r“‘ .

University

FPDF Library

Red H at PDF generator;
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'nm-settings-nmcli.5' command
$ man nm-settings-nmcli.5
NM-SETTINGS-NMCLI(5) Configuration NM-SETTINGS-NMCLI(5)
NAME
nm-settings-nmcli - Description of settings and properties of
NetworkManager connection profiles for nmcli
DESCRIPTION
NetworkManager is based on a concept of connection profiles, sometimes
referred to as connections only. These connection profiles contain a
network configuration. When NetworkManager activates a connection
profile on a network device the configuration will be applied and an
active network connection will be established. Users are free to create
as many connection profiles as they see fit. Thus they are flexible in
having various network configurations for different networking needs.
NetworkManager provides an API for configuring connection profiles, for
activating them to configure the network, and inspecting the current
network configuration. The command line tool nmcli is a client
application to NetworkManager that uses this APIl. See nmcli(1) for
details.
With commands like nmcli connection add, nmcli connection modify and
nmcli connection show, connection profiles can be created, modified and
inspected. A profile consists of properties. On D-Bus this follows the
format as described by nm-settings-dbus(5), while this manual page
describes the settings format how they are expected by nmcli.

The settings and properties shown in tables below list all available Page 1/112

connection configuration options. However, note that not all settings
are applicable to all connection types. nmcli connection editor has
also a built-in describe command that can display description of
particular settings and properties of this page.
The setting and property can be abbreviated provided they are unique.
The list below also shows aliases that can be used unqualified instead
of the full name. For example connection.interface-name and ifname
refer to the same property.
connection setting
General Connection Profile Settings.
Properties:
auth-retries
The number of retries for the authentication. Zero means to try
indefinitely; -1 means to use a global default. If the global
default is not set, the authentication retries for 3 times before
failing the connection.
Currently, this only applies to 802-1x authentication.
Format: int32
autoconnect
Alias: autoconnect
Whether or not the connection should be automatically connected by
NetworkManager when the resources for the connection are available.
TRUE to automatically activate the connection, FALSE to require
manual intervention to activate the connection.
Autoconnect happens when the circumstances are suitable. That means
for example that the device is currently managed and not active.
Autoconnect thus never replaces or competes with an already active
profile.
Note that autoconnect is not implemented for VPN profiles. See
"secondaries" as an alternative to automatically connect VPN
profiles.
If multiple profiles are ready to autoconnect on the same device,

the one with the better "connection.autoconnect-priority" is Page 2/112

chosen. If the priorities are equal, then the most recently
connected profile is activated. If the profiles were not connected
earlier or their "connection.timestamp" is identical, the choice is
undefined.
Depending on "connection.multi-connect”, a profile can
(auto)connect only once at a time or multiple times.
Format: boolean

autoconnect-priority
The autoconnect priority in range -999 to 999. If the connection is
set to autoconnect, connections with higher priority will be
preferred. The higher number means higher priority. Defaults to 0.
Note that this property only matters if there are more than one
candidate profile to select for autoconnect. In case of equal
priority, the profile used most recently is chosen.
Format: int32

autoconnect-retries
The number of times a connection should be tried when
autoactivating before giving up. Zero means forever, -1 means the
global default (4 times if not overridden). Setting this to 1 means
to try activation only once before blocking autoconnect. Note that
after a timeout, NetworkManager will try to autoconnect again.
Format: int32

autoconnect-slaves
Whether or not slaves of this connection should be automatically
brought up when NetworkManager activates this connection. This only
has a real effect for master connections. The properties

"autoconnect", "autoconnect-priority" and "autoconnect-retries" are
unrelated to this setting. The permitted values are: 0: leave slave
connections untouched, 1: activate all the slave connections with
this connection, -1: default. If -1 (default) is set, global
connection.autoconnect-slaves is read to determine the real value.

If it is default as well, this fallbacks to O.

Format: NMSettingConnectionAutoconnectSlaves (int32) Page 3/112

dns-over-tls
Whether DNSOverTls (dns-over-tls) is enabled for the connection.
DNSOverTls is a technology which uses TLS to encrypt dns traffic.
The permitted values are: "yes" (2) use DNSOverTls and disabled
fallback, "opportunistic” (1) use DNSOverTls but allow fallback to
unencrypted resolution, "no" (0) don't ever use DNSOverTls. If
unspecified "default” depends on the plugin used. Systemd-resolved
uses global setting.
This feature requires a plugin which supports DNSOverTls.
Otherwise, the setting has no effect. One such plugin is
dns-systemd-resolved.
Format: int32

gateway-ping-timeout
If greater than zero, delay success of IP addressing until either
the timeout is reached, or an IP gateway replies to a ping.
Format: uint32

id
Alias: con-name
A human readable unique identifier for the connection, like "Work
Wi-Fi" or "T-Mobile 3G".
Format: string

interface-name
Alias: ifname
The name of the network interface this connection is bound to. If
not set, then the connection can be attached to any interface of
the appropriate type (subject to restrictions imposed by other
settings).
For software devices this specifies the name of the created device.
For connection types where interface names cannot easily be made
persistent (e.g. mobile broadband or USB Ethernet), this property
should not be used. Setting this property restricts the interfaces
a connection can be used with, and if interface names change or are

reordered the connection may be applied to the wrong interface. Page 4/112

Format: string

lldp
Whether LLDP is enabled for the connection.
Format: int32

lImnr
Whether Link-Local Multicast Name Resolution (LLMNR) is enabled for
the connection. LLMNR is a protocol based on the Domain Name System
(DNS) packet format that allows both IPv4 and IPv6 hosts to perform
name resolution for hosts on the same local link.
The permitted values are: "yes" (2) register hostname and resolving
for the connection, "no" (0) disable LLMNR for the interface,
"resolve" (1) do not register hostname but allow resolving of LLMNR
host names If unspecified, "default” ultimately depends on the DNS
plugin (which for systemd-resolved currently means "yes").
This feature requires a plugin which supports LLMNR. Otherwise, the
setting has no effect. One such plugin is dns-systemd-resolved.
Format: int32

master
Alias: master
Interface name of the master device or UUID of the master
connection.
Format: string

mdns
Whether mDNS is enabled for the connection.
The permitted values are: "yes" (2) register hostname and resolving
for the connection, "no" (0) disable mDNS for the interface,
"resolve" (1) do not register hostname but allow resolving of MDNS
host names and "default” (-1) to allow lookup of a global default
in NetworkManager.conf. If unspecified, "default" ultimately
depends on the DNS plugin (which for systemd-resolved currently
means "no").
This feature requires a plugin which supports mDNS. Otherwise, the

