingSecretFlags (uint32)

 private-key

 Contains the private key when the "eap" property is set to "tls".

 Key data is specified using a "scheme"; two are currently

 supported: blob and path. When using the blob scheme and private

 keys, this property should be set to the key's encrypted PEM

 encoded data. When using private keys with the path scheme, this

 property should be set to the full UTF-8 encoded path of the key,

 prefixed with the string "file://" and ending with a terminating

 NUL byte. When using PKCS#12 format private keys and the blob Page 20/112

 scheme, this property should be set to the PKCS#12 data and the

 "private-key-password" property must be set to password used to

 decrypt the PKCS#12 certificate and key. When using PKCS#12 files

 and the path scheme, this property should be set to the full UTF-8

 encoded path of the key, prefixed with the string "file://" and

 ending with a terminating NUL byte, and as with the blob scheme the

 "private-key-password" property must be set to the password used to

 decode the PKCS#12 private key and certificate.

 WARNING: "private-key" is not a "secret" property, and thus

 unencrypted private key data using the BLOB scheme may be readable

 by unprivileged users. Private keys should always be encrypted with

 a private key password to prevent unauthorized access to

 unencrypted private key data.

 Format: byte array

 private-key-password

 The password used to decrypt the private key specified in the

 "private-key" property when the private key either uses the path

 scheme, or if the private key is a PKCS#12 format key.

 Format: string

 private-key-password-flags

 Flags indicating how to handle the "private-key-password" property.

 Format: NMSettingSecretFlags (uint32)

 subject-match

 Substring to be matched against the subject of the certificate

 presented by the authentication server. When unset, no verification

 of the authentication server certificate's subject is performed.

 This property provides little security, if any, and should not be

 used.

 This property is deprecated since version 1.2. Use

 "phase2-domain-suffix-match" instead.

 Format: string

 system-ca-certs

 When TRUE, overrides the "ca-path" and "phase2-ca-path" properties Page 21/112

 using the system CA directory specified at configure time with the

 --system-ca-path switch. The certificates in this directory are

 added to the verification chain in addition to any certificates

 specified by the "ca-cert" and "phase2-ca-cert" properties. If the

 path provided with --system-ca-path is rather a file name (bundle

 of trusted CA certificates), it overrides "ca-cert" and

 "phase2-ca-cert" properties instead (sets ca_cert/ca_cert2 options

 for wpa_supplicant).

 Format: boolean

 adsl setting

 ADSL Settings.

 Properties:

 encapsulation

 Alias: encapsulation

 Encapsulation of ADSL connection. Can be "vcmux" or "llc".

 Format: string

 password

 Alias: password

 Password used to authenticate with the ADSL service.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property.

 Format: NMSettingSecretFlags (uint32)

 protocol

 Alias: protocol

 ADSL connection protocol. Can be "pppoa", "pppoe" or "ipoatm".

 Format: string

 username

 Alias: username

 Username used to authenticate with the ADSL service.

 Format: string

 vci

 VCI of ADSL connection Page 22/112

 Format: uint32

 vpi

 VPI of ADSL connection

 Format: uint32

 bluetooth setting

 Bluetooth Settings.

 Properties:

 bdaddr

 Alias: addr

 The Bluetooth address of the device.

 Format: byte array

 type

 Alias: bt-type

 Either "dun" for Dial-Up Networking connections or "panu" for

 Personal Area Networking connections to devices supporting the NAP

 profile.

 Format: string

 bond setting

 Bonding Settings.

 Properties:

 options

 Dictionary of key/value pairs of bonding options. Both keys and

 values must be strings. Option names must contain only alphanumeric

 characters (ie, [a-zA-Z0-9]).

 Format: dict of string to string

 bridge setting

 Bridging Settings.

 Properties:

 ageing-time

 Alias: ageing-time

 The Ethernet MAC address aging time, in seconds.

 Format: uint32

 forward-delay Page 23/112

 Alias: forward-delay

 The Spanning Tree Protocol (STP) forwarding delay, in seconds.

 Format: uint32

 group-address

 If specified, The MAC address of the multicast group this bridge

 uses for STP.

 The address must be a link-local address in standard Ethernet MAC

 address format, ie an address of the form 01:80:C2:00:00:0X, with X

 in [0, 4..F]. If not specified the default value is

 01:80:C2:00:00:00.

 Format: byte array

 group-forward-mask

 Alias: group-forward-mask

 A mask of group addresses to forward. Usually, group addresses in

 the range from 01:80:C2:00:00:00 to 01:80:C2:00:00:0F are not

 forwarded according to standards. This property is a mask of 16

 bits, each corresponding to a group address in that range that must

 be forwarded. The mask can't have bits 0, 1 or 2 set because they

 are used for STP, MAC pause frames and LACP.

 Format: uint32

 hello-time

 Alias: hello-time

 The Spanning Tree Protocol (STP) hello time, in seconds.

 Format: uint32

 mac-address

 Alias: mac

 If specified, the MAC address of bridge. When creating a new

 bridge, this MAC address will be set.

 If this field is left unspecified, the

 "ethernet.cloned-mac-address" is referred instead to generate the

 initial MAC address. Note that setting

 "ethernet.cloned-mac-address" anyway overwrites the MAC address of

 the bridge later while activating the bridge. Page 24/112

 This property is deprecated since version 1.12. Use the

 "cloned-mac-address" property instead.

 Format: byte array

 max-age

 Alias: max-age

 The Spanning Tree Protocol (STP) maximum message age, in seconds.

 Format: uint32

 multicast-hash-max

 Set maximum size of multicast hash table (value must be a power of

 2).

 Format: uint32

 multicast-last-member-count

 Set the number of queries the bridge will send before stopping

 forwarding a multicast group after a "leave" message has been

 received.

 Format: uint32

 multicast-last-member-interval

 Set interval (in deciseconds) between queries to find remaining

 members of a group, after a "leave" message is received.

 Format: uint64

 multicast-membership-interval

 Set delay (in deciseconds) after which the bridge will leave a

 group, if no membership reports for this group are received.

 Format: uint64

 multicast-querier

 Enable or disable sending of multicast queries by the bridge. If

 not specified the option is disabled.

 Format: boolean

 multicast-querier-interval

 If no queries are seen after this delay (in deciseconds) has

 passed, the bridge will start to send its own queries.

 Format: uint64

 multicast-query-interval Page 25/112

 Interval (in deciseconds) between queries sent by the bridge after

 the end of the startup phase.

 Format: uint64

 multicast-query-response-interval

 Set the Max Response Time/Max Response Delay (in deciseconds) for

 IGMP/MLD queries sent by the bridge.

 Format: uint64

 multicast-query-use-ifaddr

 If enabled the bridge's own IP address is used as the source

 address for IGMP queries otherwise the default of 0.0.0.0 is used.

 Format: boolean

 multicast-router

 Sets bridge's multicast router. Multicast-snooping must be enabled

 for this option to work.

 Supported values are: 'auto', 'disabled', 'enabled' to which kernel

 assigns the numbers 1, 0, and 2, respectively. If not specified the

 default value is 'auto' (1).

 Format: string

 multicast-snooping

 Alias: multicast-snooping

 Controls whether IGMP snooping is enabled for this bridge. Note

 that if snooping was automatically disabled due to hash collisions,

 the system may refuse to enable the feature until the collisions

 are resolved.

 Format: boolean

 multicast-startup-query-count

 Set the number of IGMP queries to send during startup phase.

 Format: uint32

 multicast-startup-query-interval

 Sets the time (in deciseconds) between queries sent out at startup

 to determine membership information.

 Format: uint64

 priority Page 26/112

 Alias: priority

 Sets the Spanning Tree Protocol (STP) priority for this bridge.

 Lower values are "better"; the lowest priority bridge will be

 elected the root bridge.

 Format: uint32

 stp

 Alias: stp

 Controls whether Spanning Tree Protocol (STP) is enabled for this

 bridge.

 Format: boolean

 vlan-default-pvid

 The default PVID for the ports of the bridge, that is the VLAN id

 assigned to incoming untagged frames.

 Format: uint32

 vlan-filtering

 Control whether VLAN filtering is enabled on the bridge.

 Format: boolean

 vlan-protocol

 If specified, the protocol used for VLAN filtering.

 Supported values are: '802.1Q', '802.1ad'. If not specified the

 default value is '802.1Q'.

 Format: string

 vlan-stats-enabled

 Controls whether per-VLAN stats accounting is enabled.

 Format: boolean

 vlans

 Array of bridge VLAN objects. In addition to the VLANs specified

 here, the bridge will also have the default-pvid VLAN configured by

 the bridge.vlan-default-pvid property.

 In nmcli the VLAN list can be specified with the following syntax:

 $vid [pvid] [untagged] [, $vid [pvid] [untagged]]...

 where $vid is either a single id between 1 and 4094 or a range,

 represented as a couple of ids separated by a dash. Page 27/112

 Format: array of vardict

 bridge-port setting

 Bridge Port Settings.

 Properties:

 hairpin-mode

 Alias: hairpin

 Enables or disables "hairpin mode" for the port, which allows

 frames to be sent back out through the port the frame was received

 on.

 Format: boolean

 path-cost

 Alias: path-cost

 The Spanning Tree Protocol (STP) port cost for destinations via

 this port.

 Format: uint32

 priority

 Alias: priority

 The Spanning Tree Protocol (STP) priority of this bridge port.

 Format: uint32

 vlans

 Array of bridge VLAN objects. In addition to the VLANs specified

 here, the port will also have the default-pvid VLAN configured on

 the bridge by the bridge.vlan-default-pvid property.

 In nmcli the VLAN list can be specified with the following syntax:

 $vid [pvid] [untagged] [, $vid [pvid] [untagged]]...

 where $vid is either a single id between 1 and 4094 or a range,

 represented as a couple of ids separated by a dash.

 Format: array of vardict

 cdma setting

 CDMA-based Mobile Broadband Settings.

 Properties:

 mtu

 If non-zero, only transmit packets of the specified size or Page 28/112

 smaller, breaking larger packets up into multiple frames.

 Format: uint32

 number

 The number to dial to establish the connection to the CDMA-based

 mobile broadband network, if any. If not specified, the default

 number (#777) is used when required.

 Format: string

 password

 Alias: password

 The password used to authenticate with the network, if required.

 Many providers do not require a password, or accept any password.

 But if a password is required, it is specified here.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property.

 Format: NMSettingSecretFlags (uint32)

 username

 Alias: user

 The username used to authenticate with the network, if required.

 Many providers do not require a username, or accept any username.

 But if a username is required, it is specified here.

 Format: string

 dcb setting

 Data Center Bridging Settings.

 Properties:

 app-fcoe-flags

 Specifies the NMSettingDcbFlags for the DCB FCoE application. Flags

 may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),

 NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 app-fcoe-mode

 The FCoE controller mode; either "fabric" or "vn2vn". Page 29/112

 Since 1.34, NULL is the default and means "fabric". Before 1.34,

 NULL was rejected as invalid and the default was "fabric".

 Format: string

 app-fcoe-priority

 The highest User Priority (0 - 7) which FCoE frames should use, or

 -1 for default priority. Only used when the "app-fcoe-flags"

 property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 app-fip-flags

 Specifies the NMSettingDcbFlags for the DCB FIP application. Flags

 may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),

 NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 app-fip-priority

 The highest User Priority (0 - 7) which FIP frames should use, or

 -1 for default priority. Only used when the "app-fip-flags"

 property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 app-iscsi-flags

 Specifies the NMSettingDcbFlags for the DCB iSCSI application.

 Flags may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),

 NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 app-iscsi-priority

 The highest User Priority (0 - 7) which iSCSI frames should use, or

 -1 for default priority. Only used when the "app-iscsi-flags"

 property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 priority-bandwidth

 An array of 8 uint values, where the array index corresponds to the

 User Priority (0 - 7) and the value indicates the percentage of Page 30/112

 bandwidth of the priority's assigned group that the priority may

 use. The sum of all percentages for priorities which belong to the

 same group must total 100 percents.

 Format: array of uint32

 priority-flow-control

 An array of 8 boolean values, where the array index corresponds to

 the User Priority (0 - 7) and the value indicates whether or not

 the corresponding priority should transmit priority pause.

 Format: array of uint32

 priority-flow-control-flags

 Specifies the NMSettingDcbFlags for DCB Priority Flow Control

 (PFC). Flags may be any combination of NM_SETTING_DCB_FLAG_ENABLE

 (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 priority-group-bandwidth

 An array of 8 uint values, where the array index corresponds to the

 Priority Group ID (0 - 7) and the value indicates the percentage of

 link bandwidth allocated to that group. Allowed values are 0 - 100,

 and the sum of all values must total 100 percents.

 Format: array of uint32

 priority-group-flags

 Specifies the NMSettingDcbFlags for DCB Priority Groups. Flags may

 be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),

 NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 priority-group-id

 An array of 8 uint values, where the array index corresponds to the

 User Priority (0 - 7) and the value indicates the Priority Group

 ID. Allowed Priority Group ID values are 0 - 7 or 15 for the

 unrestricted group.

 Format: array of uint32 Page 31/112

 priority-strict-bandwidth

 An array of 8 boolean values, where the array index corresponds to

 the User Priority (0 - 7) and the value indicates whether or not

 the priority may use all of the bandwidth allocated to its assigned

 group.

 Format: array of uint32

 priority-traffic-class

 An array of 8 uint values, where the array index corresponds to the

 User Priority (0 - 7) and the value indicates the traffic class (0

 - 7) to which the priority is mapped.

 Format: array of uint32

 ethtool setting

 Ethtool Ethernet Settings.

