
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'netlink.7' command

$ man netlink.7

NETLINK(7)                 Linux Programmer's Manual                NETLINK(7)

NAME

       netlink - communication between kernel and user space (AF_NETLINK)

SYNOPSIS

       #include <asm/types.h>

       #include <sys/socket.h>

       #include <linux/netlink.h>

       netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

DESCRIPTION

       Netlink  is  used  to transfer information between the kernel and user-

       space processes.  It consists of a standard sockets-based interface for

       user  space  processes  and  an internal kernel API for kernel modules.

       The internal kernel interface is not documented in  this  manual  page.

       There  is  also an obsolete netlink interface via netlink character de?

       vices; this interface is not documented here and is provided  only  for

       backward compatibility.

       Netlink  is  a datagram-oriented service.  Both SOCK_RAW and SOCK_DGRAM

       are valid values for socket_type.  However, the netlink  protocol  does

       not distinguish between datagram and raw sockets.

       netlink_family  selects  the kernel module or netlink group to communi?

       cate with.  The currently assigned netlink families are:

       NETLINK_ROUTE

              Receives routing and link updates and may be used to modify  the Page 1/9



              routing  tables (both IPv4 and IPv6), IP addresses, link parame?

              ters, neighbor setups, queueing disciplines, traffic classes and

              packet classifiers (see rtnetlink(7)).

       NETLINK_W1 (Linux 2.6.13 to 2.16.17)

              Messages from 1-wire subsystem.

       NETLINK_USERSOCK

              Reserved for user-mode socket protocols.

       NETLINK_FIREWALL (up to and including Linux 3.4)

              Transport  IPv4  packets  from netfilter to user space.  Used by

              ip_queue kernel module.  After a long period of  being  declared

              obsolete  (in  favor  of  the more advanced nfnetlink_queue fea?

              ture), NETLINK_FIREWALL was removed in Linux 3.5.

       NETLINK_SOCK_DIAG (since Linux 3.3)

              Query information about sockets  of  various  protocol  families

              from the kernel (see sock_diag(7)).

       NETLINK_INET_DIAG (since Linux 2.6.14)

              An obsolete synonym for NETLINK_SOCK_DIAG.

       NETLINK_NFLOG (up to and including Linux 3.16)

              Netfilter/iptables ULOG.

       NETLINK_XFRM

              IPsec.

       NETLINK_SELINUX (since Linux 2.6.4)

              SELinux event notifications.

       NETLINK_ISCSI (since Linux 2.6.15)

              Open-iSCSI.

       NETLINK_AUDIT (since Linux 2.6.6)

              Auditing.

       NETLINK_FIB_LOOKUP (since Linux 2.6.13)

              Access to FIB lookup from user space.

       NETLINK_CONNECTOR (since Linux 2.6.14)

              Kernel  connector.   See  Documentation/driver-api/connector.rst

              (or /Documentation/connector/connector.*  in kernel 5.2 and ear?

              lier) in the Linux kernel source tree for further information. Page 2/9



       NETLINK_NETFILTER (since Linux 2.6.14)

              Netfilter subsystem.

       NETLINK_SCSITRANSPORT (since Linux 2.6.19)

              SCSI Transports.

       NETLINK_RDMA (since Linux 3.0)

              Infiniband RDMA.

       NETLINK_IP6_FW (up to and including Linux 3.4)

              Transport  IPv6  packets  from netfilter to user space.  Used by

              ip6_queue kernel module.

       NETLINK_DNRTMSG

              DECnet routing messages.

       NETLINK_KOBJECT_UEVENT (since Linux 2.6.10)

              Kernel messages to user space.

       NETLINK_GENERIC (since Linux 2.6.15)

              Generic netlink family for simplified netlink usage.

       NETLINK_CRYPTO (since Linux 3.2)

              Netlink interface to request information  about  ciphers  regis?

              tered  with the kernel crypto API as well as allow configuration

              of the kernel crypto API.

       Netlink messages consist of a byte stream with one or multiple nlmsghdr

       headers  and  associated  payload.   The byte stream should be accessed

       only with the standard NLMSG_* macros.  See netlink(3) for further  in?

       formation.

       In  multipart  messages (multiple nlmsghdr headers with associated pay?

       load in one byte stream) the first and all following headers  have  the

       NLM_F_MULTI  flag  set,  except  for the last header which has the type

       NLMSG_DONE.