setting has no effect. One such plugin is dns-systemd-resolved. Page 5/112

Format: int32

metered
Whether the connection is metered.
When updating this property on a currently activated connection,
the change takes effect immediately.
Format: NMMetered (int32)

mptcp-flags
Whether to configure MPTCP endpoints and the address flags. If
MPTCP is enabled in NetworkManager, it will configure the addresses
of the interface as MPTCP endpoints. Note that IPv4 loopback
addresses (127.0.0.0/8), IPv4 link local addresses
(169.254.0.0/16), the IPv6 loopback address (::1), IPv6 link local
addresses (fe80::/10), IPv6 unique local addresses (ULA, fc00::/7)
and IPv6 privacy extension addresses (rfc3041, ipv6.ip6-privacy)
will be excluded from being configured as endpoints.
If "disabled" (0x1), MPTCP handling for the interface is disabled
and no endpoints are registered.
The "enabled" (0x2) flag means that MPTCP handling is enabled. This
flag can also be implied from the presence of other flags.
Even when enabled, MPTCP handling will by default still be disabled
unless "/proc/sys/net/mptcp/enabled” sysctl is on. NetworkManager
does not change the sysctl and this is up to the administrator or
distribution. To configure endpoints even if the sysctl is
disabled, "also-without-sysctl" (0x4) flag can be used. In that
case, NetworkManager doesn't look at the sysctl and configures
endpoints regardless.
Even when enabled, NetworkManager will only configure MPTCP
endpoints for a certain address family, if there is a unicast
default route (0.0.0.0/0 or ::/0) in the main routing table. The
flag "also-without-default-route” (0x8) can override that.
When MPTCP handling is enabled then endpoints are configured with
the specified address flags "signal” (0x10), "subflow" (0x20),

"backup" (0x40), "fullmesh" (0x80). See ip-mptcp(8) manual for Page 6/112

additional information about the flags.
If the flags are zero (0x0), the global connection default from
NetworkManager.conf is honored. If still unspecified, the fallback
is "enabled,subflow". Note that this means that MPTCP is by default
done depending on the "/proc/sys/net/mptcp/enabled” sysctl.
NetworkManager does not change the MPTCP limits nor enable MPTCP
via "/proc/sys/net/mptcp/enabled”. That is a host configuration
which the admin can change via sysctl and ip-mptcp.
Strict reverse path filtering (rp_filter) breaks many MPTCP use
cases, so when MPTCP handling for IPv4 addresses on the interface
is enabled, NetworkManager would loosen the strict reverse path
filtering (1) to the loose setting (2).
Format: uint32

mud-url
If configured, set to a Manufacturer Usage Description (MUD) URL
that points to manufacturer-recommended network policies for 0T
devices. It is transmitted as a DHCPv4 or DHCPvV6 option. The value
must be a valid URL starting with "https://".
The special value "none" is allowed to indicate that no MUD URL is
used.
If the per-profile value is unspecified (the default), a global
connection default gets consulted. If still unspecified, the
ultimate default is "none".
Format: string

multi-connect
Specifies whether the profile can be active multiple times at a
particular moment. The value is of type NMConnectionMultiConnect.
Format: int32

permissions
An array of strings defining what access a given user has to this
connection. If this is NULL or empty, all users are allowed to
access this connection; otherwise users are allowed if and only if

they are in this list. When this is not empty, the connection can Page 7/112

be active only when one of the specified users is logged into an
active session. Each entry is of the form "[type]:[id]:[reserved]";
for example, "user:dcbw:blah".
At this time only the "user" [type] is allowed. Any other values
are ignored and reserved for future use. [id] is the username that
this permission refers to, which may not contain the ":" character.
Any [reserved] information present must be ignored and is reserved
for future use. All of [type], [id], and [reserved] must be valid
UTF-8.
Format: array of string

read-only
FALSE if the connection can be modified using the provided settings
service's D-Bus interface with the right privileges, or TRUE if the
connection is read-only and cannot be modified.
Format: boolean

secondaries
List of connection UUIDs that should be activated when the base
connection itself is activated. Currently, only VPN connections are
supported.
Format: array of string

slave-type
Alias: slave-type
Setting name of the device type of this slave's master connection
(eg, "bond"), or NULL if this connection is not a slave.
Format: string

stable-id
This represents the identity of the connection used for various
purposes. It allows to configure multiple profiles to share the
identity. Also, the stable-id can contain placeholders that are
substituted dynamically and deterministically depending on the
context.
The stable-id is used for generating IPv6 stable private addresses

with ipv6.addr-gen-mode=stable-privacy. It is also used to seed the

Page 8/112

generated cloned MAC address for ethernet.cloned-mac-address=stable
and wifi.cloned-mac-address=stable. It is also used as DHCP client
identifier with ipv4.dhcp-client-id=stable and to derive the DHCP
DUID with ipv6.dhcp-duid=stable-[lIt,Il,uuid].
Note that depending on the context where it is used, other
parameters are also seeded into the generation algorithm. For
example, a per-host key is commonly also included, so that
different systems end up generating different IDs. Or with
ipv6.addr-gen-mode=stable-privacy, also the device's name is
included, so that different interfaces yield different addresses.
The per-host key is the identity of your machine and stored in
Ivar/lib/NetworkManager/secret_key. See NetworkManager(8) manual
about the secret-key and the host identity.
The '$' character is treated special to perform dynamic
substitutions at runtime. Currently, supported are "${CONNECTION}",
"${DEVICE}", "${MAC}", "${BOOT}", "${RANDOM}". These effectively
create unique IDs per-connection, per-device, per-boot, or every
time. Note that "${DEVICE}" corresponds to the interface name of
the device and "${MAC}" is the permanent MAC address of the device.
Any unrecognized patterns following '$' are treated verbatim,
however are reserved for future use. You are thus advised to avoid
'$' or escape it as "$$". For example, set it to
"${CONNECTION}-${BOOT}-${DEVICE}" to create a unique id for this
connection that changes with every reboot and differs depending on
the interface where the profile activates.
If the value is unset, a global connection default is consulted. If
the value is still unset, the default is similar to "${CONNECTION}"
and uses a unique, fixed ID for the connection.
Format: string

timestamp
The time, in seconds since the Unix Epoch, that the connection was
last _successfully_ fully activated.