 Properties:

 coalesce-adaptive-rx

 coalesce-adaptive-tx

 coalesce-pkt-rate-high

 coalesce-pkt-rate-low

 coalesce-rx-frames

 coalesce-rx-frames-high

 coalesce-rx-frames-irq

 coalesce-rx-frames-low

 coalesce-rx-usecs

 coalesce-rx-usecs-high

 coalesce-rx-usecs-irq

 coalesce-rx-usecs-low

 coalesce-sample-interval

 coalesce-stats-block-usecs

 coalesce-tx-frames

 coalesce-tx-frames-high

 coalesce-tx-frames-irq

 coalesce-tx-frames-low

 coalesce-tx-usecs Page 32/112

 coalesce-tx-usecs-high

 coalesce-tx-usecs-irq

 coalesce-tx-usecs-low

 feature-esp-hw-offload

 feature-esp-tx-csum-hw-offload

 feature-fcoe-mtu

 feature-gro

 feature-gso

 feature-highdma

 feature-hw-tc-offload

 feature-l2-fwd-offload

 feature-loopback

 feature-lro

 feature-macsec-hw-offload

 feature-ntuple

 feature-rx

 feature-rx-all

 feature-rx-fcs

 feature-rx-gro-hw

 feature-rx-gro-list

 feature-rx-udp-gro-forwarding

 feature-rx-udp_tunnel-port-offload

 feature-rx-vlan-filter

 feature-rx-vlan-stag-filter

 feature-rx-vlan-stag-hw-parse

 feature-rxhash

 feature-rxvlan

 feature-sg

 feature-tls-hw-record

 feature-tls-hw-rx-offload

 feature-tls-hw-tx-offload

 feature-tso

 feature-tx Page 33/112

 feature-tx-checksum-fcoe-crc

 feature-tx-checksum-ip-generic

 feature-tx-checksum-ipv4

 feature-tx-checksum-ipv6

 feature-tx-checksum-sctp

 feature-tx-esp-segmentation

 feature-tx-fcoe-segmentation

 feature-tx-gre-csum-segmentation

 feature-tx-gre-segmentation

 feature-tx-gso-list

 feature-tx-gso-partial

 feature-tx-gso-robust

 feature-tx-ipxip4-segmentation

 feature-tx-ipxip6-segmentation

 feature-tx-nocache-copy

 feature-tx-scatter-gather

 feature-tx-scatter-gather-fraglist

 feature-tx-sctp-segmentation

 feature-tx-tcp-ecn-segmentation

 feature-tx-tcp-mangleid-segmentation

 feature-tx-tcp-segmentation

 feature-tx-tcp6-segmentation

 feature-tx-tunnel-remcsum-segmentation

 feature-tx-udp-segmentation

 feature-tx-udp_tnl-csum-segmentation

 feature-tx-udp_tnl-segmentation

 feature-tx-vlan-stag-hw-insert

 feature-txvlan

 pause-autoneg

 pause-rx

 pause-tx

 ring-rx

 ring-rx-jumbo Page 34/112

 ring-rx-mini

 ring-tx

 gsm setting

 GSM-based Mobile Broadband Settings.

 Properties:

 apn

 Alias: apn

 The GPRS Access Point Name specifying the APN used when

 establishing a data session with the GSM-based network. The APN

 often determines how the user will be billed for their network

 usage and whether the user has access to the Internet or just a

 provider-specific walled-garden, so it is important to use the

 correct APN for the user's mobile broadband plan. The APN may only

 be composed of the characters a-z, 0-9, ., and - per GSM 03.60

 Section 14.9.

 Format: string

 auto-config

 When TRUE, the settings such as APN, username, or password will

 default to values that match the network the modem will register to

 in the Mobile Broadband Provider database.

 Format: boolean

 device-id

 The device unique identifier (as given by the WWAN management

 service) which this connection applies to. If given, the connection

 will only apply to the specified device.

 Format: string

 home-only

 When TRUE, only connections to the home network will be allowed.

 Connections to roaming networks will not be made.

 Format: boolean

 mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple frames. Page 35/112

 Format: uint32

 network-id

 The Network ID (GSM LAI format, ie MCC-MNC) to force specific

 network registration. If the Network ID is specified,

 NetworkManager will attempt to force the device to register only on

 the specified network. This can be used to ensure that the device

 does not roam when direct roaming control of the device is not

 otherwise possible.

 Format: string

 number

 Legacy setting that used to help establishing PPP data sessions for

 GSM-based modems.

 This property is deprecated since version 1.16. User-provided

 values for this setting are no longer used.

 Format: string

 password

 Alias: password

 The password used to authenticate with the network, if required.

 Many providers do not require a password, or accept any password.

 But if a password is required, it is specified here.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property.

 Format: NMSettingSecretFlags (uint32)

 pin

 If the SIM is locked with a PIN it must be unlocked before any

 other operations are requested. Specify the PIN here to allow

 operation of the device.

 Format: string

 pin-flags

 Flags indicating how to handle the "pin" property.

 Format: NMSettingSecretFlags (uint32)

 sim-id Page 36/112

 The SIM card unique identifier (as given by the WWAN management

 service) which this connection applies to. If given, the connection

 will apply to any device also allowed by "device-id" which contains

 a SIM card matching the given identifier.

 Format: string

 sim-operator-id

 A MCC/MNC string like "310260" or "21601" identifying the specific

 mobile network operator which this connection applies to. If given,

 the connection will apply to any device also allowed by "device-id"

 and "sim-id" which contains a SIM card provisioned by the given

 operator.

 Format: string

 username

 Alias: user

 The username used to authenticate with the network, if required.

 Many providers do not require a username, or accept any username.

 But if a username is required, it is specified here.

 Format: string

 infiniband setting

 Infiniband Settings.

 Properties:

 mac-address

 Alias: mac

 If specified, this connection will only apply to the IPoIB device

 whose permanent MAC address matches. This property does not change

 the MAC address of the device (i.e. MAC spoofing).

 Format: byte array

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple frames.

 Format: uint32

 p-key Page 37/112

 Alias: p-key

 The InfiniBand P_Key to use for this device. A value of -1 means to

 use the default P_Key (aka "the P_Key at index 0"). Otherwise, it

 is a 16-bit unsigned integer, whose high bit 0x8000 is set if it is

 a "full membership" P_Key. The values 0 and 0x8000 are not allowed.

 With the p-key set, the interface name is always "$parent.$p_key".

 Setting "connection.interface-name" to another name is not

 supported.

 Note that kernel will internally always set the full membership

 bit, although the interface name does not reflect that. Thus, not

 setting the high bit is probably not useful.

 If the profile is stored in ifcfg-rh format, then the full

 membership bit is automatically added. To get consistent behavior,

 it is best to only use p-key values with the full membership bit

 set.

 Format: int32

 parent

 Alias: parent

 The interface name of the parent device of this device. Normally

 NULL, but if the "p_key" property is set, then you must specify the

 base device by setting either this property or "mac-address".

 Format: string

 transport-mode

 Alias: transport-mode

 The IP-over-InfiniBand transport mode. Either "datagram" or

 "connected".

 Format: string

 ipv4 setting

 IPv4 Settings.

 Properties:

 addresses

 Alias: ip4

 Array of IP addresses. Page 38/112

 Format: a comma separated list of addresses

 auto-route-ext-gw

 VPN connections will default to add the route automatically unless

 this setting is set to FALSE.

 For other connection types, adding such an automatic route is

 currently not supported and setting this to TRUE has no effect.

 Format: NMTernary (int32)

 dad-timeout

 Timeout in milliseconds used to check for the presence of duplicate

 IP addresses on the network. If an address conflict is detected,

 the activation will fail. A zero value means that no duplicate

 address detection is performed, -1 means the default value (either

 configuration ipvx.dad-timeout override or zero). A value greater

 than zero is a timeout in milliseconds.

 The property is currently implemented only for IPv4.

 Format: int32

 dhcp-client-id

 A string sent to the DHCP server to identify the local machine

 which the DHCP server may use to customize the DHCP lease and

 options. When the property is a hex string ('aa:bb:cc') it is

 interpreted as a binary client ID, in which case the first byte is

 assumed to be the 'type' field as per RFC 2132 section 9.14 and the

 remaining bytes may be an hardware address (e.g.

 '01:xx:xx:xx:xx:xx:xx' where 1 is the Ethernet ARP type and the

 rest is a MAC address). If the property is not a hex string it is

 considered as a non-hardware-address client ID and the 'type' field

 is set to 0.

 The special values "mac" and "perm-mac" are supported, which use

 the current or permanent MAC address of the device to generate a

 client identifier with type ethernet (01). Currently, these options

 only work for ethernet type of links.

 The special value "ipv6-duid" uses the DUID from "ipv6.dhcp-duid"

 property as an RFC4361-compliant client identifier. As IAID it uses Page 39/112

 "ipv4.dhcp-iaid" and falls back to "ipv6.dhcp-iaid" if unset.

 The special value "duid" generates a RFC4361-compliant client

 identifier based on "ipv4.dhcp-iaid" and uses a DUID generated by

 hashing /etc/machine-id.

 The special value "stable" is supported to generate a type 0 client

 identifier based on the stable-id (see connection.stable-id) and a

 per-host key. If you set the stable-id, you may want to include the

 "${DEVICE}" or "${MAC}" specifier to get a per-device key.

 If unset, a globally configured default is used. If still unset,

 the default depends on the DHCP plugin.

 Format: string

 dhcp-fqdn

 If the "dhcp-send-hostname" property is TRUE, then the specified

 FQDN will be sent to the DHCP server when acquiring a lease. This

 property and "dhcp-hostname" are mutually exclusive and cannot be

 set at the same time.

 Format: string

 dhcp-hostname

 If the "dhcp-send-hostname" property is TRUE, then the specified

 name will be sent to the DHCP server when acquiring a lease. This

 property and "dhcp-fqdn" are mutually exclusive and cannot be set

 at the same time.

 Format: string

 dhcp-hostname-flags

 Flags for the DHCP hostname and FQDN.

 Currently, this property only includes flags to control the FQDN

 flags set in the DHCP FQDN option. Supported FQDN flags are

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

 NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) and

 NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is

 set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the

 DHCP FQDN option will contain no flag. Otherwise, if no FQDN flag

 is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is not set, Page 40/112

 the standard FQDN flags are set in the request:

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

 NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) for IPv4 and

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6.

 When this property is set to the default value

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is looked up in

 NetworkManager configuration. If that value is unset or also

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags

 described above are sent in the DHCP requests.

 Format: uint32

 dhcp-iaid

 A string containing the "Identity Association Identifier" (IAID)

 used by the DHCP client. The string can be a 32-bit number (either

 decimal, hexadecimal or or as colon separated hexadecimal numbers).

 Alternatively it can be set to the special values "mac",

 "perm-mac", "ifname" or "stable". When set to "mac" (or

 "perm-mac"), the last 4 bytes of the current (or permanent) MAC

 address are used as IAID. When set to "ifname", the IAID is

 computed by hashing the interface name. The special value "stable"

 can be used to generate an IAID based on the stable-id (see

 connection.stable-id), a per-host key and the interface name. When

 the property is unset, the value from global configuration is used;

 if no global default is set then the IAID is assumed to be

 "ifname".

 For DHCPv4, the IAID is only used with "ipv4.dhcp-client-id" values

 "duid" and "ipv6-duid" to generate the client-id.

 For DHCPv6, note that at the moment this property is only supported

 by the "internal" DHCPv6 plugin. The "dhclient" DHCPv6 plugin

 always derives the IAID from the MAC address.

 The actually used DHCPv6 IAID for a currently activated interface

 is exposed in the lease information of the device.

 Format: string

 dhcp-reject-servers Page 41/112

 Array of servers from which DHCP offers must be rejected. This

 property is useful to avoid getting a lease from misconfigured or

 rogue servers.

 For DHCPv4, each element must be an IPv4 address, optionally

 followed by a slash and a prefix length (e.g. "192.168.122.0/24").

 This property is currently not implemented for DHCPv6.

 Format: array of string

 dhcp-send-hostname

 If TRUE, a hostname is sent to the DHCP server when acquiring a

 lease. Some DHCP servers use this hostname to update DNS databases,

 essentially providing a static hostname for the computer. If the

 "dhcp-hostname" property is NULL and this property is TRUE, the

 current persistent hostname of the computer is sent.

 Format: boolean

 dhcp-timeout

 A timeout for a DHCP transaction in seconds. If zero (the default),

 a globally configured default is used. If still unspecified, a

 device specific timeout is used (usually 45 seconds).

 Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 dhcp-vendor-class-identifier

 The Vendor Class Identifier DHCP option (60). Special characters in

 the data string may be escaped using C-style escapes, nevertheless

 this property cannot contain nul bytes. If the per-profile value is

 unspecified (the default), a global connection default gets

 consulted. If still unspecified, the DHCP option is not sent to the

 server.

 Format: string

 dns

 Array of IP addresses of DNS servers.

 For DoT (DNS over TLS), the SNI server name can be specified by

 appending "#example.com" to the IP address of the DNS server. This

 currently only has effect when using systemd-resolved. Page 42/112

 Format: array of uint32

 dns-options

 Array of DNS options as described in man 5 resolv.conf.

 NULL means that the options are unset and left at the default. In

 this case NetworkManager will use default options. This is distinct

 from an empty list of properties.

 The currently supported options are "attempts", "debug", "edns0",

 "inet6", "ip6-bytestring", "ip6-dotint", "ndots", "no-check-names",

 "no-ip6-dotint", "no-reload", "no-tld-query", "rotate",

 "single-request", "single-request-reopen", "timeout", "trust-ad",

 "use-vc".

 The "trust-ad" setting is only honored if the profile contributes

 name servers to resolv.conf, and if all contributing profiles have

 "trust-ad" enabled.

 When using a caching DNS plugin (dnsmasq or systemd-resolved in

 NetworkManager.conf) then "edns0" and "trust-ad" are automatically

 added.

 Format: array of string

 dns-priority

 DNS servers priority.

 The relative priority for DNS servers specified by this setting. A

 lower numerical value is better (higher priority).

 Negative values have the special effect of excluding other

 configurations with a greater numerical priority value; so in

 presence of at least one negative priority, only DNS servers from

 connections with the lowest priority value will be used. To avoid

 all DNS leaks, set the priority of the profile that should be used

 to the most negative value of all active connections profiles.

 Zero selects a globally configured default value. If the latter is

 missing or zero too, it defaults to 50 for VPNs (including

 WireGuard) and 100 for other connections.

 Note that the priority is to order DNS settings for multiple active

 connections. It does not disambiguate multiple DNS servers within Page 43/112

 the same connection profile.

 When multiple devices have configurations with the same priority,

 VPNs will be considered first, then devices with the best (lowest

 metric) default route and then all other devices.

 When using dns=default, servers with higher priority will be on top

 of resolv.conf. To prioritize a given server over another one

 within the same connection, just specify them in the desired order.

 Note that commonly the resolver tries name servers in

 /etc/resolv.conf in the order listed, proceeding with the next

 server in the list on failure. See for example the "rotate" option

 of the dns-options setting. If there are any negative DNS

 priorities, then only name servers from the devices with that

 lowest priority will be considered.

 When using a DNS resolver that supports Conditional Forwarding or

 Split DNS (with dns=dnsmasq or dns=systemd-resolved settings), each

 connection is used to query domains in its search list. The search

 domains determine which name servers to ask, and the DNS priority

 is used to prioritize name servers based on the domain. Queries for

 domains not present in any search list are routed through

 connections having the '~.' special wildcard domain, which is added

 automatically to connections with the default route (or can be

 added manually). When multiple connections specify the same domain,

 the one with the best priority (lowest numerical value) wins. If a

 sub domain is configured on another interface it will be accepted

 regardless the priority, unless parent domain on the other

 interface has a negative priority, which causes the sub domain to

 be shadowed. With Split DNS one can avoid undesired DNS leaks by

 properly configuring DNS priorities and the search domains, so that

 only name servers of the desired interface are configured.