       After each nlmsghdr the payload follows.

           struct nlmsghdr {

               __u32 nlmsg_len;    /* Length of message including header */

               __u16 nlmsg_type;   /* Type of message content */

               __u16 nlmsg_flags;  /* Additional flags */

               __u32 nlmsg_seq;    /* Sequence number */ Page 3/9



               __u32 nlmsg_pid;    /* Sender port ID */

           };

       nlmsg_type can be one of the standard message types: NLMSG_NOOP message

       is  to be ignored, NLMSG_ERROR message signals an error and the payload

       contains an nlmsgerr structure, NLMSG_DONE message terminates a  multi?

       part message.

           struct nlmsgerr {

               int error;        /* Negative errno or 0 for acknowledgements */

               struct nlmsghdr msg;  /* Message header that caused the error */

           };

       A  netlink  family usually specifies more message types, see the appro?

       priate  manual  pages  for  that,   for   example,   rtnetlink(7)   for

       NETLINK_ROUTE.

       Standard flag bits in nlmsg_flags

       ??????????????????????????????????????????????????????????

       NLM_F_REQUEST   Must be set on all request messages.

       NLM_F_MULTI     The  message  is part of a multipart mes?

                       sage terminated by NLMSG_DONE.

       NLM_F_ACK       Request for an acknowledgment on success.

       NLM_F_ECHO      Echo this request.

       Additional flag bits for GET requests

       ????????????????????????????????????????????????????????????????????

       NLM_F_ROOT     Return the complete table instead of a single entry.

       NLM_F_MATCH    Return all entries matching criteria passed in  mes?

                      sage content.  Not implemented yet.

       NLM_F_ATOMIC   Return an atomic snapshot of the table.

       NLM_F_DUMP     Convenience macro; equivalent to

                      (NLM_F_ROOT|NLM_F_MATCH).

       Note  that NLM_F_ATOMIC requires the CAP_NET_ADMIN capability or an ef?

       fective UID of 0.

       Additional flag bits for NEW requests

       ????????????????????????????????????????????????????????????

       NLM_F_REPLACE   Replace existing matching object. Page 4/9



       NLM_F_EXCL      Don't replace if the object already exists.

       NLM_F_CREATE    Create object if it doesn't already exist.

       NLM_F_APPEND    Add to the end of the object list.

       nlmsg_seq and nlmsg_pid are used to track  messages.   nlmsg_pid  shows

       the  origin  of  the message.  Note that there isn't a 1:1 relationship

       between nlmsg_pid and the PID of the process if the message  originated

       from a netlink socket.  See the ADDRESS FORMATS section for further in?

       formation.

       Both nlmsg_seq and nlmsg_pid are opaque to netlink core.

       Netlink is not a reliable protocol.  It tries its  best  to  deliver  a

       message  to  its  destination(s), but may drop messages when an out-of-

       memory condition or other error  occurs.   For  reliable  transfer  the

       sender  can request an acknowledgement from the receiver by setting the

       NLM_F_ACK flag.  An acknowledgment is an NLMSG_ERROR  packet  with  the

       error  field  set to 0.  The application must generate acknowledgements

       for received messages itself.  The kernel tries to send an  NLMSG_ERROR

       message  for  every  failed  packet.  A user process should follow this

       convention too.

       However, reliable transmissions from kernel to user are  impossible  in

       any case.  The kernel can't send a netlink message if the socket buffer

       is full: the message will be dropped and the kernel and the  user-space

       process will no longer have the same view of kernel state.  It is up to

       the application to detect when this happens (via the ENOBUFS error  re?

       turned by recvmsg(2)) and resynchronize.

   Address formats

       The  sockaddr_nl  structure describes a netlink client in user space or

       in the kernel.  A sockaddr_nl can be either unicast (only sent  to  one

       peer) or sent to netlink multicast groups (nl_groups not equal 0).

           struct sockaddr_nl {

               sa_family_t     nl_family;  /* AF_NETLINK */

               unsigned short  nl_pad;     /* Zero */

               pid_t           nl_pid;     /* Port ID */

               __u32           nl_groups;  /* Multicast groups mask */ Page 5/9



           };

       nl_pid  is the unicast address of netlink socket.  It's always 0 if the

       destination is in the kernel.  For a user-space process, nl_pid is usu?

       ally  the  PID  of the process owning the destination socket.  However,

       nl_pid identifies a netlink socket, not a process.  If a  process  owns

       several  netlink  sockets,  then  nl_pid can be equal to the process ID

       only for at most one socket.  There are two ways to assign nl_pid to  a

       netlink socket.  If the application sets nl_pid before calling bind(2),

       then it is up to the application to make sure that  nl_pid  is  unique.