NetworkManager updates the connection timestamp periodically when Page 9/112

the connection is active to ensure that an active connection has
the latest timestamp. The property is only meant for reading
(changes to this property will not be preserved).
Format: uint64

type
Alias: type
Base type of the connection. For hardware-dependent connections,
should contain the setting name of the hardware-type specific
setting (ie, "802-3-ethernet" or "802-11-wireless" or "bluetooth”,
etc), and for non-hardware dependent connections like VPN or
otherwise, should contain the setting name of that setting type
(ie, "vpn" or "bridge", etc).
Format: string

uuid
A universally unique identifier for the connection, for example
generated with libuuid. It should be assigned when the connection
is created, and never changed as long as the connection still
applies to the same network. For example, it should not be changed
when the "id" property or NMSettingIlP4Config changes, but might
need to be re-created when the Wi-Fi SSID, mobile broadband network
provider, or "type" property changes.
The UUID must be in the format
"2815492f-7e56-435e-b2e9-246bd7cdc664" (ie, contains only
hexadecimal characters and "-").
Format: a valid RFC4122 universally unique identifier (UUID).

wait-activation-delay
Time in milliseconds to wait for connection to be considered
activated. The wait will start after the pre-up dispatcher event.
The value 0 means no wait time. The default value is -1, which
currently has the same meaning as no wait time.
Format: int32

wait-device-timeout

Timeout in milliseconds to wait for device at startup. During boot, Page 10/112

devices may take a while to be detected by the driver. This
property will cause to delay NetworkManager-wait-online.service and
nm-online to give the device a chance to appear. This works by
waiting for the given timeout until a compatible device for the
profile is available and managed.
The value 0 means no wait time. The default value is -1, which
currently has the same meaning as no wait time.
Format: int32

zone
The trust level of a the connection. Free form case-insensitive
string (for example "Home", "Work", "Public"). NULL or unspecified
zone means the connection will be placed in the default zone as
defined by the firewall.
When updating this property on a currently activated connection,
the change takes effect immediately.
Format: string

6lowpan setting

6LOWPAN Settings.

Properties:

parent
Alias: dev
If given, specifies the parent interface name or parent connection
UUID from which this 6LowPAN interface should be created.
Format: string

802-1x setting

IEEE 802.1x Authentication Settings.

Properties:

altsubject-matches
List of strings to be matched against the altSubjectName of the
certificate presented by the authentication server. If the list is
empty, no verification of the server certificate's altSubjectName
is performed.

Format: array of string

Page 11/112

anonymous-identity
Anonymous identity string for EAP authentication methods. Used as
the unencrypted identity with EAP types that support different
tunneled identity like EAP-TTLS.
Format: string

auth-timeout
A timeout for the authentication. Zero means the global default; if
the global default is not set, the authentication timeout is 25
seconds.
Format: int32

ca-cert
Contains the CA certificate if used by the EAP method specified in
the "eap" property.
Certificate data is specified using a "scheme"; three are currently
supported: blob, path and pkcs#11 URL. When using the blob scheme
this property should be set to the certificate's DER encoded data.
When using the path scheme, this property should be set to the full
UTF-8 encoded path of the certificate, prefixed with the string
"file:/[" and ending with a terminating NUL byte. This property can
be unset even if the EAP method supports CA certificates, but this
allows man-in-the-middle attacks and is NOT recommended.
Note that enabling NMSetting8021x:system-ca-certs will override
this setting to use the built-in path, if the built-in path is not
a directory.
Format: byte array

ca-cert-password
The password used to access the CA certificate stored in "ca-cert"
property. Only makes sense if the certificate is stored on a
PKCS#11 token that requires a login.
Format: string

ca-cert-password-flags
Flags indicating how to handle the "ca-cert-password" property.

Format: NMSettingSecretFlags (uint32) Page 12/112

ca-path
UTF-8 encoded path to a directory containing PEM or DER formatted
certificates to be added to the verification chain in addition to
the certificate specified in the "ca-cert" property.
If NMSetting8021x:system-ca-certs is enabled and the built-in CA
path is an existing directory, then this setting is ignored.
Format: string

client-cert
Contains the client certificate if used by the EAP method specified
in the "eap" property.
Certificate data is specified using a "scheme"; two are currently
supported: blob and path. When using the blob scheme (which is
backwards compatible with NM 0.7.x) this property should be set to
the certificate's DER encoded data. When using the path scheme,
this property should be set to the full UTF-8 encoded path of the
certificate, prefixed with the string "file://" and ending with a
terminating NUL byte.
Format: byte array

client-cert-password
The password used to access the client certificate stored in
"client-cert" property. Only makes sense if the certificate is
stored on a PKCS#11 token that requires a login.
Format: string

client-cert-password-flags
Flags indicating how to handle the "client-cert-password" property.
Format: NMSettingSecretFlags (uint32)

domain-match
Constraint for server domain name. If set, this list of FQDNSs is
used as a match requirement for ANSName element(s) of the
certificate presented by the authentication server. If a matching
dNSName is found, this constraint is met. If no dNSName values are
present, this constraint is matched against SubjectName CN using

the same comparison. Multiple valid FQDNs can be passed as a ;" Page 13/112

delimited list.

Format: string

domain-suffix-match

Constraint for server domain name. If set, this FQDN is used as a
suffix match requirement for dANSName element(s) of the certificate
presented by the authentication server. If a matching dNSName is

found, this constraint is met. If no dNSName values are present,

this constraint is matched against SubjectName CN using same suffix

match comparison. Since version 1.24, multiple valid FQDNs can be

passed as a ";" delimited list.

Format: string

eap

The allowed EAP method to be used when authenticating to the
network with 802.1x. Valid methods are: "leap”, "md5", "tIs",
"peap"”, "ttls", "pwd", and "fast". Each method requires different
configuration using the properties of this setting; refer to
wpa_supplicant documentation for the allowed combinations.

Format: array of string

identity

Identity string for EAP authentication methods. Often the user's
user or login name.

Format: string

optional

Whether the 802.1X authentication is optional. If TRUE, the
activation will continue even after a timeout or an authentication
failure. Setting the property to TRUE is currently allowed only for
Ethernet connections. If set to FALSE, the activation can continue
only after a successful authentication.

Format: boolean

pac-file

UTF-8 encoded file path containing PAC for EAP-FAST.