 Format: int32

 dns-search

 List of DNS search domains. Domains starting with a tilde ('~') are

 considered 'routing' domains and are used only to decide the Page 44/112

 interface over which a query must be forwarded; they are not used

 to complete unqualified host names.

 When using a DNS plugin that supports Conditional Forwarding or

 Split DNS, then the search domains specify which name servers to

 query. This makes the behavior different from running with plain

 /etc/resolv.conf. For more information see also the dns-priority

 setting.

 When set on a profile that also enabled DHCP, the DNS search list

 received automatically (option 119 for DHCPv4 and option 24 for

 DHCPv6) gets merged with the manual list. This can be prevented by

 setting "ignore-auto-dns". Note that if no DNS searches are

 configured, the fallback will be derived from the domain from DHCP

 (option 15).

 Format: array of string

 gateway

 Alias: gw4

 The gateway associated with this configuration. This is only

 meaningful if "addresses" is also set.

 Setting the gateway causes NetworkManager to configure a standard

 default route with the gateway as next hop. This is ignored if

 "never-default" is set. An alternative is to configure the default

 route explicitly with a manual route and /0 as prefix length.

 Note that the gateway usually conflicts with routing that

 NetworkManager configures for WireGuard interfaces, so usually it

 should not be set in that case. See "ip4-auto-default-route".

 Format: string

 ignore-auto-dns

 When "method" is set to "auto" and this property to TRUE,

 automatically configured name servers and search domains are

 ignored and only name servers and search domains specified in the

 "dns" and "dns-search" properties, if any, are used.

 Format: boolean

 ignore-auto-routes Page 45/112

 When "method" is set to "auto" and this property to TRUE,

 automatically configured routes are ignored and only routes

 specified in the "routes" property, if any, are used.

 Format: boolean

 link-local

 Enable and disable the IPv4 link-local configuration independently

 of the ipv4.method configuration. This allows a link-local address

 (169.254.x.y/16) to be obtained in addition to other addresses,

 such as those manually configured or obtained from a DHCP server.

 When set to "auto", the value is dependent on "ipv4.method". When

 set to "default", it honors the global connection default, before

 falling back to "auto". Note that if "ipv4.method" is "disabled",

 then link local addressing is always disabled too. The default is

 "default".

 Format: int32

 may-fail

 If TRUE, allow overall network configuration to proceed even if the

 configuration specified by this property times out. Note that at

 least one IP configuration must succeed or overall network

 configuration will still fail. For example, in IPv6-only networks,

 setting this property to TRUE on the NMSettingIP4Config allows the

 overall network configuration to succeed if IPv4 configuration

 fails but IPv6 configuration completes successfully.

 Format: boolean

 method

 IP configuration method.

 NMSettingIP4Config and NMSettingIP6Config both support "disabled",

 "auto", "manual", and "link-local". See the subclass-specific

 documentation for other values.

 In general, for the "auto" method, properties such as "dns" and

 "routes" specify information that is added on to the information

 returned from automatic configuration. The "ignore-auto-routes" and

 "ignore-auto-dns" properties modify this behavior. Page 46/112

 For methods that imply no upstream network, such as "shared" or

 "link-local", these properties must be empty.

 For IPv4 method "shared", the IP subnet can be configured by adding

 one manual IPv4 address or otherwise 10.42.x.0/24 is chosen. Note

 that the shared method must be configured on the interface which

 shares the internet to a subnet, not on the uplink which is shared.

 Format: string

 never-default

 If TRUE, this connection will never be the default connection for

 this IP type, meaning it will never be assigned the default route

 by NetworkManager.

 Format: boolean

 replace-local-rule

 Connections will default to keep the autogenerated priority 0 local

 rule unless this setting is set to TRUE.

 Format: NMTernary (int32)

 required-timeout

 The minimum time interval in milliseconds for which dynamic IP

 configuration should be tried before the connection succeeds.

 This property is useful for example if both IPv4 and IPv6 are

 enabled and are allowed to fail. Normally the connection succeeds

 as soon as one of the two address families completes; by setting a

 required timeout for e.g. IPv4, one can ensure that even if IP6

 succeeds earlier than IPv4, NetworkManager waits some time for IPv4

 before the connection becomes active.

 Note that if "may-fail" is FALSE for the same address family, this

 property has no effect as NetworkManager needs to wait for the full

 DHCP timeout.

 A zero value means that no required timeout is present, -1 means

 the default value (either configuration ipvx.required-timeout

 override or zero).

 Format: int32

 route-metric Page 47/112

 The default metric for routes that don't explicitly specify a

 metric. The default value -1 means that the metric is chosen

 automatically based on the device type. The metric applies to

 dynamic routes, manual (static) routes that don't have an explicit

 metric setting, address prefix routes, and the default route. Note

 that for IPv6, the kernel accepts zero (0) but coerces it to 1024

 (user default). Hence, setting this property to zero effectively

 mean setting it to 1024. For IPv4, zero is a regular value for the

 metric.

 Format: int64

 route-table

 Enable policy routing (source routing) and set the routing table

 used when adding routes.

 This affects all routes, including device-routes, IPv4LL, DHCP,

 SLAAC, default-routes and static routes. But note that static

 routes can individually overwrite the setting by explicitly

 specifying a non-zero routing table.

 If the table setting is left at zero, it is eligible to be

 overwritten via global configuration. If the property is zero even

 after applying the global configuration value, policy routing is

 disabled for the address family of this connection.

 Policy routing disabled means that NetworkManager will add all

 routes to the main table (except static routes that explicitly

 configure a different table). Additionally, NetworkManager will not

 delete any extraneous routes from tables except the main table.

 This is to preserve backward compatibility for users who manage

 routing tables outside of NetworkManager.

 Format: uint32

 routes

 A list of IPv4 destination addresses, prefix length, optional IPv4

 next hop addresses, optional route metric, optional attribute. The

 valid syntax is: "ip[/prefix] [next-hop] [metric]

 [attribute=val]...[,ip[/prefix]...]". For example "192.0.2.0/24 Page 48/112

 10.1.1.1 77, 198.51.100.0/24".

 Various attributes are supported:

 ? "advmss" - an unsigned 32 bit integer.

 ? "cwnd" - an unsigned 32 bit integer.

 ? "initcwnd" - an unsigned 32 bit integer.

 ? "initrwnd" - an unsigned 32 bit integer.

 ? "lock-advmss" - a boolean value.

 ? "lock-cwnd" - a boolean value.

 ? "lock-initcwnd" - a boolean value.

 ? "lock-initrwnd" - a boolean value.

 ? "lock-mtu" - a boolean value.

 ? "lock-window" - a boolean value.

 ? "mtu" - an unsigned 32 bit integer.

 ? "onlink" - a boolean value. The onlink flag is ignored for IPv4

 routes without a gateway. That also means, with a positive

 "weight" the route cannot merge with ECMP routes which are

 onlink and have a gateway.

 ? "quickack" - a boolean value.

 ? "rto_min" - an unsigned 32 bit integer. The value is in

 milliseconds.

 ? "scope" - an unsigned 8 bit integer. IPv4 only.

 ? "src" - an IPv4 address.

 ? "table" - an unsigned 32 bit integer. The default depends on

 ipv4.route-table.

 ? "tos" - an unsigned 8 bit integer. IPv4 only.

 ? "type" - one of unicast, local, blackhole, unavailable,

 prohibit, throw. The default is unicast.

 ? "weight" - an unsigned 32 bit integer ranging from 0 to 256. A

 non-zero weight indicates that the IPv4 route is an ECMP IPv4

 route. NetworkManager will automatically merge compatible ECMP

 routes into multi-hop routes. Setting to zero or omitting the

 attribute configures single hop routes that won't get merged.

 If the route finds no merge partner, it is configured as single Page 49/112

 hop route.

 Note that in NetworkManager, currently all nexthops of a ECMP

 route must share the same "onlink" flag in order to be

 mergable.

 ? "window" - an unsigned 32 bit integer.

 For details see also `man ip-route`.

 Format: a comma separated list of routes

 routing-rules

 A comma separated list of routing rules for policy routing. The

 format is based on ip rule add syntax and mostly compatible. One

 difference is that routing rules in NetworkManager always need a

 fixed priority.

 Example: priority 5 from 192.167.4.0/24 table 45

 Format: a comma separated list of routing rules

 ipv6 setting

 IPv6 Settings.

 Properties:

 addr-gen-mode

 Configure method for creating the address for use with RFC4862 IPv6

 Stateless Address Autoconfiguration. The permitted values are:

 NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_EUI64 (0),

 NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_STABLE_PRIVACY (1).

 NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_DEFAULT_OR_EUI64 (2) or

 NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_DEFAULT (3).

 If the property is set to EUI64, the addresses will be generated

 using the interface tokens derived from hardware address. This

 makes the host part of the address to stay constant, making it

 possible to track host's presence when it changes networks. The

 address changes when the interface hardware is replaced.

 The value of stable-privacy enables use of cryptographically secure

 hash of a secret host-specific key along with the connection's

 stable-id and the network address as specified by RFC7217. This

 makes it impossible to use the address track host's presence, and Page 50/112

 makes the address stable when the network interface hardware is

 replaced.

 The special values "default" and "default-or-eui64" will fallback

 to the global connection default in as documented in

 NetworkManager.conf(5) manual. If the global default is not

 specified, the fallback value is "stable-privacy" or "eui64",

 respectively.

 For libnm, the property defaults to "default" since 1.40.

 Previously it defaulted to "stable-privacy". On D-Bus, the absence

 of an addr-gen-mode setting equals "default". For keyfile plugin,

 the absence of the setting on disk means "default-or-eui64" so that

 the property doesn't change on upgrade from older versions.

 Note that this setting is distinct from the Privacy Extensions as

 configured by "ip6-privacy" property and it does not affect the

 temporary addresses configured with this option.

 Format: int32

 addresses

 Alias: ip6

 Array of IP addresses.

 Format: a comma separated list of addresses

 auto-route-ext-gw

 VPN connections will default to add the route automatically unless

 this setting is set to FALSE.

 For other connection types, adding such an automatic route is

 currently not supported and setting this to TRUE has no effect.

 Format: NMTernary (int32)

 dhcp-duid

 A string containing the DHCPv6 Unique Identifier (DUID) used by the

 dhcp client to identify itself to DHCPv6 servers (RFC 3315). The

 DUID is carried in the Client Identifier option. If the property is

 a hex string ('aa:bb:cc') it is interpreted as a binary DUID and

 filled as an opaque value in the Client Identifier option.

 The special value "lease" will retrieve the DUID previously used Page 51/112

 from the lease file belonging to the connection. If no DUID is

 found and "dhclient" is the configured dhcp client, the DUID is

 searched in the system-wide dhclient lease file. If still no DUID

 is found, or another dhcp client is used, a global and permanent

 DUID-UUID (RFC 6355) will be generated based on the machine-id.

 The special values "llt" and "ll" will generate a DUID of type LLT

 or LL (see RFC 3315) based on the current MAC address of the

 device. In order to try providing a stable DUID-LLT, the time field

 will contain a constant timestamp that is used globally (for all

 profiles) and persisted to disk.

 The special values "stable-llt", "stable-ll" and "stable-uuid" will

 generate a DUID of the corresponding type, derived from the

 connection's stable-id and a per-host unique key. You may want to

 include the "${DEVICE}" or "${MAC}" specifier in the stable-id, in

 case this profile gets activated on multiple devices. So, the

 link-layer address of "stable-ll" and "stable-llt" will be a

 generated address derived from the stable id. The DUID-LLT time

 value in the "stable-llt" option will be picked among a static

 timespan of three years (the upper bound of the interval is the

 same constant timestamp used in "llt").

 When the property is unset, the global value provided for

 "ipv6.dhcp-duid" is used. If no global value is provided, the

 default "lease" value is assumed.

 Format: string

 dhcp-hostname

 If the "dhcp-send-hostname" property is TRUE, then the specified

 name will be sent to the DHCP server when acquiring a lease. This

 property and "dhcp-fqdn" are mutually exclusive and cannot be set

 at the same time.

 Format: string

 dhcp-hostname-flags

 Flags for the DHCP hostname and FQDN.

 Currently, this property only includes flags to control the FQDN Page 52/112

 flags set in the DHCP FQDN option. Supported FQDN flags are

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

 NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) and

 NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is

 set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the

 DHCP FQDN option will contain no flag. Otherwise, if no FQDN flag

 is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is not set,

 the standard FQDN flags are set in the request:

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

 NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) for IPv4 and

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6.

 When this property is set to the default value

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is looked up in

 NetworkManager configuration. If that value is unset or also

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags

 described above are sent in the DHCP requests.

 Format: uint32

 dhcp-iaid

 A string containing the "Identity Association Identifier" (IAID)

 used by the DHCP client. The string can be a 32-bit number (either

 decimal, hexadecimal or or as colon separated hexadecimal numbers).

 Alternatively it can be set to the special values "mac",

 "perm-mac", "ifname" or "stable". When set to "mac" (or

 "perm-mac"), the last 4 bytes of the current (or permanent) MAC

 address are used as IAID. When set to "ifname", the IAID is

 computed by hashing the interface name. The special value "stable"

 can be used to generate an IAID based on the stable-id (see

 connection.stable-id), a per-host key and the interface name. When

 the property is unset, the value from global configuration is used;

 if no global default is set then the IAID is assumed to be

 "ifname".

 For DHCPv4, the IAID is only used with "ipv4.dhcp-client-id" values

 "duid" and "ipv6-duid" to generate the client-id. Page 53/112

 For DHCPv6, note that at the moment this property is only supported

 by the "internal" DHCPv6 plugin. The "dhclient" DHCPv6 plugin

 always derives the IAID from the MAC address.

 The actually used DHCPv6 IAID for a currently activated interface

 is exposed in the lease information of the device.

 Format: string

 dhcp-send-hostname

 If TRUE, a hostname is sent to the DHCP server when acquiring a

 lease. Some DHCP servers use this hostname to update DNS databases,

 essentially providing a static hostname for the computer. If the

 "dhcp-hostname" property is NULL and this property is TRUE, the

 current persistent hostname of the computer is sent.

 Format: boolean

 dhcp-timeout

 A timeout for a DHCP transaction in seconds. If zero (the default),

 a globally configured default is used. If still unspecified, a

 device specific timeout is used (usually 45 seconds).

 Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 dns

 Array of IP addresses of DNS servers.

 For DoT (DNS over TLS), the SNI server name can be specified by

 appending "#example.com" to the IP address of the DNS server. This

 currently only has effect when using systemd-resolved.

 Format: array of byte array

 dns-options

 Array of DNS options as described in man 5 resolv.conf.

 NULL means that the options are unset and left at the default. In

 this case NetworkManager will use default options. This is distinct

 from an empty list of properties.