Format: string

password

Page 14/112

UTF-8 encoded password used for EAP authentication methods. If both
the "password" property and the "password-raw" property are
specified, "password" is preferred.
Format: string

password-flags
Flags indicating how to handle the "password" property.
Format: NMSettingSecretFlags (uint32)

password-raw
Password used for EAP authentication methods, given as a byte array
to allow passwords in other encodings than UTF-8 to be used. If
both the "password" property and the "password-raw" property are
specified, "password" is preferred.
Format: byte array

password-raw-flags
Flags indicating how to handle the "password-raw" property.
Format: NMSettingSecretFlags (uint32)

phasel-auth-flags
Specifies authentication flags to use in "phase 1" outer
authentication using NMSetting8021xAuthFlags options. The
individual TLS versions can be explicitly disabled. TLS time checks
can be also disabled. If a certain TLS disable flag is not set, it
is up to the supplicant to allow or forbid it. The TLS options map
to tls_disable_tlsvl x and tls_disable_time_checks settings. See
the wpa_supplicant documentation for more details.
Format: uint32

phasel-fast-provisioning
Enables or disables in-line provisioning of EAP-FAST credentials
when FAST is specified as the EAP method in the "eap” property.
Recognized values are "0" (disabled), "1" (allow unauthenticated
provisioning), "2" (allow authenticated provisioning), and "3"
(allow both authenticated and unauthenticated provisioning). See
the wpa_supplicant documentation for more details.

Format: string Page 15/112

phasel-peaplabel
Forces use of the new PEAP label during key derivation. Some RADIUS
servers may require forcing the new PEAP label to interoperate with
PEAPVL. Set to "1" to force use of the new PEAP label. See the
wpa_supplicant documentation for more details.
Format: string

phasel-peapver
Forces which PEAP version is used when PEAP is set as the EAP
method in the "eap" property. When unset, the version reported by
the server will be used. Sometimes when using older RADIUS servers,
it is necessary to force the client to use a particular PEAP
version. To do so, this property may be set to "0" or "1" to force
that specific PEAP version.
Format: string

phase2-altsubject-matches
List of strings to be matched against the altSubjectName of the
certificate presented by the authentication server during the inner
"phase 2" authentication. If the list is empty, no verification of
the server certificate's altSubjectName is performed.
Format: array of string

phase2-auth
Specifies the allowed "phase 2" inner authentication method when an
EAP method that uses an inner TLS tunnel is specified in the "eap"
property. For TTLS this property selects one of the supported
non-EAP inner methods: "pap", "chap”, "mschap", "mschapv2" while
"phase2-autheap" selects an EAP inner method. For PEAP this selects
an inner EAP method, one of: "gtc", "otp", "'md5" and "tIs". Each
"phase 2" inner method requires specific parameters for successful
authentication; see the wpa_supplicant documentation for more
details. Both "phase2-auth" and "phase2-autheap" cannot be
specified.
Format: string

phase2-autheap

Page 16/112

Specifies the allowed "phase 2" inner EAP-based authentication
method when TTLS is specified in the "eap" property. Recognized
EAP-based "phase 2" methods are "md5", "mschapv2", "otp”, "gtc",
and "tIs". Each "phase 2" inner method requires specific parameters
for successful authentication; see the wpa_supplicant documentation
for more details.
Format: string

phase2-ca-cert
Contains the "phase 2" CA certificate if used by the EAP method
specified in the "phase2-auth" or "phase2-autheap" properties.
Certificate data is specified using a "scheme"; three are currently
supported: blob, path and pkcs#11 URL. When using the blob scheme
this property should be set to the certificate's DER encoded data.
When using the path scheme, this property should be set to the full
UTF-8 encoded path of the certificate, prefixed with the string
"file:/[" and ending with a terminating NUL byte. This property can
be unset even if the EAP method supports CA certificates, but this
allows man-in-the-middle attacks and is NOT recommended.
Note that enabling NMSetting8021x:system-ca-certs will override
this setting to use the built-in path, if the built-in path is not
a directory.
Format: byte array

phase2-ca-cert-password
The password used to access the "phase2" CA certificate stored in
"phase2-ca-cert" property. Only makes sense if the certificate is
stored on a PKCS#11 token that requires a login.
Format: string

phase2-ca-cert-password-flags
Flags indicating how to handle the "phase2-ca-cert-password"
property.
Format: NMSettingSecretFlags (uint32)

phase2-ca-path

UTF-8 encoded path to a directory containing PEM or DER formatted Page 17/112

certificates to be added to the verification chain in addition to
the certificate specified in the "phase2-ca-cert" property.
If NMSetting8021x:system-ca-certs is enabled and the built-in CA
path is an existing directory, then this setting is ignored.
Format: string

phase2-client-cert
Contains the "phase 2" client certificate if used by the EAP method
specified in the "phase2-auth" or "phase2-autheap" properties.
Certificate data is specified using a "scheme"; two are currently
supported: blob and path. When using the blob scheme (which is
backwards compatible with NM 0.7.x) this property should be set to
the certificate's DER encoded data. When using the path scheme,
this property should be set to the full UTF-8 encoded path of the
certificate, prefixed with the string "file://" and ending with a
terminating NUL byte. This property can be unset even if the EAP
method supports CA certificates, but this allows man-in-the-middle
attacks and is NOT recommended.
Format: byte array

phase2-client-cert-password
The password used to access the "phase2" client certificate stored
in "phase2-client-cert" property. Only makes sense if the
certificate is stored on a PKCS#11 token that requires a login.
Format: string

phase2-client-cert-password-flags
Flags indicating how to handle the "phase2-client-cert-password"
property.
Format: NMSettingSecretFlags (uint32)

phase2-domain-match
Constraint for server domain name. If set, this list of FQDNSs is
used as a match requirement for AINSName element(s) of the
certificate presented by the authentication server during the inner
"phase 2" authentication. If a matching dNSName is found, this

constraint is met. If no dNSName values are present, this

Page 18/112

constraint is matched against SubjectName CN using the same
comparison. Multiple valid FQDNs can be passed as a ";" delimited
list.
Format: string

phase2-domain-suffix-match
Constraint for server domain name. If set, this FQDN is used as a
suffix match requirement for dANSName element(s) of the certificate
presented by the authentication server during the inner "phase 2"
authentication. If a matching dNSName is found, this constraint is
met. If no ANSName values are present, this constraint is matched
against SubjectName CN using same suffix match comparison. Since
version 1.24, multiple valid FQDNs can be passed as a ";" delimited
list.
Format: string

phase2-private-key
Contains the "phase 2" inner private key when the "phase2-auth" or
"phase2-autheap" property is set to "tls".
Key data is specified using a "scheme"; two are currently
supported: blob and path. When using the blob scheme and private
keys, this property should be set to the key's encrypted PEM
encoded data. When using private keys with the path scheme, this
property should be set to the full UTF-8 encoded path of the key,
prefixed with the string "file://" and ending with a terminating
NUL byte. When using PKCS#12 format private keys and the blob
scheme, this property should be set to the PKCS#12 data and the
"phase2-private-key-password" property must be set to password used
to decrypt the PKCS#12 certificate and key. When using PKCS#12
files and the path scheme, this property should be set to the full
UTF-8 encoded path of the key, prefixed with the string "file://"
and ending with a terminating NUL byte, and as with the blob scheme
the "phase2-private-key-password" property must be set to the
password used to decode the PKCS#12 private key and certificate.