 The currently supported options are "attempts", "debug", "edns0",

 "inet6", "ip6-bytestring", "ip6-dotint", "ndots", "no-check-names",

 "no-ip6-dotint", "no-reload", "no-tld-query", "rotate", Page 54/112

 "single-request", "single-request-reopen", "timeout", "trust-ad",

 "use-vc".

 The "trust-ad" setting is only honored if the profile contributes

 name servers to resolv.conf, and if all contributing profiles have

 "trust-ad" enabled.

 When using a caching DNS plugin (dnsmasq or systemd-resolved in

 NetworkManager.conf) then "edns0" and "trust-ad" are automatically

 added.

 Format: array of string

 dns-priority

 DNS servers priority.

 The relative priority for DNS servers specified by this setting. A

 lower numerical value is better (higher priority).

 Negative values have the special effect of excluding other

 configurations with a greater numerical priority value; so in

 presence of at least one negative priority, only DNS servers from

 connections with the lowest priority value will be used. To avoid

 all DNS leaks, set the priority of the profile that should be used

 to the most negative value of all active connections profiles.

 Zero selects a globally configured default value. If the latter is

 missing or zero too, it defaults to 50 for VPNs (including

 WireGuard) and 100 for other connections.

 Note that the priority is to order DNS settings for multiple active

 connections. It does not disambiguate multiple DNS servers within

 the same connection profile.

 When multiple devices have configurations with the same priority,

 VPNs will be considered first, then devices with the best (lowest

 metric) default route and then all other devices.

 When using dns=default, servers with higher priority will be on top

 of resolv.conf. To prioritize a given server over another one

 within the same connection, just specify them in the desired order.

 Note that commonly the resolver tries name servers in

 /etc/resolv.conf in the order listed, proceeding with the next Page 55/112

 server in the list on failure. See for example the "rotate" option

 of the dns-options setting. If there are any negative DNS

 priorities, then only name servers from the devices with that

 lowest priority will be considered.

 When using a DNS resolver that supports Conditional Forwarding or

 Split DNS (with dns=dnsmasq or dns=systemd-resolved settings), each

 connection is used to query domains in its search list. The search

 domains determine which name servers to ask, and the DNS priority

 is used to prioritize name servers based on the domain. Queries for

 domains not present in any search list are routed through

 connections having the '~.' special wildcard domain, which is added

 automatically to connections with the default route (or can be

 added manually). When multiple connections specify the same domain,

 the one with the best priority (lowest numerical value) wins. If a

 sub domain is configured on another interface it will be accepted

 regardless the priority, unless parent domain on the other

 interface has a negative priority, which causes the sub domain to

 be shadowed. With Split DNS one can avoid undesired DNS leaks by

 properly configuring DNS priorities and the search domains, so that

 only name servers of the desired interface are configured.

 Format: int32

 dns-search

 List of DNS search domains. Domains starting with a tilde ('~') are

 considered 'routing' domains and are used only to decide the

 interface over which a query must be forwarded; they are not used

 to complete unqualified host names.

 When using a DNS plugin that supports Conditional Forwarding or

 Split DNS, then the search domains specify which name servers to

 query. This makes the behavior different from running with plain

 /etc/resolv.conf. For more information see also the dns-priority

 setting.

 When set on a profile that also enabled DHCP, the DNS search list

 received automatically (option 119 for DHCPv4 and option 24 for Page 56/112

 DHCPv6) gets merged with the manual list. This can be prevented by

 setting "ignore-auto-dns". Note that if no DNS searches are

 configured, the fallback will be derived from the domain from DHCP

 (option 15).

 Format: array of string

 gateway

 Alias: gw6

 The gateway associated with this configuration. This is only

 meaningful if "addresses" is also set.

 Setting the gateway causes NetworkManager to configure a standard

 default route with the gateway as next hop. This is ignored if

 "never-default" is set. An alternative is to configure the default

 route explicitly with a manual route and /0 as prefix length.

 Note that the gateway usually conflicts with routing that

 NetworkManager configures for WireGuard interfaces, so usually it

 should not be set in that case. See "ip4-auto-default-route".

 Format: string

 ignore-auto-dns

 When "method" is set to "auto" and this property to TRUE,

 automatically configured name servers and search domains are

 ignored and only name servers and search domains specified in the

 "dns" and "dns-search" properties, if any, are used.

 Format: boolean

 ignore-auto-routes

 When "method" is set to "auto" and this property to TRUE,

 automatically configured routes are ignored and only routes

 specified in the "routes" property, if any, are used.

 Format: boolean

 ip6-privacy

 Configure IPv6 Privacy Extensions for SLAAC, described in RFC4941.

 If enabled, it makes the kernel generate a temporary IPv6 address

 in addition to the public one generated from MAC address via

 modified EUI-64. This enhances privacy, but could cause problems in Page 57/112

 some applications, on the other hand. The permitted values are: -1:

 unknown, 0: disabled, 1: enabled (prefer public address), 2:

 enabled (prefer temporary addresses).

 Having a per-connection setting set to "-1" (unknown) means

 fallback to global configuration "ipv6.ip6-privacy".

 If also global configuration is unspecified or set to "-1",

 fallback to read "/proc/sys/net/ipv6/conf/default/use_tempaddr".

 Note that this setting is distinct from the Stable Privacy

 addresses that can be enabled with the "addr-gen-mode" property's

 "stable-privacy" setting as another way of avoiding host tracking

 with IPv6 addresses.

 Format: NMSettingIP6ConfigPrivacy (int32)

 may-fail

 If TRUE, allow overall network configuration to proceed even if the

 configuration specified by this property times out. Note that at

 least one IP configuration must succeed or overall network

 configuration will still fail. For example, in IPv6-only networks,

 setting this property to TRUE on the NMSettingIP4Config allows the

 overall network configuration to succeed if IPv4 configuration

 fails but IPv6 configuration completes successfully.

 Format: boolean

 method

 IP configuration method.

 NMSettingIP4Config and NMSettingIP6Config both support "disabled",

 "auto", "manual", and "link-local". See the subclass-specific

 documentation for other values.

 In general, for the "auto" method, properties such as "dns" and

 "routes" specify information that is added on to the information

 returned from automatic configuration. The "ignore-auto-routes" and

 "ignore-auto-dns" properties modify this behavior.

 For methods that imply no upstream network, such as "shared" or

 "link-local", these properties must be empty.

 For IPv4 method "shared", the IP subnet can be configured by adding Page 58/112

 one manual IPv4 address or otherwise 10.42.x.0/24 is chosen. Note

 that the shared method must be configured on the interface which

 shares the internet to a subnet, not on the uplink which is shared.

 Format: string

 mtu

 Maximum transmission unit size, in bytes. If zero (the default),

 the MTU is set automatically from router advertisements or is left

 equal to the link-layer MTU. If greater than the link-layer MTU, or

 greater than zero but less than the minimum IPv6 MTU of 1280, this

 value has no effect.

 Format: uint32

 never-default

 If TRUE, this connection will never be the default connection for

 this IP type, meaning it will never be assigned the default route

 by NetworkManager.

 Format: boolean

 ra-timeout

 A timeout for waiting Router Advertisements in seconds. If zero

 (the default), a globally configured default is used. If still

 unspecified, the timeout depends on the sysctl settings of the

 device.

 Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 replace-local-rule

 Connections will default to keep the autogenerated priority 0 local

 rule unless this setting is set to TRUE.

 Format: NMTernary (int32)

 required-timeout

 The minimum time interval in milliseconds for which dynamic IP

 configuration should be tried before the connection succeeds.

 This property is useful for example if both IPv4 and IPv6 are

 enabled and are allowed to fail. Normally the connection succeeds

 as soon as one of the two address families completes; by setting a Page 59/112

 required timeout for e.g. IPv4, one can ensure that even if IP6

 succeeds earlier than IPv4, NetworkManager waits some time for IPv4

 before the connection becomes active.

 Note that if "may-fail" is FALSE for the same address family, this

 property has no effect as NetworkManager needs to wait for the full

 DHCP timeout.

 A zero value means that no required timeout is present, -1 means

 the default value (either configuration ipvx.required-timeout

 override or zero).

 Format: int32

 route-metric

 The default metric for routes that don't explicitly specify a

 metric. The default value -1 means that the metric is chosen

 automatically based on the device type. The metric applies to

 dynamic routes, manual (static) routes that don't have an explicit

 metric setting, address prefix routes, and the default route. Note

 that for IPv6, the kernel accepts zero (0) but coerces it to 1024

 (user default). Hence, setting this property to zero effectively

 mean setting it to 1024. For IPv4, zero is a regular value for the

 metric.

 Format: int64

 route-table

 Enable policy routing (source routing) and set the routing table

 used when adding routes.

 This affects all routes, including device-routes, IPv4LL, DHCP,

 SLAAC, default-routes and static routes. But note that static

 routes can individually overwrite the setting by explicitly

 specifying a non-zero routing table.

 If the table setting is left at zero, it is eligible to be

 overwritten via global configuration. If the property is zero even

 after applying the global configuration value, policy routing is

 disabled for the address family of this connection.

 Policy routing disabled means that NetworkManager will add all Page 60/112

 routes to the main table (except static routes that explicitly

 configure a different table). Additionally, NetworkManager will not

 delete any extraneous routes from tables except the main table.

 This is to preserve backward compatibility for users who manage

 routing tables outside of NetworkManager.

 Format: uint32

 routes

 A list of IPv6 destination addresses, prefix length, optional IPv6

 next hop addresses, optional route metric, optional attribute. The

 valid syntax is: "ip[/prefix] [next-hop] [metric]

 [attribute=val]...[,ip[/prefix]...]".

 Various attributes are supported:

 ? "advmss" - an unsigned 32 bit integer.

 ? "cwnd" - an unsigned 32 bit integer.

 ? "from" - an IPv6 address with optional prefix. IPv6 only.

 ? "initcwnd" - an unsigned 32 bit integer.

 ? "initrwnd" - an unsigned 32 bit integer.

 ? "lock-advmss" - a boolean value.

 ? "lock-cwnd" - a boolean value.

 ? "lock-initcwnd" - a boolean value.

 ? "lock-initrwnd" - a boolean value.

 ? "lock-mtu" - a boolean value.

 ? "lock-window" - a boolean value.

 ? "mtu" - an unsigned 32 bit integer.

 ? "onlink" - a boolean value.

 ? "quickack" - a boolean value.

 ? "rto_min" - an unsigned 32 bit integer. The value is in

 milliseconds.

 ? "src" - an IPv6 address.

 ? "table" - an unsigned 32 bit integer. The default depends on

 ipv6.route-table.

 ? "type" - one of unicast, local, blackhole, unavailable,

 prohibit, throw. The default is unicast. Page 61/112

 ? "window" - an unsigned 32 bit integer.

 For details see also `man ip-route`.

 Format: a comma separated list of routes

 routing-rules

 A comma separated list of routing rules for policy routing. The

 format is based on ip rule add syntax and mostly compatible. One

 difference is that routing rules in NetworkManager always need a

 fixed priority.

 Example: priority 5 from 1:2:3::5/128 table 45

 Format: a comma separated list of routing rules

 token

 Configure the token for

 draft-chown-6man-tokenised-ipv6-identifiers-02 IPv6 tokenized

 interface identifiers. Useful with eui64 addr-gen-mode.

 Format: string

 ip-tunnel setting

 IP Tunneling Settings.

 Properties:

 encapsulation-limit

 How many additional levels of encapsulation are permitted to be

 prepended to packets. This property applies only to IPv6 tunnels.

 Format: uint32

 flags

 Tunnel flags. Currently, the following values are supported:

 NM_IP_TUNNEL_FLAG_IP6_IGN_ENCAP_LIMIT (0x1),

 NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_TCLASS (0x2),

 NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FLOWLABEL (0x4),

 NM_IP_TUNNEL_FLAG_IP6_MIP6_DEV (0x8),

 NM_IP_TUNNEL_FLAG_IP6_RCV_DSCP_COPY (0x10),

 NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FWMARK (0x20). They are valid only

 for IPv6 tunnels.

 Format: uint32

 flow-label Page 62/112

 The flow label to assign to tunnel packets. This property applies

 only to IPv6 tunnels.

 Format: uint32

 fwmark

 The fwmark value to assign to tunnel packets. This property can be

 set to a non zero value only on VTI and VTI6 tunnels.

 Format: uint32

 input-key

 The key used for tunnel input packets; the property is valid only

 for certain tunnel modes (GRE, IP6GRE). If empty, no key is used.

 Format: string

 local

 Alias: local

 The local endpoint of the tunnel; the value can be empty, otherwise

 it must contain an IPv4 or IPv6 address.

 Format: string

 mode

 Alias: mode

 The tunneling mode, for example NM_IP_TUNNEL_MODE_IPIP (1) or

 NM_IP_TUNNEL_MODE_GRE (2).

 Format: uint32

 mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple fragments.

 Format: uint32

 output-key

 The key used for tunnel output packets; the property is valid only

 for certain tunnel modes (GRE, IP6GRE). If empty, no key is used.

 Format: string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID the new device will be bound to so that tunneled packets will Page 63/112

 only be routed via that interface.

 Format: string

 path-mtu-discovery

 Whether to enable Path MTU Discovery on this tunnel.

 Format: boolean

 remote

 Alias: remote

 The remote endpoint of the tunnel; the value must contain an IPv4

 or IPv6 address.

 Format: string

 tos

 The type of service (IPv4) or traffic class (IPv6) field to be set

 on tunneled packets.

 Format: uint32

 ttl

 The TTL to assign to tunneled packets. 0 is a special value meaning

 that packets inherit the TTL value.

 Format: uint32

 macsec setting

 MACSec Settings.

 Properties:

 encrypt

 Alias: encrypt

 Whether the transmitted traffic must be encrypted.

 Format: boolean

 mka-cak

 Alias: cak

 The pre-shared CAK (Connectivity Association Key) for MACsec Key

 Agreement. Must be a string of 32 hexadecimal characters.

 Format: string

 mka-cak-flags

 Flags indicating how to handle the "mka-cak" property.

 Format: NMSettingSecretFlags (uint32) Page 64/112

 mka-ckn

 Alias: ckn

 The pre-shared CKN (Connectivity-association Key Name) for MACsec

 Key Agreement. Must be a string of hexadecimal characters with a

 even length between 2 and 64.

 Format: string

 mode

 Alias: mode

 Specifies how the CAK (Connectivity Association Key) for MKA

 (MACsec Key Agreement) is obtained.

 Format: int32

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID from which this MACSEC interface should be created. If this

 property is not specified, the connection must contain an

 "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 port

 Alias: port

 The port component of the SCI (Secure Channel Identifier), between

 1 and 65534.

 Format: int32

 send-sci

 Specifies whether the SCI (Secure Channel Identifier) is included

 in every packet.

 Format: boolean

 validation

 Specifies the validation mode for incoming frames.

 Format: int32

 macvlan setting

 MAC VLAN Settings.

 Properties: Page 65/112

 mode

 Alias: mode

 The macvlan mode, which specifies the communication mechanism

 between multiple macvlans on the same lower device.

 Format: uint32

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID from which this MAC-VLAN interface should be created. If this

 property is not specified, the connection must contain an

 "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 promiscuous

 Whether the interface should be put in promiscuous mode.

 Format: boolean

 tap

 Alias: tap

 Whether the interface should be a MACVTAP.

 Format: boolean

 match setting

 Match settings.

 Properties:

 driver

 A list of driver names to match. Each element is a shell wildcard

 pattern.

 See NMSettingMatch:interface-name for how special characters '|',

 '&', '!' and '\\' are used for optional and mandatory matches and

 inverting the pattern.

 Format: array of string

 interface-name

 A list of interface names to match. Each element is a shell

 wildcard pattern.

 An element can be prefixed with a pipe symbol (|) or an ampersand Page 66/112

 (&). The former means that the element is optional and the latter

 means that it is mandatory. If there are any optional elements,

 than the match evaluates to true if at least one of the optional

 element matches (logical OR). If there are any mandatory elements,

 then they all must match (logical AND). By default, an element is

 optional. This means that an element "foo" behaves the same as

 "|foo". An element can also be inverted with exclamation mark (!)

 between the pipe symbol (or the ampersand) and before the pattern.

 Note that "!foo" is a shortcut for the mandatory match "&!foo".

 Finally, a backslash can be used at the beginning of the element

 (after the optional special characters) to escape the start of the

 pattern. For example, "&\\!a" is an mandatory match for literally

 "!a".

 Format: array of string

 kernel-command-line

 A list of kernel command line arguments to match. This may be used

 to check whether a specific kernel command line option is set (or

 unset, if prefixed with the exclamation mark). The argument must

 either be a single word, or an assignment (i.e. two words, joined

 by "="). In the former case the kernel command line is searched for

 the word appearing as is, or as left hand side of an assignment. In

 the latter case, the exact assignment is looked for with right and

 left hand side matching. Wildcard patterns are not supported.

 See NMSettingMatch:interface-name for how special characters '|',

 '&', '!' and '\\' are used for optional and mandatory matches and

 inverting the match.

 Format: array of string

 path

 A list of paths to match against the ID_PATH udev property of

 devices. ID_PATH represents the topological persistent path of a

 device. It typically contains a subsystem string (pci, usb,

 platform, etc.) and a subsystem-specific identifier.

 For PCI devices the path has the form Page 67/112

 "pci-$domain:$bus:$device.$function", where each variable is an

 hexadecimal value; for example "pci-0000:0a:00.0".

 The path of a device can be obtained with "udevadm info

 /sys/class/net/$dev | grep ID_PATH=" or by looking at the "path"

 property exported by NetworkManager ("nmcli -f general.path device

 show $dev").

 Each element of the list is a shell wildcard pattern.

 See NMSettingMatch:interface-name for how special characters '|',

 '&', '!' and '\\' are used for optional and mandatory matches and

 inverting the pattern.

 Format: array of string

 802-11-olpc-mesh setting

 Alias: olpc-mesh

 OLPC Wireless Mesh Settings.

 Properties:

 channel

 Alias: channel

 Channel on which the mesh network to join is located.

 Format: uint32

 dhcp-anycast-address

 Alias: dhcp-anycast

 Anycast DHCP MAC address used when requesting an IP address via

 DHCP. The specific anycast address used determines which DHCP

 server class answers the request.

 This is currently only implemented by dhclient DHCP plugin.

 Format: byte array

 ssid

 Alias: ssid

 SSID of the mesh network to join.

 Format: byte array

 ovs-bridge setting

 OvsBridge Link Settings.

 Properties: Page 68/112

 datapath-type

 The data path type. One of "system", "netdev" or empty.

 Format: string

 fail-mode

 The bridge failure mode. One of "secure", "standalone" or empty.

 Format: string

 mcast-snooping-enable

 Enable or disable multicast snooping.

 Format: boolean

 rstp-enable

 Enable or disable RSTP.

 Format: boolean

 stp-enable

 Enable or disable STP.

 Format: boolean

 ovs-dpdk setting

 OvsDpdk Link Settings.

 Properties:

 devargs

 Open vSwitch DPDK device arguments.

 Format: string

 n-rxq

 Open vSwitch DPDK number of rx queues. Defaults to zero which means

 to leave the parameter in OVS unspecified and effectively

 configures one queue.

 Format: uint32

 n-rxq-desc

 The rx queue size (number of rx descriptors) for DPDK ports. Must

 be zero or a power of 2 between 1 and 4096, and supported by the

 hardware. Defaults to zero which means to leave the parameter in

 OVS unspecified and effectively configures 2048 descriptors.

 Format: uint32

 n-txq-desc Page 69/112

 The tx queue size (number of tx descriptors) for DPDK ports. Must

 be zero or a power of 2 between 1 and 4096, and supported by the

 hardware. Defaults to zero which means to leave the parameter in

 OVS unspecified and effectively configures 2048 descriptors.

 Format: uint32

 ovs-interface setting

 Open vSwitch Interface Settings.

 Properties:

 ofport-request

 Open vSwitch openflow port number. Defaults to zero which means

 that port number will not be specified and it will be chosen

 randomly by ovs. OpenFlow ports are the network interfaces for

 passing packets between OpenFlow processing and the rest of the

 network. OpenFlow switches connect logically to each other via

 their OpenFlow ports.

 Format: uint32

 type

 The interface type. Either "internal", "system", "patch", "dpdk",

 or empty.

 Format: string

 ovs-patch setting

 OvsPatch Link Settings.

 Properties:

 peer

 Specifies the name of the interface for the other side of the

 patch. The patch on the other side must also set this interface as

 peer.

 Format: string

 ovs-port setting

 OvsPort Link Settings.

 Properties:

 bond-downdelay

 The time port must be inactive in order to be considered down. Page 70/112

 Format: uint32

 bond-mode

 Bonding mode. One of "active-backup", "balance-slb", or

 "balance-tcp".

 Format: string

 bond-updelay

 The time port must be active before it starts forwarding traffic.

 Format: uint32

 lacp

 LACP mode. One of "active", "off", or "passive".

 Format: string

 tag

 The VLAN tag in the range 0-4095.

 Format: uint32

 trunks

 A list of VLAN ranges that this port trunks.

 The property is valid only for ports with mode "trunk",

 "native-tagged", or "native-untagged port". If it is empty, the

 port trunks all VLANs.

 Format: array of vardict

 vlan-mode

 The VLAN mode. One of "access", "native-tagged", "native-untagged",

 "trunk", "dot1q-tunnel" or unset.

 Format: string

 ppp setting

 Point-to-Point Protocol Settings.

 Properties:

 baud

 If non-zero, instruct pppd to set the serial port to the specified

 baudrate. This value should normally be left as 0 to automatically

 choose the speed.

 Format: uint32

 crtscts Page 71/112

 If TRUE, specify that pppd should set the serial port to use

 hardware flow control with RTS and CTS signals. This value should

 normally be set to FALSE.

 Format: boolean

 lcp-echo-failure

 If non-zero, instruct pppd to presume the connection to the peer

 has failed if the specified number of LCP echo-requests go

 unanswered by the peer. The "lcp-echo-interval" property must also

 be set to a non-zero value if this property is used.

 Format: uint32

 lcp-echo-interval

 If non-zero, instruct pppd to send an LCP echo-request frame to the

 peer every n seconds (where n is the specified value). Note that

 some PPP peers will respond to echo requests and some will not, and

 it is not possible to autodetect this.

 Format: uint32

 mppe-stateful

 If TRUE, stateful MPPE is used. See pppd documentation for more

 information on stateful MPPE.

 Format: boolean

 mru

 If non-zero, instruct pppd to request that the peer send packets no

 larger than the specified size. If non-zero, the MRU should be

 between 128 and 16384.

 Format: uint32

 mtu

 If non-zero, instruct pppd to send packets no larger than the

 specified size.

 Format: uint32

 no-vj-comp

 If TRUE, Van Jacobsen TCP header compression will not be requested.

 Format: boolean

 noauth Page 72/112

 If TRUE, do not require the other side (usually the PPP server) to

 authenticate itself to the client. If FALSE, require authentication

 from the remote side. In almost all cases, this should be TRUE.

 Format: boolean

 nobsdcomp

 If TRUE, BSD compression will not be requested.

 Format: boolean

 nodeflate

 If TRUE, "deflate" compression will not be requested.

 Format: boolean

 refuse-chap

 If TRUE, the CHAP authentication method will not be used.

 Format: boolean

 refuse-eap

 If TRUE, the EAP authentication method will not be used.

 Format: boolean

 refuse-mschap

 If TRUE, the MSCHAP authentication method will not be used.

 Format: boolean

 refuse-mschapv2

 If TRUE, the MSCHAPv2 authentication method will not be used.

 Format: boolean

 refuse-pap

 If TRUE, the PAP authentication method will not be used.

 Format: boolean

 require-mppe

 If TRUE, MPPE (Microsoft Point-to-Point Encryption) will be

 required for the PPP session. If either 64-bit or 128-bit MPPE is

 not available the session will fail. Note that MPPE is not used on

 mobile broadband connections.

 Format: boolean

 require-mppe-128

 If TRUE, 128-bit MPPE (Microsoft Point-to-Point Encryption) will be Page 73/112

 required for the PPP session, and the "require-mppe" property must

 also be set to TRUE. If 128-bit MPPE is not available the session

 will fail.

 Format: boolean

 pppoe setting

 PPP-over-Ethernet Settings.

 Properties:

 parent

 Alias: parent

 If given, specifies the parent interface name on which this PPPoE

 connection should be created. If this property is not specified,

 the connection is activated on the interface specified in

 "interface-name" of NMSettingConnection.

 Format: string

 password

 Alias: password

 Password used to authenticate with the PPPoE service.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property.

 Format: NMSettingSecretFlags (uint32)

 service

 Alias: service

 If specified, instruct PPPoE to only initiate sessions with access

 concentrators that provide the specified service. For most

 providers, this should be left blank. It is only required if there

 are multiple access concentrators or a specific service is known to

 be required.

 Format: string

 username

 Alias: username

 Username used to authenticate with the PPPoE service.

 Format: string Page 74/112

 proxy setting

 WWW Proxy Settings.

 Properties:

 browser-only

 Alias: browser-only

 Whether the proxy configuration is for browser only.

 Format: boolean

 method

 Alias: method

 Method for proxy configuration, Default is

 NM_SETTING_PROXY_METHOD_NONE (0)

 Format: int32

 pac-script

 Alias: pac-script

 PAC script for the connection. This is an UTF-8 encoded javascript

 code that defines a FindProxyForURL() function.

 Format: string

 pac-url

 Alias: pac-url

 PAC URL for obtaining PAC file.

 Format: string

 serial setting

 Serial Link Settings.

 Properties:

 baud

 Speed to use for communication over the serial port. Note that this

 value usually has no effect for mobile broadband modems as they

 generally ignore speed settings and use the highest available

 speed.

 Format: uint32

 bits

 Byte-width of the serial communication. The 8 in "8n1" for example.

 Format: uint32 Page 75/112

 parity

 Parity setting of the serial port.

 Format: NMSettingSerialParity (byte)

 send-delay

 Time to delay between each byte sent to the modem, in microseconds.

 Format: uint64

 stopbits

 Number of stop bits for communication on the serial port. Either 1

 or 2. The 1 in "8n1" for example.

 Format: uint32

 sriov setting

 SR-IOV settings.

 Properties:

 autoprobe-drivers

 Whether to autoprobe virtual functions by a compatible driver.

 If set to NM_TERNARY_TRUE (1), the kernel will try to bind VFs to a

 compatible driver and if this succeeds a new network interface will

 be instantiated for each VF.

 If set to NM_TERNARY_FALSE (0), VFs will not be claimed and no

 network interfaces will be created for them.

 When set to NM_TERNARY_DEFAULT (-1), the global default is used; in

 case the global default is unspecified it is assumed to be

 NM_TERNARY_TRUE (1).

 Format: NMTernary (int32)

 total-vfs

 The total number of virtual functions to create.

 Note that when the sriov setting is present NetworkManager enforces

 the number of virtual functions on the interface (also when it is

 zero) during activation and resets it upon deactivation. To prevent

 any changes to SR-IOV parameters don't add a sriov setting to the

 connection.

 Format: uint32

 vfs Page 76/112

 Array of virtual function descriptors.

 Each VF descriptor is a dictionary mapping attribute names to

 GVariant values. The 'index' entry is mandatory for each VF.

 When represented as string a VF is in the form:

 "INDEX [ATTR=VALUE[ATTR=VALUE]...]".

 for example:

 "2 mac=00:11:22:33:44:55 spoof-check=true".

 Multiple VFs can be specified using a comma as separator.

 Currently, the following attributes are supported: mac,

 spoof-check, trust, min-tx-rate, max-tx-rate, vlans.

 The "vlans" attribute is represented as a semicolon-separated list

 of VLAN descriptors, where each descriptor has the form

 "ID[.PRIORITY[.PROTO]]".

 PROTO can be either 'q' for 802.1Q (the default) or 'ad' for

 802.1ad.

 Format: array of vardict

 tc setting

 Linux Traffic Control Settings.

 Properties:

 qdiscs

 Array of TC queueing disciplines. qdisc is a basic block in the

 Linux traffic control subsystem

 Each qdisc can be specified by the following attributes:

 handle HANDLE

 specifies the qdisc handle. A qdisc, which potentially can have

 children, gets assigned a major number, called a 'handle',

 leaving the minor number namespace available for classes. The

 handle is expressed as '10:'. It is customary to explicitly

 assign a handle to qdiscs expected to have children.

 parent HANDLE

 specifies the handle of the parent qdisc the current qdisc must

 be attached to.

 root Page 77/112

 specifies that the qdisc is attached to the root of device.

 KIND

 this is the qdisc kind. NetworkManager currently supports the

 following kinds: fq_codel, sfq, tbf. Each qdisc kind has a

 different set of parameters, described below. There are also

 some kinds like pfifo, pfifo_fast, prio supported by

 NetworkManager but their parameters are not supported by

 NetworkManager.