Format: byte array Page 19/112

phase2-private-key-password

The password used to decrypt the "phase 2" private key specified in

the "phase2-private-key" property when the private key either uses
the path scheme, or is a PKCS#12 format key.
Format: string

phase2-private-key-password-flags
Flags indicating how to handle the "phase2-private-key-password"
property.
Format: NMSettingSecretFlags (uint32)

phase2-subject-match
Substring to be matched against the subject of the certificate
presented by the authentication server during the inner "phase 2"
authentication. When unset, no verification of the authentication
server certificate's subject is performed. This property provides
little security, if any, and should not be used.
This property is deprecated since version 1.2. Use
"phase2-domain-suffix-match" instead.
Format: string

pin
PIN used for EAP authentication methods.
Format: string

pin-flags
Flags indicating how to handle the "pin" property.
Format: NMSettingSecretFlags (uint32)

private-key
Contains the private key when the "eap" property is set to "tls".

Key data is specified using a "scheme"; two are currently

supported: blob and path. When using the blob scheme and private

keys, this property should be set to the key's encrypted PEM
encoded data. When using private keys with the path scheme, this
property should be set to the full UTF-8 encoded path of the key,
prefixed with the string "file://" and ending with a terminating

NUL byte. When using PKCS#12 format private keys and the blob

Page 20/112

scheme, this property should be set to the PKCS#12 data and the
"private-key-password" property must be set to password used to
decrypt the PKCS#12 certificate and key. When using PKCS#12 files
and the path scheme, this property should be set to the full UTF-8
encoded path of the key, prefixed with the string "file://" and
ending with a terminating NUL byte, and as with the blob scheme the
"private-key-password" property must be set to the password used to
decode the PKCS#12 private key and certificate.
WARNING: "private-key" is not a "secret" property, and thus
unencrypted private key data using the BLOB scheme may be readable
by unprivileged users. Private keys should always be encrypted with
a private key password to prevent unauthorized access to
unencrypted private key data.
Format: byte array

private-key-password
The password used to decrypt the private key specified in the
"private-key" property when the private key either uses the path
scheme, or if the private key is a PKCS#12 format key.
Format: string

private-key-password-flags
Flags indicating how to handle the "private-key-password" property.
Format: NMSettingSecretFlags (uint32)

subject-match
Substring to be matched against the subject of the certificate
presented by the authentication server. When unset, no verification
of the authentication server certificate's subject is performed.
This property provides little security, if any, and should not be
used.
This property is deprecated since version 1.2. Use
"phase2-domain-suffix-match" instead.
Format: string

system-ca-certs

When TRUE, overrides the "ca-path" and "phase2-ca-path" properties Page 21/112

using the system CA directory specified at configure time with the
--system-ca-path switch. The certificates in this directory are
added to the verification chain in addition to any certificates
specified by the "ca-cert" and "phase2-ca-cert" properties. If the
path provided with --system-ca-path is rather a file name (bundle
of trusted CA certificates), it overrides "ca-cert" and
"phase2-ca-cert" properties instead (sets ca_cert/ca_cert2 options
for wpa_supplicant).
Format: boolean
adsl setting

ADSL Settings.

Properties:

encapsulation
Alias: encapsulation
Encapsulation of ADSL connection. Can be "vemux" or "lic".
Format: string

password
Alias: password
Password used to authenticate with the ADSL service.
Format: string

password-flags
Flags indicating how to handle the "password" property.
Format: NMSettingSecretFlags (uint32)

protocol
Alias: protocol
ADSL connection protocol. Can be "pppoa”, "pppoe" or "ipoatm".
Format: string

username
Alias: username
Username used to authenticate with the ADSL service.
Format: string

vei

VCI of ADSL connection Page 22/112

Format: uint32
Vpi
VPI of ADSL connection
Format: uint32
bluetooth setting
Bluetooth Settings.
Properties:
bdaddr
Alias: addr
The Bluetooth address of the device.
Format: byte array
type
Alias: bt-type
Either "dun" for Dial-Up Networking connections or "panu" for
Personal Area Networking connections to devices supporting the NAP
profile.
Format: string
bond setting
Bonding Settings.
Properties:
options
Dictionary of key/value pairs of bonding options. Both keys and
values must be strings. Option names must contain only alphanumeric
characters (ie, [a-zA-Z0-9]).
Format: dict of string to string
bridge setting
Bridging Settings.
Properties:
ageing-time
Alias: ageing-time
The Ethernet MAC address aging time, in seconds.
Format: uint32

forward-delay

Page 23/112

Alias: forward-delay
The Spanning Tree Protocol (STP) forwarding delay, in seconds.
Format: uint32

group-address
If specified, The MAC address of the multicast group this bridge
uses for STP.
The address must be a link-local address in standard Ethernet MAC
address format, ie an address of the form 01:80:C2:00:00:0X, with X
in [0, 4..F]. If not specified the default value is
01:80:C2:00:00:00.
Format: byte array

group-forward-mask
Alias: group-forward-mask
A mask of group addresses to forward. Usually, group addresses in
the range from 01:80:C2:00:00:00 to 01:80:C2:00:00:0F are not
forwarded according to standards. This property is a mask of 16
bits, each corresponding to a group address in that range that must
be forwarded. The mask can't have bits 0, 1 or 2 set because they
are used for STP, MAC pause frames and LACP.
Format: uint32

hello-time
Alias: hello-time
The Spanning Tree Protocol (STP) hello time, in seconds.
Format: uint32

mac-address
Alias: mac
If specified, the MAC address of bridge. When creating a new
bridge, this MAC address will be set.
If this field is left unspecified, the
"ethernet.cloned-mac-address" is referred instead to generate the
initial MAC address. Note that setting
"ethernet.cloned-mac-address" anyway overwrites the MAC address of

the bridge later while activating the bridge. Page 24/112

This property is deprecated since version 1.12. Use the
"cloned-mac-address" property instead.
Format: byte array

max-age

Alias: max-age

The Spanning Tree Protocol (STP) maximum message age, in seconds.