 Parameters for 'fq_codel':

 limit U32

 the hard limit on the real queue size. When this limit is

 reached, incoming packets are dropped. Default is 10240

 packets.

 memory_limit U32

 sets a limit on the total number of bytes that can be queued in

 this FQ-CoDel instance. The lower of the packet limit of the

 limit parameter and the memory limit will be enforced. Default

 is 32 MB.

 flows U32

 the number of flows into which the incoming packets are

 classified. Due to the stochastic nature of hashing, multiple

 flows may end up being hashed into the same slot. Newer flows

 have priority over older ones. This parameter can be set only

 at load time since memory has to be allocated for the hash

 table. Default value is 1024.

 target U32

 the acceptable minimum standing/persistent queue delay. This

 minimum delay is identified by tracking the local minimum queue

 delay that packets experience. The unit of measurement is

 microsecond(us). Default value is 5ms.

 interval U32

 used to ensure that the measured minimum delay does not become

 too stale. The minimum delay must be experienced in the last Page 78/112

 epoch of length .B interval. It should be set on the order of

 the worst-case RTT through the bottleneck to give endpoints

 sufficient time to react. Default value is 100ms.

 quantum U32

 the number of bytes used as 'deficit' in the fair queuing

 algorithm. Default is set to 1514 bytes which corresponds to

 the Ethernet MTU plus the hardware header length of 14 bytes.

 ecn BOOL

 can be used to mark packets instead of dropping them. ecn is

 turned on by default.

 ce_threshold U32

 sets a threshold above which all packets are marked with ECN

 Congestion Experienced. This is useful for DCTCP-style

 congestion control algorithms that require marking at very

 shallow queueing thresholds.

 Parameters for 'sfq':

 divisor U32

 can be used to set a different hash table size, available from

 kernel 2.6.39 onwards. The specified divisor must be a power of

 two and cannot be larger than 65536. Default value: 1024.

 limit U32

 Upper limit of the SFQ. Can be used to reduce the default

 length of 127 packets.

 depth U32

 Limit of packets per flow. Default to 127 and can be lowered.

 perturb_period U32

 Interval in seconds for queue algorithm perturbation. Defaults

 to 0, which means that no perturbation occurs. Do not set too

 low for each perturbation may cause some packet reordering or

 losses. Advised value: 60 This value has no effect when

 external flow classification is used. Its better to increase

 divisor value to lower risk of hash collisions.

 quantum U32 Page 79/112

 Amount of bytes a flow is allowed to dequeue during a round of

 the round robin process. Defaults to the MTU of the interface

 which is also the advised value and the minimum value.

 flows U32

 Default value is 127.

 Parameters for 'tbf':

 rate U64

 Bandwidth or rate. These parameters accept a floating point

 number, possibly followed by either a unit (both SI and IEC

 units supported), or a float followed by a percent character to

 specify the rate as a percentage of the device's speed.

 burst U32

 Also known as buffer or maxburst. Size of the bucket, in bytes.

 This is the maximum amount of bytes that tokens can be

 available for instantaneously. In general, larger shaping rates

 require a larger buffer. For 10mbit/s on Intel, you need at

 least 10kbyte buffer if you want to reach your configured rate!

 If your buffer is too small, packets may be dropped because

 more tokens arrive per timer tick than fit in your bucket. The

 minimum buffer size can be calculated by dividing the rate by

 HZ.

 Token usage calculations are performed using a table which by

 default has a resolution of 8 packets. This resolution can be

 changed by specifying the cell size with the burst. For

 example, to specify a 6000 byte buffer with a 16 byte cell

 size, set a burst of 6000/16. You will probably never have to

 set this. Must be an integral power of 2.

 limit U32

 Limit is the number of bytes that can be queued waiting for

 tokens to become available.

 latency U32

 specifies the maximum amount of time a packet can sit in the

 TBF. The latency calculation takes into account the size of the Page 80/112

 bucket, the rate and possibly the peakrate (if set). The

 latency and limit are mutually exclusive.

 Format: GPtrArray(NMTCQdisc)

 tfilters

 Array of TC traffic filters. Traffic control can manage the packet

 content during classification by using filters.

 Each tfilters can be specified by the following attributes:

 handle HANDLE

 specifies the tfilters handle. A filter is used by a classful

 qdisc to determine in which class a packet will be enqueued. It

 is important to notice that filters reside within qdiscs.

 Therefore, see qdiscs handle for detailed information.

 parent HANDLE

 specifies the handle of the parent qdisc the current qdisc must

 be attached to.

 root

 specifies that the qdisc is attached to the root of device.

 KIND

 this is the tfilters kind. NetworkManager currently supports

 following kinds: mirred, simple. Each filter kind has a

 different set of actions, described below. There are also some

 other kinds like matchall, basic, u32 supported by

 NetworkManager.

 Actions for 'mirred':

 egress bool

 Define whether the packet should exit from the interface.

 ingress bool

 Define whether the packet should come into the interface.

 mirror bool

 Define whether the packet should be copied to the destination

 space.

 redirect bool

 Define whether the packet should be moved to the destination Page 81/112

 space.

 Action for 'simple':

 sdata char[32]

 The actual string to print.

 Format: GPtrArray(NMTCTfilter)

 team setting

 Teaming Settings.

 Properties:

 config

 Alias: config

 The JSON configuration for the team network interface. The property

 should contain raw JSON configuration data suitable for teamd,

 because the value is passed directly to teamd. If not specified,

 the default configuration is used. See man teamd.conf for the

 format details.

 Format: string

 link-watchers

 Link watchers configuration for the connection: each link watcher

 is defined by a dictionary, whose keys depend upon the selected

 link watcher. Available link watchers are 'ethtool', 'nsna_ping'

 and 'arp_ping' and it is specified in the dictionary with the key

 'name'. Available keys are: ethtool: 'delay-up', 'delay-down',

 'init-wait'; nsna_ping: 'init-wait', 'interval', 'missed-max',

 'target-host'; arp_ping: all the ones in nsna_ping and

 'source-host', 'validate-active', 'validate-inactive',

 'send-always'. See teamd.conf man for more details.

 Format: array of vardict

 mcast-rejoin-count

 Corresponds to the teamd mcast_rejoin.count.

 Format: int32

 mcast-rejoin-interval

 Corresponds to the teamd mcast_rejoin.interval.

 Format: int32 Page 82/112

 notify-peers-count

 Corresponds to the teamd notify_peers.count.

 Format: int32

 notify-peers-interval

 Corresponds to the teamd notify_peers.interval.

 Format: int32

 runner

 Corresponds to the teamd runner.name. Permitted values are:

 "roundrobin", "broadcast", "activebackup", "loadbalance", "lacp",

 "random".

 Format: string

 runner-active

 Corresponds to the teamd runner.active.

 Format: boolean

 runner-agg-select-policy

 Corresponds to the teamd runner.agg_select_policy.

 Format: string

 runner-fast-rate

 Corresponds to the teamd runner.fast_rate.

 Format: boolean

 runner-hwaddr-policy

 Corresponds to the teamd runner.hwaddr_policy.

 Format: string

 runner-min-ports

 Corresponds to the teamd runner.min_ports.

 Format: int32

 runner-sys-prio

 Corresponds to the teamd runner.sys_prio.

 Format: int32

 runner-tx-balancer

 Corresponds to the teamd runner.tx_balancer.name.

 Format: string

 runner-tx-balancer-interval Page 83/112

 Corresponds to the teamd runner.tx_balancer.interval.

 Format: int32

 runner-tx-hash

 Corresponds to the teamd runner.tx_hash.

 Format: array of string

 team-port setting

 Team Port Settings.

 Properties:

 config

 Alias: config

 The JSON configuration for the team port. The property should

 contain raw JSON configuration data suitable for teamd, because the

 value is passed directly to teamd. If not specified, the default

 configuration is used. See man teamd.conf for the format details.

 Format: string

 lacp-key

 Corresponds to the teamd ports.PORTIFNAME.lacp_key.

 Format: int32

 lacp-prio

 Corresponds to the teamd ports.PORTIFNAME.lacp_prio.

 Format: int32

 link-watchers

 Link watchers configuration for the connection: each link watcher

 is defined by a dictionary, whose keys depend upon the selected

 link watcher. Available link watchers are 'ethtool', 'nsna_ping'

 and 'arp_ping' and it is specified in the dictionary with the key

 'name'. Available keys are: ethtool: 'delay-up', 'delay-down',

 'init-wait'; nsna_ping: 'init-wait', 'interval', 'missed-max',

 'target-host'; arp_ping: all the ones in nsna_ping and

 'source-host', 'validate-active', 'validate-inactive',

 'send-always'. See teamd.conf man for more details.

 Format: array of vardict

 prio Page 84/112

 Corresponds to the teamd ports.PORTIFNAME.prio.

 Format: int32

 queue-id

 Corresponds to the teamd ports.PORTIFNAME.queue_id. When set to -1

 means the parameter is skipped from the json config.

 Format: int32

 sticky

 Corresponds to the teamd ports.PORTIFNAME.sticky.

 Format: boolean

 tun setting

 Tunnel Settings.

 Properties:

 group

 Alias: group

 The group ID which will own the device. If set to NULL everyone

 will be able to use the device.

 Format: string

 mode

 Alias: mode

 The operating mode of the virtual device. Allowed values are

 NM_SETTING_TUN_MODE_TUN (1) to create a layer 3 device and

 NM_SETTING_TUN_MODE_TAP (2) to create an Ethernet-like layer 2 one.

 Format: uint32

 multi-queue

 Alias: multi-queue

 If the property is set to TRUE, the interface will support multiple

 file descriptors (queues) to parallelize packet sending or

 receiving. Otherwise, the interface will only support a single

 queue.

 Format: boolean

 owner

 Alias: owner

 The user ID which will own the device. If set to NULL everyone will Page 85/112

 be able to use the device.

 Format: string

 pi

 Alias: pi

 If TRUE the interface will prepend a 4 byte header describing the

 physical interface to the packets.

 Format: boolean

 vnet-hdr

 Alias: vnet-hdr

 If TRUE the IFF_VNET_HDR the tunnel packets will include a virtio

 network header.

 Format: boolean

 vlan setting

 VLAN Settings.

 Properties:

 egress-priority-map

 Alias: egress

 For outgoing packets, a list of mappings from Linux SKB priorities

 to 802.1p priorities. The mapping is given in the format "from:to"

 where both "from" and "to" are unsigned integers, ie "7:3".

 Format: array of string

 flags

 Alias: flags

 One or more flags which control the behavior and features of the

 VLAN interface. Flags include NM_VLAN_FLAG_REORDER_HEADERS (0x1)

 (reordering of output packet headers), NM_VLAN_FLAG_GVRP (0x2) (use

 of the GVRP protocol), and NM_VLAN_FLAG_LOOSE_BINDING (0x4) (loose

 binding of the interface to its master device's operating state).

 NM_VLAN_FLAG_MVRP (0x8) (use of the MVRP protocol).

 The default value of this property is NM_VLAN_FLAG_REORDER_HEADERS,

 but it used to be 0. To preserve backward compatibility, the

 default-value in the D-Bus API continues to be 0 and a missing

 property on D-Bus is still considered as 0. Page 86/112

 Format: NMVlanFlags (uint32)

 id

 Alias: id

 The VLAN identifier that the interface created by this connection

 should be assigned. The valid range is from 0 to 4094, without the

 reserved id 4095.

 Format: uint32

 ingress-priority-map

 Alias: ingress

 For incoming packets, a list of mappings from 802.1p priorities to

 Linux SKB priorities. The mapping is given in the format "from:to"

 where both "from" and "to" are unsigned integers, ie "7:3".

 Format: array of string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID from which this VLAN interface should be created. If this

 property is not specified, the connection must contain an

 "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 protocol

 Specifies the VLAN protocol to use for encapsulation.

 Supported values are: '802.1Q', '802.1ad'. If not specified the

 default value is '802.1Q'.

 Format: string

 vpn setting

 VPN Settings.

 Properties:

 data

 Dictionary of key/value pairs of VPN plugin specific data. Both

 keys and values must be strings.

 Format: dict of string to string

 persistent Page 87/112

 If the VPN service supports persistence, and this property is TRUE,

 the VPN will attempt to stay connected across link changes and

 outages, until explicitly disconnected.

 Format: boolean

 secrets

 Dictionary of key/value pairs of VPN plugin specific secrets like

 passwords or private keys. Both keys and values must be strings.

 Format: dict of string to string

 service-type

 Alias: vpn-type

 D-Bus service name of the VPN plugin that this setting uses to

 connect to its network. i.e. org.freedesktop.NetworkManager.vpnc

 for the vpnc plugin.

 Format: string

 timeout

 Timeout for the VPN service to establish the connection. Some

 services may take quite a long time to connect. Value of 0 means a

 default timeout, which is 60 seconds (unless overridden by

 vpn.timeout in configuration file). Values greater than zero mean

 timeout in seconds.

 Format: uint32

 user-name

 Alias: user

 If the VPN connection requires a user name for authentication, that

 name should be provided here. If the connection is available to

 more than one user, and the VPN requires each user to supply a

 different name, then leave this property empty. If this property is

 empty, NetworkManager will automatically supply the username of the

 user which requested the VPN connection.

 Format: string

 vrf setting

 VRF settings.

 Properties: Page 88/112

 table

 Alias: table

 The routing table for this VRF.

 Format: uint32

 vxlan setting

 VXLAN Settings.

 Properties:

 ageing

 Specifies the lifetime in seconds of FDB entries learnt by the

 kernel.

 Format: uint32

 destination-port

 Alias: destination-port

 Specifies the UDP destination port to communicate to the remote

 VXLAN tunnel endpoint.

 Format: uint32

 id

 Alias: id

 Specifies the VXLAN Network Identifier (or VXLAN Segment

 Identifier) to use.

 Format: uint32

 l2-miss

 Specifies whether netlink LL ADDR miss notifications are generated.

 Format: boolean

 l3-miss

 Specifies whether netlink IP ADDR miss notifications are generated.

 Format: boolean

 learning

 Specifies whether unknown source link layer addresses and IP

 addresses are entered into the VXLAN device forwarding database.

 Format: boolean

 limit

 Specifies the maximum number of FDB entries. A value of zero means Page 89/112

 that the kernel will store unlimited entries.

 Format: uint32

 local

 Alias: local

 If given, specifies the source IP address to use in outgoing

 packets.

 Format: string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection

 UUID.

 Format: string

 proxy

 Specifies whether ARP proxy is turned on.

 Format: boolean

 remote

 Alias: remote

 Specifies the unicast destination IP address to use in outgoing

 packets when the destination link layer address is not known in the

 VXLAN device forwarding database, or the multicast IP address to

 join.

 Format: string

 rsc

 Specifies whether route short circuit is turned on.

 Format: boolean

 source-port-max

 Alias: source-port-max

 Specifies the maximum UDP source port to communicate to the remote

 VXLAN tunnel endpoint.

 Format: uint32

 source-port-min

 Alias: source-port-min

 Specifies the minimum UDP source port to communicate to the remote Page 90/112

 VXLAN tunnel endpoint.

 Format: uint32

 tos

 Specifies the TOS value to use in outgoing packets.

 Format: uint32

 ttl

 Specifies the time-to-live value to use in outgoing packets.

 Format: uint32

 wifi-p2p setting

 Wi-Fi P2P Settings.

 Properties:

 peer

 Alias: peer

 The P2P device that should be connected to. Currently, this is the

 only way to create or join a group.

 Format: string

 wfd-ies

 The Wi-Fi Display (WFD) Information Elements (IEs) to set.

 Wi-Fi Display requires a protocol specific information element to

 be set in certain Wi-Fi frames. These can be specified here for the

 purpose of establishing a connection. This setting is only useful

 when implementing a Wi-Fi Display client.

 Format: byte array

 wps-method

 Flags indicating which mode of WPS is to be used.

 There's little point in changing the default setting as

 NetworkManager will automatically determine the best method to use.

 Format: uint32

 wimax setting

 WiMax Settings.

 Properties:

 mac-address

 Alias: mac Page 91/112

 If specified, this connection will only apply to the WiMAX device

 whose MAC address matches. This property does not change the MAC

 address of the device (known as MAC spoofing).

 This property is deprecated since version 1.2. WiMAX is no longer

 supported.

 Format: byte array

 network-name

 Alias: nsp

 Network Service Provider (NSP) name of the WiMAX network this

 connection should use.

 This property is deprecated since version 1.2. WiMAX is no longer

 supported.

 Format: string

 802-3-ethernet setting

 Alias: ethernet

 Wired Ethernet Settings.

 Properties:

 accept-all-mac-addresses

 When TRUE, setup the interface to accept packets for all MAC

 addresses. This is enabling the kernel interface flag IFF_PROMISC.

 When FALSE, the interface will only accept the packets with the

 interface destination mac address or broadcast.

 Format: NMTernary (int32)

 auto-negotiate

 When TRUE, enforce auto-negotiation of speed and duplex mode. If

 "speed" and "duplex" properties are both specified, only that

 single mode will be advertised and accepted during the link

 auto-negotiation process: this works only for BASE-T 802.3

 specifications and is useful for enforcing gigabits modes, as in

 these cases link negotiation is mandatory. When FALSE, "speed" and

 "duplex" properties should be both set or link configuration will

 be skipped.

 Format: boolean Page 92/112

 cloned-mac-address

 Alias: cloned-mac

 If specified, request that the device use this MAC address instead.

 This is known as MAC cloning or spoofing.

 Beside explicitly specifying a MAC address, the special values

 "preserve", "permanent", "random" and "stable" are supported.

 "preserve" means not to touch the MAC address on activation.

 "permanent" means to use the permanent hardware address if the

 device has one (otherwise this is treated as "preserve"). "random"

 creates a random MAC address on each connect. "stable" creates a

 hashed MAC address based on connection.stable-id and a machine

 dependent key.

 If unspecified, the value can be overwritten via global defaults,

 see manual of NetworkManager.conf. If still unspecified, it

 defaults to "preserve" (older versions of NetworkManager may use a

 different default value).

 On D-Bus, this field is expressed as "assigned-mac-address" or the

 deprecated "cloned-mac-address".

 Format: byte array

 duplex

 When a value is set, either "half" or "full", configures the device

 to use the specified duplex mode. If "auto-negotiate" is "yes" the

 specified duplex mode will be the only one advertised during link

 negotiation: this works only for BASE-T 802.3 specifications and is

 useful for enforcing gigabits modes, as in these cases link

 negotiation is mandatory. If the value is unset (the default), the

 link configuration will be either skipped (if "auto-negotiate" is

 "no", the default) or will be auto-negotiated (if "auto-negotiate"

 is "yes") and the local device will advertise all the supported

 duplex modes. Must be set together with the "speed" property if

 specified. Before specifying a duplex mode be sure your device

 supports it.

 Format: string Page 93/112

 generate-mac-address-mask

 With "cloned-mac-address" setting "random" or "stable", by default

 all bits of the MAC address are scrambled and a

 locally-administered, unicast MAC address is created. This property

 allows to specify that certain bits are fixed. Note that the least

 significant bit of the first MAC address will always be unset to

 create a unicast MAC address.

 If the property is NULL, it is eligible to be overwritten by a

 default connection setting. If the value is still NULL or an empty

 string, the default is to create a locally-administered, unicast

 MAC address.

 If the value contains one MAC address, this address is used as

 mask. The set bits of the mask are to be filled with the current

 MAC address of the device, while the unset bits are subject to

 randomization. Setting "FE:FF:FF:00:00:00" means to preserve the

 OUI of the current MAC address and only randomize the lower 3 bytes

 using the "random" or "stable" algorithm.

 If the value contains one additional MAC address after the mask,

 this address is used instead of the current MAC address to fill the

 bits that shall not be randomized. For example, a value of

 "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the OUI of the MAC

 address to 68:F7:28, while the lower bits are randomized. A value

 of "02:00:00:00:00:00 00:00:00:00:00:00" will create a fully

 scrambled globally-administered, burned-in MAC address.

 If the value contains more than one additional MAC addresses, one

 of them is chosen randomly. For example, "02:00:00:00:00:00

 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled

 MAC address, randomly locally or globally administered.

 Format: string

 mac-address

 Alias: mac

 If specified, this connection will only apply to the Ethernet

 device whose permanent MAC address matches. This property does not Page 94/112

 change the MAC address of the device (i.e. MAC spoofing).

 Format: byte array

 mac-address-blacklist

 If specified, this connection will never apply to the Ethernet

 device whose permanent MAC address matches an address in the list.

 Each MAC address is in the standard hex-digits-and-colons notation

 (00:11:22:33:44:55).

 Format: array of string

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple Ethernet frames.

 Format: uint32

 port

 Specific port type to use if the device supports multiple

 attachment methods. One of "tp" (Twisted Pair), "aui" (Attachment

 Unit Interface), "bnc" (Thin Ethernet) or "mii" (Media Independent

 Interface). If the device supports only one port type, this setting

 is ignored.

 Format: string

 s390-nettype

 s390 network device type; one of "qeth", "lcs", or "ctc",

 representing the different types of virtual network devices

 available on s390 systems.

 Format: string

 s390-options

 Dictionary of key/value pairs of s390-specific device options. Both

 keys and values must be strings. Allowed keys include "portno",

 "layer2", "portname", "protocol", among others. Key names must

 contain only alphanumeric characters (ie, [a-zA-Z0-9]).

 Currently, NetworkManager itself does nothing with this

 information. However, s390utils ships a udev rule which parses this

 information and applies it to the interface. Page 95/112

 Format: dict of string to string

 s390-subchannels

 Identifies specific subchannels that this network device uses for

 communication with z/VM or s390 host. Like the "mac-address"

 property for non-z/VM devices, this property can be used to ensure

 this connection only applies to the network device that uses these

 subchannels. The list should contain exactly 3 strings, and each

 string may only be composed of hexadecimal characters and the

 period (.) character.

 Format: array of string

 speed

 When a value greater than 0 is set, configures the device to use

 the specified speed. If "auto-negotiate" is "yes" the specified

 speed will be the only one advertised during link negotiation: this

 works only for BASE-T 802.3 specifications and is useful for

 enforcing gigabit speeds, as in this case link negotiation is

 mandatory. If the value is unset (0, the default), the link

 configuration will be either skipped (if "auto-negotiate" is "no",

 the default) or will be auto-negotiated (if "auto-negotiate" is

 "yes") and the local device will advertise all the supported

 speeds. In Mbit/s, ie 100 == 100Mbit/s. Must be set together with

 the "duplex" property when non-zero. Before specifying a speed

 value be sure your device supports it.

 Format: uint32

 wake-on-lan

 The NMSettingWiredWakeOnLan options to enable. Not all devices

 support all options. May be any combination of

 NM_SETTING_WIRED_WAKE_ON_LAN_PHY (0x2),

 NM_SETTING_WIRED_WAKE_ON_LAN_UNICAST (0x4),

 NM_SETTING_WIRED_WAKE_ON_LAN_MULTICAST (0x8),

 NM_SETTING_WIRED_WAKE_ON_LAN_BROADCAST (0x10),

 NM_SETTING_WIRED_WAKE_ON_LAN_ARP (0x20),

 NM_SETTING_WIRED_WAKE_ON_LAN_MAGIC (0x40) or the special values Page 96/112

 NM_SETTING_WIRED_WAKE_ON_LAN_DEFAULT (0x1) (to use global settings)

 and NM_SETTING_WIRED_WAKE_ON_LAN_IGNORE (0x8000) (to disable

 management of Wake-on-LAN in NetworkManager).

 Format: uint32

 wake-on-lan-password

 If specified, the password used with magic-packet-based

 Wake-on-LAN, represented as an Ethernet MAC address. If NULL, no

 password will be required.

 Format: string

 wireguard setting

 WireGuard Settings.

 Properties:

 fwmark

 The use of fwmark is optional and is by default off. Setting it to

 0 disables it. Otherwise, it is a 32-bit fwmark for outgoing

 packets.

 Note that "ip4-auto-default-route" or "ip6-auto-default-route"

 enabled, implies to automatically choose a fwmark.

 Format: uint32

 ip4-auto-default-route

 Whether to enable special handling of the IPv4 default route. If

 enabled, the IPv4 default route from wireguard.peer-routes will be

 placed to a dedicated routing-table and two policy routing rules

 will be added. The fwmark number is also used as routing-table for

 the default-route, and if fwmark is zero, an unused fwmark/table is

 chosen automatically. This corresponds to what wg-quick does with

 Table=auto and what WireGuard calls "Improved Rule-based Routing".

 Note that for this automatism to work, you usually don't want to

 set ipv4.gateway, because that will result in a conflicting default

 route.

 Leaving this at the default will enable this option automatically

 if ipv4.never-default is not set and there are any peers that use a

 default-route as allowed-ips. Since this automatism only makes Page 97/112

 sense if you also have a peer with an /0 allowed-ips, it is usually

 not necessary to enable this explicitly. However, you can disable

 it if you want to configure your own routing and rules.

 Format: NMTernary (int32)

 ip6-auto-default-route

 Like ip4-auto-default-route, but for the IPv6 default route.

 Format: NMTernary (int32)

 listen-port

 The listen-port. If listen-port is not specified, the port will be

 chosen randomly when the interface comes up.

 Format: uint32

 mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple fragments.

 If zero a default MTU is used. Note that contrary to wg-quick's MTU

 setting, this does not take into account the current routes at the

 time of activation.

 Format: uint32

 peer-routes

 Whether to automatically add routes for the AllowedIPs ranges of

 the peers. If TRUE (the default), NetworkManager will automatically

 add routes in the routing tables according to ipv4.route-table and

 ipv6.route-table. Usually you want this automatism enabled. If

 FALSE, no such routes are added automatically. In this case, the

 user may want to configure static routes in ipv4.routes and

 ipv6.routes, respectively.

 Note that if the peer's AllowedIPs is "0.0.0.0/0" or "::/0" and the

 profile's ipv4.never-default or ipv6.never-default setting is

 enabled, the peer route for this peer won't be added automatically.

 Format: boolean

 private-key

 The 256 bit private-key in base64 encoding.

 Format: string Page 98/112

 private-key-flags

 Flags indicating how to handle the "private-key" property.

 Format: NMSettingSecretFlags (uint32)

 802-11-wireless setting

 Alias: wifi

 Wi-Fi Settings.

 Properties:

 ap-isolation

 Configures AP isolation, which prevents communication between

 wireless devices connected to this AP. This property can be set to

 a value different from NM_TERNARY_DEFAULT (-1) only when the

 interface is configured in AP mode.

 If set to NM_TERNARY_TRUE (1), devices are not able to communicate

 with each other. This increases security because it protects

 devices against attacks from other clients in the network. At the

 same time, it prevents devices to access resources on the same

 wireless networks as file shares, printers, etc.

 If set to NM_TERNARY_FALSE (0), devices can talk to each other.

 When set to NM_TERNARY_DEFAULT (-1), the global default is used; in

 case the global default is unspecified it is assumed to be

 NM_TERNARY_FALSE (0).

 Format: NMTernary (int32)

 band

 802.11 frequency band of the network. One of "a" for 5GHz 802.11a

 or "bg" for 2.4GHz 802.11. This will lock associations to the Wi-Fi

 network to the specific band, i.e. if "a" is specified, the device

 will not associate with the same network in the 2.4GHz band even if

 the network's settings are compatible. This setting depends on

 specific driver capability and may not work with all drivers.

 Format: string

 bssid

 If specified, directs the device to only associate with the given

 access point. This capability is highly driver dependent and not Page 99/112

 supported by all devices. Note: this property does not control the

 BSSID used when creating an Ad-Hoc network and is unlikely to in

 the future.

 Locking a client profile to a certain BSSID will prevent roaming

 and also disable background scanning. That can be useful, if there

 is only one access point for the SSID.

 Format: byte array

 channel

 Wireless channel to use for the Wi-Fi connection. The device will

 only join (or create for Ad-Hoc networks) a Wi-Fi network on the

 specified channel. Because channel numbers overlap between bands,

 this property also requires the "band" property to be set.

 Format: uint32

 cloned-mac-address

 Alias: cloned-mac

 If specified, request that the device use this MAC address instead.

 This is known as MAC cloning or spoofing.

 Beside explicitly specifying a MAC address, the special values

 "preserve", "permanent", "random" and "stable" are supported.

 "preserve" means not to touch the MAC address on activation.

 "permanent" means to use the permanent hardware address of the

 device. "random" creates a random MAC address on each connect.

 "stable" creates a hashed MAC address based on connection.stable-id

 and a machine dependent key.

 If unspecified, the value can be overwritten via global defaults,

 see manual of NetworkManager.conf. If still unspecified, it

 defaults to "preserve" (older versions of NetworkManager may use a

 different default value).

 On D-Bus, this field is expressed as "assigned-mac-address" or the

 deprecated "cloned-mac-address".

 Format: byte array

 generate-mac-address-mask

 With "cloned-mac-address" setting "random" or "stable", by default Page 100/112

 all bits of the MAC address are scrambled and a

 locally-administered, unicast MAC address is created. This property

 allows to specify that certain bits are fixed. Note that the least

 significant bit of the first MAC address will always be unset to

 create a unicast MAC address.

 If the property is NULL, it is eligible to be overwritten by a

 default connection setting. If the value is still NULL or an empty

 string, the default is to create a locally-administered, unicast

 MAC address.

 If the value contains one MAC address, this address is used as

 mask. The set bits of the mask are to be filled with the current

 MAC address of the device, while the unset bits are subject to

 randomization. Setting "FE:FF:FF:00:00:00" means to preserve the

 OUI of the current MAC address and only randomize the lower 3 bytes

 using the "random" or "stable" algorithm.

 If the value contains one additional MAC address after the mask,

 this address is used instead of the current MAC address to fill the

 bits that shall not be randomized. For example, a value of

 "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the OUI of the MAC

 address to 68:F7:28, while the lower bits are randomized. A value

 of "02:00:00:00:00:00 00:00:00:00:00:00" will create a fully

 scrambled globally-administered, burned-in MAC address.