Format: uint32

multicast-hash-max

Set maximum size of multicast hash table (value must be a power of

2).
Format: uint32

multicast-last-member-count
Set the number of queries the bridge will send before stopping
forwarding a multicast group after a "leave" message has been
received.
Format: uint32

multicast-last-member-interval
Set interval (in deciseconds) between queries to find remaining
members of a group, after a "leave" message is received.
Format: uint64

multicast-membership-interval
Set delay (in deciseconds) after which the bridge will leave a
group, if no membership reports for this group are received.
Format: uint64

multicast-querier
Enable or disable sending of multicast queries by the bridge. If
not specified the option is disabled.
Format: boolean

multicast-querier-interval
If no queries are seen after this delay (in deciseconds) has
passed, the bridge will start to send its own queries.
Format: uint64

multicast-query-interval

Page 25/112

Interval (in deciseconds) between queries sent by the bridge after
the end of the startup phase.
Format: uint64

multicast-query-response-interval
Set the Max Response Time/Max Response Delay (in deciseconds) for
IGMP/MLD queries sent by the bridge.
Format: uint64

multicast-query-use-ifaddr
If enabled the bridge's own IP address is used as the source
address for IGMP queries otherwise the default of 0.0.0.0 is used.
Format: boolean

multicast-router
Sets bridge's multicast router. Multicast-snooping must be enabled
for this option to work.
Supported values are: 'auto’, 'disabled’, 'enabled’ to which kernel
assigns the numbers 1, 0, and 2, respectively. If not specified the
default value is 'auto’ (1).
Format: string

multicast-snooping
Alias: multicast-snooping
Controls whether IGMP snooping is enabled for this bridge. Note
that if snooping was automatically disabled due to hash collisions,
the system may refuse to enable the feature until the collisions
are resolved.
Format: boolean

multicast-startup-query-count
Set the number of IGMP queries to send during startup phase.
Format: uint32

multicast-startup-query-interval
Sets the time (in deciseconds) between queries sent out at startup
to determine membership information.
Format: uint64

priority

Page 26/112

Alias: priority
Sets the Spanning Tree Protocol (STP) priority for this bridge.
Lower values are "better"; the lowest priority bridge will be
elected the root bridge.
Format: uint32

stp
Alias: stp
Controls whether Spanning Tree Protocol (STP) is enabled for this
bridge.
Format: boolean

vlan-default-pvid
The default PVID for the ports of the bridge, that is the VLAN id
assigned to incoming untagged frames.
Format: uint32

vlan-filtering
Control whether VLAN filtering is enabled on the bridge.
Format: boolean

vlan-protocol
If specified, the protocol used for VLAN filtering.
Supported values are: '802.1Q', '802.1ad'. If not specified the
default value is '802.1Q".
Format: string

vlan-stats-enabled
Controls whether per-VLAN stats accounting is enabled.
Format: boolean

vlans
Array of bridge VLAN objects. In addition to the VLANSs specified
here, the bridge will also have the default-pvid VLAN configured by
the bridge.vlan-default-pvid property.
In nmcli the VLAN list can be specified with the following syntax:
$vid [pvid] [untagged] [, $vid [pvid] [untagged]]...
where $vid is either a single id between 1 and 4094 or a range,

represented as a couple of ids separated by a dash.

Page 27/112

Format: array of vardict
bridge-port setting
Bridge Port Settings.
Properties:
hairpin-mode
Alias: hairpin

Enables or disables "hairpin mode" for the port, which allows

frames to be sent back out through the port the frame was received

on.

Format: boolean

path-cost
Alias: path-cost
The Spanning Tree Protocol (STP) port cost for destinations via
this port.
Format: uint32

priority
Alias: priority
The Spanning Tree Protocol (STP) priority of this bridge port.
Format: uint32

vlans
Array of bridge VLAN objects. In addition to the VLANSs specified
here, the port will also have the default-pvid VLAN configured on
the bridge by the bridge.vlan-default-pvid property.
In nmcli the VLAN list can be specified with the following syntax:
$vid [pvid] [untagged] [, $vid [pvid] [untagged]]...
where $vid is either a single id between 1 and 4094 or a range,
represented as a couple of ids separated by a dash.
Format: array of vardict

cdma setting

CDMA-based Mobile Broadband Settings.

Properties:

mtu

If non-zero, only transmit packets of the specified size or

Page 28/112

smaller, breaking larger packets up into multiple frames.
Format: uint32

number
The number to dial to establish the connection to the CDMA-based
mobile broadband network, if any. If not specified, the default
number (#777) is used when required.
Format: string

password
Alias: password
The password used to authenticate with the network, if required.
Many providers do not require a password, or accept any password.
But if a password is required, it is specified here.
Format: string

password-flags
Flags indicating how to handle the "password" property.
Format: NMSettingSecretFlags (uint32)

username
Alias: user
The username used to authenticate with the network, if required.
Many providers do not require a username, or accept any username.
But if a username is required, it is specified here.
Format: string

dcb setting

Data Center Bridging Settings.

Properties:

app-fcoe-flags
Specifies the NMSettingDcbFlags for the DCB FCoE application. Flags
may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),
NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

app-fcoe-mode

The FCoE controller mode; either "fabric” or "vn2vn".

Page 29/112

Since 1.34, NULL is the default and means "fabric". Before 1.34,
NULL was rejected as invalid and the default was "fabric".
Format: string

app-fcoe-priority
The highest User Priority (0 - 7) which FCoE frames should use, or
-1 for default priority. Only used when the "app-fcoe-flags"
property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32

app-fip-flags
Specifies the NMSettingDcbFlags for the DCB FIP application. Flags
may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),
NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

app-fip-priority
The highest User Priority (0 - 7) which FIP frames should use, or
-1 for default priority. Only used when the "app-fip-flags"
property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32

app-iscsi-flags

Specifies the NMSettingDcbFlags for the DCB iSCSI application.