 If the value contains more than one additional MAC addresses, one

 of them is chosen randomly. For example, "02:00:00:00:00:00

 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled

 MAC address, randomly locally or globally administered.

 Format: string

 hidden

 If TRUE, indicates that the network is a non-broadcasting network

 that hides its SSID. This works both in infrastructure and AP mode.

 In infrastructure mode, various workarounds are used for a more

 reliable discovery of hidden networks, such as probe-scanning the

 SSID. However, these workarounds expose inherent insecurities with Page 101/112

 hidden SSID networks, and thus hidden SSID networks should be used

 with caution.

 In AP mode, the created network does not broadcast its SSID.

 Note that marking the network as hidden may be a privacy issue for

 you (in infrastructure mode) or client stations (in AP mode), as

 the explicit probe-scans are distinctly recognizable on the air.

 Format: boolean

 mac-address

 Alias: mac

 If specified, this connection will only apply to the Wi-Fi device

 whose permanent MAC address matches. This property does not change

 the MAC address of the device (i.e. MAC spoofing).

 Format: byte array

 mac-address-blacklist

 A list of permanent MAC addresses of Wi-Fi devices to which this

 connection should never apply. Each MAC address should be given in

 the standard hex-digits-and-colons notation (eg

 "00:11:22:33:44:55").

 Format: array of string

 mac-address-randomization

 One of NM_SETTING_MAC_RANDOMIZATION_DEFAULT (0) (never randomize

 unless the user has set a global default to randomize and the

 supplicant supports randomization),

 NM_SETTING_MAC_RANDOMIZATION_NEVER (1) (never randomize the MAC

 address), or NM_SETTING_MAC_RANDOMIZATION_ALWAYS (2) (always

 randomize the MAC address).

 This property is deprecated since version 1.4. Use the

 "cloned-mac-address" property instead.

 Format: uint32

 mode

 Alias: mode

 Wi-Fi network mode; one of "infrastructure", "mesh", "adhoc" or

 "ap". If blank, infrastructure is assumed. Page 102/112

 Format: string

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple Ethernet frames.

 Format: uint32

 powersave

 One of NM_SETTING_WIRELESS_POWERSAVE_DISABLE (2) (disable Wi-Fi

 power saving), NM_SETTING_WIRELESS_POWERSAVE_ENABLE (3) (enable

 Wi-Fi power saving), NM_SETTING_WIRELESS_POWERSAVE_IGNORE (1)

 (don't touch currently configure setting) or

 NM_SETTING_WIRELESS_POWERSAVE_DEFAULT (0) (use the globally

 configured value). All other values are reserved.

 Format: uint32

 rate

 If non-zero, directs the device to only use the specified bitrate

 for communication with the access point. Units are in Kb/s, ie 5500

 = 5.5 Mbit/s. This property is highly driver dependent and not all

 devices support setting a static bitrate.

 Format: uint32

 seen-bssids

 A list of BSSIDs (each BSSID formatted as a MAC address like

 "00:11:22:33:44:55") that have been detected as part of the Wi-Fi

 network. NetworkManager internally tracks previously seen BSSIDs.

 The property is only meant for reading and reflects the BSSID list

 of NetworkManager. The changes you make to this property will not

 be preserved.

 Format: array of string

 ssid

 Alias: ssid

 SSID of the Wi-Fi network. Must be specified.

 Format: byte array

 tx-power Page 103/112

 If non-zero, directs the device to use the specified transmit

 power. Units are dBm. This property is highly driver dependent and

 not all devices support setting a static transmit power.

 Format: uint32

 wake-on-wlan

 The NMSettingWirelessWakeOnWLan options to enable. Not all devices

 support all options. May be any combination of

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_ANY (0x2),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_DISCONNECT (0x4),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_MAGIC (0x8),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_GTK_REKEY_FAILURE (0x10),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_EAP_IDENTITY_REQUEST (0x20),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_4WAY_HANDSHAKE (0x40),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_RFKILL_RELEASE (0x80),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_TCP (0x100) or the special values

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_DEFAULT (0x1) (to use global

 settings) and NM_SETTING_WIRELESS_WAKE_ON_WLAN_IGNORE (0x8000) (to

 disable management of Wake-on-LAN in NetworkManager).

 Format: uint32

 802-11-wireless-security setting

 Alias: wifi-sec

 Wi-Fi Security Settings.

 Properties:

 auth-alg

 When WEP is used (ie, key-mgmt = "none" or "ieee8021x") indicate

 the 802.11 authentication algorithm required by the AP here. One of

 "open" for Open System, "shared" for Shared Key, or "leap" for

 Cisco LEAP. When using Cisco LEAP (ie, key-mgmt = "ieee8021x" and

 auth-alg = "leap") the "leap-username" and "leap-password"

 properties must be specified.

 Format: string

 fils

 Indicates whether Fast Initial Link Setup (802.11ai) must be Page 104/112

 enabled for the connection. One of

 NM_SETTING_WIRELESS_SECURITY_FILS_DEFAULT (0) (use global default

 value), NM_SETTING_WIRELESS_SECURITY_FILS_DISABLE (1) (disable

 FILS), NM_SETTING_WIRELESS_SECURITY_FILS_OPTIONAL (2) (enable FILS

 if the supplicant and the access point support it) or

 NM_SETTING_WIRELESS_SECURITY_FILS_REQUIRED (3) (enable FILS and

 fail if not supported). When set to

 NM_SETTING_WIRELESS_SECURITY_FILS_DEFAULT (0) and no global default

 is set, FILS will be optionally enabled.

 Format: int32

 group

 A list of group/broadcast encryption algorithms which prevents

 connections to Wi-Fi networks that do not utilize one of the

 algorithms in the list. For maximum compatibility leave this

 property empty. Each list element may be one of "wep40", "wep104",

 "tkip", or "ccmp".

 Format: array of string

 key-mgmt

 Key management used for the connection. One of "none" (WEP or no

 password protection), "ieee8021x" (Dynamic WEP), "owe"

 (Opportunistic Wireless Encryption), "wpa-psk" (WPA2 + WPA3

 personal), "sae" (WPA3 personal only), "wpa-eap" (WPA2 + WPA3

 enterprise) or "wpa-eap-suite-b-192" (WPA3 enterprise only).

 This property must be set for any Wi-Fi connection that uses

 security.

 Format: string

 leap-password

 The login password for legacy LEAP connections (ie, key-mgmt =

 "ieee8021x" and auth-alg = "leap").

 Format: string

 leap-password-flags

 Flags indicating how to handle the "leap-password" property.

 Format: NMSettingSecretFlags (uint32) Page 105/112

 leap-username

 The login username for legacy LEAP connections (ie, key-mgmt =

 "ieee8021x" and auth-alg = "leap").

 Format: string

 pairwise

 A list of pairwise encryption algorithms which prevents connections

 to Wi-Fi networks that do not utilize one of the algorithms in the

 list. For maximum compatibility leave this property empty. Each

 list element may be one of "tkip" or "ccmp".

 Format: array of string

 pmf

 Indicates whether Protected Management Frames (802.11w) must be

 enabled for the connection. One of

 NM_SETTING_WIRELESS_SECURITY_PMF_DEFAULT (0) (use global default

 value), NM_SETTING_WIRELESS_SECURITY_PMF_DISABLE (1) (disable PMF),

 NM_SETTING_WIRELESS_SECURITY_PMF_OPTIONAL (2) (enable PMF if the

 supplicant and the access point support it) or

 NM_SETTING_WIRELESS_SECURITY_PMF_REQUIRED (3) (enable PMF and fail

 if not supported). When set to

 NM_SETTING_WIRELESS_SECURITY_PMF_DEFAULT (0) and no global default

 is set, PMF will be optionally enabled.

 Format: int32

 proto

 List of strings specifying the allowed WPA protocol versions to

 use. Each element may be one "wpa" (allow WPA) or "rsn" (allow

 WPA2/RSN). If not specified, both WPA and RSN connections are

 allowed.

 Format: array of string

 psk

 Pre-Shared-Key for WPA networks. For WPA-PSK, it's either an ASCII

 passphrase of 8 to 63 characters that is (as specified in the

 802.11i standard) hashed to derive the actual key, or the key in

 form of 64 hexadecimal character. The WPA3-Personal networks use a Page 106/112

 passphrase of any length for SAE authentication.

 Format: string

 psk-flags

 Flags indicating how to handle the "psk" property.

 Format: NMSettingSecretFlags (uint32)

 wep-key-flags

 Flags indicating how to handle the "wep-key0", "wep-key1",

 "wep-key2", and "wep-key3" properties.

 Format: NMSettingSecretFlags (uint32)

 wep-key-type

 Controls the interpretation of WEP keys. Allowed values are

 NM_WEP_KEY_TYPE_KEY (1), in which case the key is either a 10- or

 26-character hexadecimal string, or a 5- or 13-character ASCII

 password; or NM_WEP_KEY_TYPE_PASSPHRASE (2), in which case the

 passphrase is provided as a string and will be hashed using the

 de-facto MD5 method to derive the actual WEP key.

 Format: NMWepKeyType (uint32)

 wep-key0

 Index 0 WEP key. This is the WEP key used in most networks. See the

 "wep-key-type" property for a description of how this key is

 interpreted.

 Format: string

 wep-key1

 Index 1 WEP key. This WEP index is not used by most networks. See

 the "wep-key-type" property for a description of how this key is

 interpreted.

 Format: string

 wep-key2

 Index 2 WEP key. This WEP index is not used by most networks. See

 the "wep-key-type" property for a description of how this key is

 interpreted.

 Format: string

 wep-key3 Page 107/112

 Index 3 WEP key. This WEP index is not used by most networks. See

 the "wep-key-type" property for a description of how this key is

 interpreted.

 Format: string

 wep-tx-keyidx

 When static WEP is used (ie, key-mgmt = "none") and a non-default

 WEP key index is used by the AP, put that WEP key index here. Valid

 values are 0 (default key) through 3. Note that some consumer

 access points (like the Linksys WRT54G) number the keys 1 - 4.

 Format: uint32

 wps-method

 Flags indicating which mode of WPS is to be used if any.

 There's little point in changing the default setting as

 NetworkManager will automatically determine whether it's feasible

 to start WPS enrollment from the Access Point capabilities.

 WPS can be disabled by setting this property to a value of 1.

 Format: uint32

 wpan setting

 IEEE 802.15.4 (WPAN) MAC Settings.

 Properties:

 channel

 Alias: channel

 IEEE 802.15.4 channel. A positive integer or -1, meaning "do not

 set, use whatever the device is already set to".

 Format: int32

 mac-address

 Alias: mac

 If specified, this connection will only apply to the IEEE 802.15.4

 (WPAN) MAC layer device whose permanent MAC address matches.

 Format: string

 page

 Alias: page

 IEEE 802.15.4 channel page. A positive integer or -1, meaning "do Page 108/112

 not set, use whatever the device is already set to".

 Format: int32

 pan-id

 Alias: pan-id

 IEEE 802.15.4 Personal Area Network (PAN) identifier.

 Format: uint32

 short-address

 Alias: short-addr

 Short IEEE 802.15.4 address to be used within a restricted

 environment.

 Format: uint32

 bond-port setting

 Bond Port Settings.

 Properties:

 queue-id

 Alias: queue-id

 The queue ID of this bond port. The maximum value of queue ID is

 the number of TX queues currently active in device.

 Format: uint32

 hostname setting

 Hostname settings.

 Properties:

 from-dhcp

 Whether the system hostname can be determined from DHCP on this

 connection.

 When set to NM_TERNARY_DEFAULT (-1), the value from global

 configuration is used. If the property doesn't have a value in the

 global configuration, NetworkManager assumes the value to be

 NM_TERNARY_TRUE (1).

 Format: NMTernary (int32)

 from-dns-lookup

 Whether the system hostname can be determined from reverse DNS

 lookup of addresses on this device. Page 109/112

 When set to NM_TERNARY_DEFAULT (-1), the value from global

 configuration is used. If the property doesn't have a value in the

 global configuration, NetworkManager assumes the value to be

 NM_TERNARY_TRUE (1).

 Format: NMTernary (int32)

 only-from-default

 If set to NM_TERNARY_TRUE (1), NetworkManager attempts to get the

 hostname via DHCPv4/DHCPv6 or reverse DNS lookup on this device

 only when the device has the default route for the given address

 family (IPv4/IPv6).

 If set to NM_TERNARY_FALSE (0), the hostname can be set from this

 device even if it doesn't have the default route.

 When set to NM_TERNARY_DEFAULT (-1), the value from global

 configuration is used. If the property doesn't have a value in the

 global configuration, NetworkManager assumes the value to be

 NM_TERNARY_FALSE (0).

 Format: NMTernary (int32)

 priority

 The relative priority of this connection to determine the system

 hostname. A lower numerical value is better (higher priority). A

 connection with higher priority is considered before connections

 with lower priority.

 If the value is zero, it can be overridden by a global value from

 NetworkManager configuration. If the property doesn't have a value

 in the global configuration, the value is assumed to be 100.

 Negative values have the special effect of excluding other

 connections with a greater numerical priority value; so in presence

 of at least one negative priority, only connections with the lowest

 priority value will be used to determine the hostname.

 Format: int32

 loopback setting

 Loopback Link Settings.

 Properties: Page 110/112

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or

 smaller, breaking larger packets up into multiple Ethernet frames.

 Format: uint32

 veth setting

 Veth Settings.

 Properties:

 peer

 Alias: peer

 This property specifies the peer interface name of the veth. This

 property is mandatory.

 Format: string

 Secret flag types:

 Each password or secret property in a setting has an associated flags

 property that describes how to handle that secret. The flags property

 is a bitfield that contains zero or more of the following values

 logically OR-ed together.

 ? 0x0 (none) - the system is responsible for providing and storing

 this secret. This may be required so that secrets are already

 available before the user logs in. It also commonly means that the

 secret will be stored in plain text on disk, accessible to root

 only. For example via the keyfile settings plugin as described in

 the "PLUGINS" section in NetworkManager.conf(5).

 ? 0x1 (agent-owned) - a user-session secret agent is responsible for

 providing and storing this secret; when it is required, agents will

 be asked to provide it.

 ? 0x2 (not-saved) - this secret should not be saved but should be

 requested from the user each time it is required. This flag should

 be used for One-Time-Pad secrets, PIN codes from hardware tokens,

 or if the user simply does not want to save the secret.

 ? 0x4 (not-required) - in some situations it cannot be automatically

 determined that a secret is required or not. This flag hints that Page 111/112

 the secret is not required and should not be requested from the

 user.

FILES

 /etc/NetworkManager/system-connections or distro plugin-specific

 location

SEE ALSO

 nmcli(1), nmcli-examples(7), NetworkManager(8), nm-settings-dbus(5),

 nm-settings-keyfile(5), NetworkManager.conf(5)

NetworkManager 1.42.2 NM-SETTINGS-NMCLI(5)

Page 112/112