Flags may be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),

NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)
app-iscsi-priority
The highest User Priority (0 - 7) which iSCSI frames should use, or
-1 for default priority. Only used when the "app-iscsi-flags"
property includes the NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32
priority-bandwidth
An array of 8 uint values, where the array index corresponds to the

User Priority (0 - 7) and the value indicates the percentage of

Page 30/112

bandwidth of the priority's assigned group that the priority may
use. The sum of all percentages for priorities which belong to the
same group must total 100 percents.
Format: array of uint32

priority-flow-control
An array of 8 boolean values, where the array index corresponds to
the User Priority (0 - 7) and the value indicates whether or not
the corresponding priority should transmit priority pause.
Format: array of uint32

priority-flow-control-flags
Specifies the NMSettingDcbFlags for DCB Priority Flow Control
(PFC). Flags may be any combination of NM_SETTING_DCB_FLAG_ENABLE
(0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

priority-group-bandwidth
An array of 8 uint values, where the array index corresponds to the
Priority Group ID (0 - 7) and the value indicates the percentage of
link bandwidth allocated to that group. Allowed values are 0 - 100,
and the sum of all values must total 100 percents.
Format: array of uint32

priority-group-flags
Specifies the NMSettingDcbFlags for DCB Priority Groups. Flags may
be any combination of NM_SETTING_DCB_FLAG_ENABLE (0x1),
NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

priority-group-id
An array of 8 uint values, where the array index corresponds to the
User Priority (0 - 7) and the value indicates the Priority Group
ID. Allowed Priority Group ID values are 0 - 7 or 15 for the
unrestricted group.

Format: array of uint32 Page 31/112

priority-strict-bandwidth
An array of 8 boolean values, where the array index corresponds to
the User Priority (0 - 7) and the value indicates whether or not
the priority may use all of the bandwidth allocated to its assigned
group.
Format: array of uint32

priority-traffic-class
An array of 8 uint values, where the array index corresponds to the
User Priority (0 - 7) and the value indicates the traffic class (0
- 7) to which the priority is mapped.
Format: array of uint32

ethtool setting

Ethtool Ethernet Settings.

Properties:

coalesce-adaptive-rx

coalesce-adaptive-tx

coalesce-pkt-rate-high

coalesce-pkt-rate-low

coalesce-rx-frames

coalesce-rx-frames-high

coalesce-rx-frames-irq

coalesce-rx-frames-low

coalesce-rx-usecs

coalesce-rx-usecs-high

coalesce-rx-usecs-irq

coalesce-rx-usecs-low

coalesce-sample-interval

coalesce-stats-block-usecs

coalesce-tx-frames

coalesce-tx-frames-high

coalesce-tx-frames-irq

coalesce-tx-frames-low

coalesce-tx-usecs

Page 32/112

coalesce-tx-usecs-high
coalesce-tx-usecs-irq
coalesce-tx-usecs-low
feature-esp-hw-offload
feature-esp-tx-csum-hw-offload
feature-fcoe-mtu
feature-gro

feature-gso
feature-highdma
feature-hw-tc-offload
feature-12-fwd-offload
feature-loopback
feature-Iro
feature-macsec-hw-offload
feature-ntuple

feature-rx

feature-rx-all

feature-rx-fcs
feature-rx-gro-hw
feature-rx-gro-list

feature-rx-udp-gro-forwarding

feature-rx-udp_tunnel-port-offload

feature-rx-vlan-filter
feature-rx-vlan-stag-filter
feature-rx-vlan-stag-hw-parse
feature-rxhash

feature-rxvlan

feature-sg
feature-tls-hw-record
feature-tls-hw-rx-offload
feature-tls-hw-tx-offload
feature-tso

feature-tx

Page 33/112

feature-tx-checksum-fcoe-crc
feature-tx-checksum-ip-generic
feature-tx-checksum-ipv4
feature-tx-checksum-ipv6
feature-tx-checksum-sctp
feature-tx-esp-segmentation
feature-tx-fcoe-segmentation
feature-tx-gre-csum-segmentation
feature-tx-gre-segmentation
feature-tx-gso-list
feature-tx-gso-partial
feature-tx-gso-robust
feature-tx-ipxip4-segmentation
feature-tx-ipxip6-segmentation
feature-tx-nocache-copy
feature-tx-scatter-gather
feature-tx-scatter-gather-fraglist
feature-tx-sctp-segmentation
feature-tx-tcp-ecn-segmentation
feature-tx-tcp-mangleid-segmentation
feature-tx-tcp-segmentation
feature-tx-tcp6-segmentation
feature-tx-tunnel-remcsum-segmentation
feature-tx-udp-segmentation
feature-tx-udp_tnl-csum-segmentation
feature-tx-udp_tnl-segmentation
feature-tx-vlan-stag-hw-insert
feature-txvlan

pause-autoneg

pause-rx

pause-tx

ring-rx

ring-rx-jumbo

Page 34/112

ring-rx-mini
ring-tx
gsm setting

GSM-based Mobile Broadband Settings.

Properties:

apn
Alias: apn
The GPRS Access Point Name specifying the APN used when
establishing a data session with the GSM-based network. The APN
often determines how the user will be billed for their network
usage and whether the user has access to the Internet or just a
provider-specific walled-garden, so it is important to use the
correct APN for the user's mobile broadband plan. The APN may only
be composed of the characters a-z, 0-9, ., and - per GSM 03.60
Section 14.9.
Format: string

auto-config
When TRUE, the settings such as APN, username, or password will
default to values that match the network the modem will register to
in the Mobile Broadband Provider database.
Format: boolean

device-id
The device unique identifier (as given by the WWAN management
service) which this connection applies to. If given, the connection
will only apply to the specified device.
Format: string

home-only
When TRUE, only connections to the home network will be allowed.
Connections to roaming networks will not be made.
Format: boolean

mtu
If non-zero, only transmit packets of the specified size or

smaller, breaking larger packets up into multiple frames. Page 35/112

Format: uint32

network-id

The Network ID (GSM LAl format, ie MCC-MNC) to force specific

network registration. If the Network ID is specified,

NetworkManager will attempt to force the device to register only on

the specified network. This can be used to ensure that the device
does not roam when direct roaming control of the device is not
otherwise possible.

Format: string

number

Legacy setting that used to help establishing PPP data sessions for

GSM-based modems.
This property is deprecated since version 1.16. User-provided
values for this setting are no longer used.

Format: string

password

Alias: password

The password used to authenticate with the network, if required.

Many providers do not require a password, or accept any password.

But if a password is required, it is specified here.

Format: string

password-flags

Flags indicating how to handle the "password" property.

Format: NMSettingSecretFlags (uint32)

pin

If the SIM is locked with a PIN it must be unlocked before any
other operations are requested. Specify the PIN here to allow
operation of the device.

Format: string

pin-flags

Flags indicating how to handle the "pin" property.

Format: NMSettingSecretFlags (uint32)

sim-id

Page 36/112

The SIM card unique identifier (as given by the WWAN management
service) which this connection applies to. If given, the connection
will apply to any device also allowed by "device-id" which contains
a SIM card matching the given identifier.
Format: string

sim-operator-id
A MCC/MNC string like "310260" or "21601" identifying the specific
mobile network operator which this connection applies to. If given,
the connection will apply to any device also allowed by "device-id"
and "sim-id" which contains a SIM card provisioned by the given
operator.
Format: string

username
Alias: user
The username used to authenticate with the network, if required.
Many providers do not require a username, or accept any username.
But if a username is required, it is specified here.
Format: string

infiniband setting

Infiniband Settings.

Properties:

mac-address
Alias: mac
If specified, this connection will only apply to the IPoIB device
whose permanent MAC address matches. This property does not change
the MAC address of the device (i.e. MAC spoofing).
Format: byte array

mtu
Alias: mtu
If non-zero, only transmit packets of the specified size or
smaller, breaking larger packets up into multiple frames.
Format: uint32

p-key Page 37/112

Alias: p-key
The InfiniBand P_Key to use for this device. A value of -1 means to
use the default P_Key (aka "the P_Key at index 0"). Otherwise, it
is a 16-bit unsigned integer, whose high bit 0x8000 is set if it is
a "full membership" P_Key. The values 0 and 0x8000 are not allowed.
With the p-key set, the interface name is always "$parent.$p_key".
Setting "connection.interface-name" to another name is not
supported.
Note that kernel will internally always set the full membership
bit, although the interface name does not reflect that. Thus, not
setting the high bit is probably not useful.
If the profile is stored in ifcfg-rh format, then the full
membership bit is automatically added. To get consistent behavior,
it is best to only use p-key values with the full membership bit
set.
Format: int32

parent
Alias: parent
The interface name of the parent device of this device. Normally
NULL, but if the "p_key" property is set, then you must specify the
base device by setting either this property or "mac-address".
Format: string

transport-mode
Alias: transport-mode
The IP-over-InfiniBand transport mode. Either "datagram” or
"connected".
Format: string

ipv4 setting

IPv4 Settings.

Properties:

addresses
Alias: ip4

Array of IP addresses. Page 38/112

Format: a comma separated list of addresses

auto-route-ext-gw
VPN connections will default to add the route automatically unless
this setting is set to FALSE.
For other connection types, adding such an automatic route is
currently not supported and setting this to TRUE has no effect.
Format: NMTernary (int32)

dad-timeout
Timeout in milliseconds used to check for the presence of duplicate
IP addresses on the network. If an address conflict is detected,
the activation will fail. A zero value means that no duplicate
address detection is performed, -1 means the default value (either
configuration ipvx.dad-timeout override or zero). A value greater
than zero is a timeout in milliseconds.
The property is currently implemented only for IPv4.
Format: int32

dhcp-client-id
A string sent to the DHCP server to identify the local machine
which the DHCP server may use to customize the DHCP lease and
options. When the property is a hex string (‘aa:bb:cc’) it is
interpreted as a binary client ID, in which case the first byte is
assumed to be the 'type' field as per RFC 2132 section 9.14 and the
remaining bytes may be an hardware address (e.g.
OLaxxxx:xx:xx:xx:xx' where 1 is the Ethernet ARP type and the
rest is a MAC address). If the property is not a hex string it is
considered as a non-hardware-address client ID and the 'type' field
is set to 0.
The special values "mac" and "perm-mac" are supported, which use
the current or permanent MAC address of the device to generate a
client identifier with type ethernet (01). Currently, these options
only work for ethernet type of links.
The special value "ipv6-duid" uses the DUID from "ipv6.dhcp-duid”

property as an RFC4361-compliant client identifier. As IAID it uses Page 39/112

"ipv4.dhcp-iaid” and falls back to "ipv6.dhcp-iaid” if unset.
The special value "duid" generates a RFC4361-compliant client
identifier based on "ipv4.dhcp-iaid" and uses a DUID generated by
hashing /etc/machine-id.
The special value "stable" is supported to generate a type O client
identifier based on the stable-id (see connection.stable-id) and a
per-host key. If you set the stable-id, you may want to include the
"${DEVICE}" or "${MAC}" specifier to get a per-device key.
If unset, a globally configured default is used. If still unset,
the default depends on the DHCP plugin.
Format: string

dhcp-fqdn
If the "dhcp-send-hostname" property is TRUE, then the specified
FQDN will be sent to the DHCP server when acquiring a lease. This
property and "dhcp-hostname" are mutually exclusive and cannot be
set at the same time.
Format: string

dhcp-hostname
If the "dhcp-send-hostname" property is TRUE, then the specified
name will be sent to the DHCP server when acquiring a lease. This
property and "dhcp-fqdn" are mutually exclusive and cannot be set
at the same time.
Format: string

dhcp-hostname-flags
Flags for the DHCP hostname and FQDN.
Currently, this property only includes flags to control the FQDN
flags set in the DHCP FQDN option. Supported FQDN flags are
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),
NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) and
NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is
set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the
DHCP FQDN option will contain no flag. Otherwise, if no FQDN flag

is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is not set, Page 40/112

the standard FQDN flags are set in the request:
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),
NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2) for IPv4 and
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6.
When this property is set to the default value
NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is looked up in
NetworkManager configuration. If that value is unset or also
NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags
described above are sent in the DHCP requests.
Format: uint32

dhcp-iaid
A string containing the "Identity Association Identifier" (IAID)
used by the DHCP client. The string can be a 32-bit number (either
decimal, hexadecimal or or as colon separated hexadecimal numbers).
Alternatively it can be set to the special values "mac”,
"perm-mac", "ifname" or "stable". When set to "mac" (or
"perm-mac"), the last 4 bytes of the current (or permanent) MAC
address are used as IAID. When set to "ifname", the IAID is
computed by hashing the interface name. The special value "stable"
can be used to generate an IAID based on the stable-id (see
connection.stable-id), a per-host key and the interface name. When
the property is unset, the value from global configuration is used;
if no global default is set then the IAID is assumed to be
"ifname".
For DHCPv4, the IA