       If the application sets it to 0, the kernel takes care of assigning it.

       The kernel assigns the process ID  to  the  first  netlink  socket  the

       process  opens and assigns a unique nl_pid to every netlink socket that

       the process subsequently creates.

       nl_groups is a bit mask with every bit  representing  a  netlink  group

       number.   Each  netlink  family has a set of 32 multicast groups.  When

       bind(2) is called on the socket, the nl_groups field in the sockaddr_nl

       should be set to a bit mask of the groups which it wishes to listen to.

       The default value for this field is zero which means that no multicasts

       will be received.  A socket may multicast messages to any of the multi?

       cast groups by setting nl_groups to a bit mask of the groups it  wishes

       to  send  to  when it calls sendmsg(2) or does a connect(2).  Only pro?

       cesses with an effective UID of 0 or the CAP_NET_ADMIN  capability  may

       send  or listen to a netlink multicast group.  Since Linux 2.6.13, mes?

       sages can't be broadcast to multiple groups.  Any replies to a  message

       received  for  a multicast group should be sent back to the sending PID

       and the multicast group.  Some Linux kernel subsystems may additionally

       allow  other  users  to send and/or receive messages.  As at Linux 3.0,

       the   NETLINK_KOBJECT_UEVENT,   NETLINK_GENERIC,   NETLINK_ROUTE,   and

       NETLINK_SELINUX  groups  allow  other  users  to  receive messages.  No

       groups allow other users to send messages.

   Socket options

       To set or get a netlink socket option, call getsockopt(2)  to  read  or

       setsockopt(2) to write the option with the option level argument set to Page 6/9



       SOL_NETLINK.  Unless otherwise noted, optval is a pointer to an int.

       NETLINK_PKTINFO (since Linux 2.6.14)

              Enable nl_pktinfo control messages for received packets  to  get

              the extended destination group number.

       NETLINK_ADD_MEMBERSHIP, NETLINK_DROP_MEMBERSHIP (since Linux 2.6.14)

              Join/leave a group specified by optval.

       NETLINK_LIST_MEMBERSHIPS (since Linux 4.2)

              Retrieve  all  groups  a  socket  is  a  member of.  optval is a

              pointer to __u32 and optlen is the size of the array.  The array

              is  filled  with  the full membership set of the socket, and the

              required array size is returned in optlen.

       NETLINK_BROADCAST_ERROR (since Linux 2.6.30)

              When not set, netlink_broadcast() only reports ESRCH errors  and

              silently ignore ENOBUFS errors.

       NETLINK_NO_ENOBUFS (since Linux 2.6.30)

              This  flag  can  be  used  by unicast and broadcast listeners to

              avoid receiving ENOBUFS errors.

       NETLINK_LISTEN_ALL_NSID (since Linux 4.2)

              When set, this socket will receive  netlink  notifications  from

              all  network namespaces that have an nsid assigned into the net?

              work namespace where the socket has been opened.   The  nsid  is

              sent to user space via an ancillary data.

       NETLINK_CAP_ACK (since Linux 4.2)

              The  kernel  may fail to allocate the necessary room for the ac?

              knowledgment message back to user space.  This option trims  off

              the  payload  of the original netlink message.  The netlink mes?

              sage header is still included, so the user can  guess  from  the

              sequence number which message triggered the acknowledgment.

VERSIONS

       The socket interface to netlink first appeared Linux 2.2.

       Linux  2.0  supported  a  more primitive device-based netlink interface

       (which is still available as a compatibility  option).   This  obsolete

       interface is not described here. Page 7/9



NOTES

       It  is often better to use netlink via libnetlink or libnl than via the

       low-level kernel interface.

BUGS

       This manual page is not complete.

EXAMPLES

       The following example creates a NETLINK_ROUTE netlink socket which will

       listen  to  the  RTMGRP_LINK  (network  interface create/delete/up/down

       events) and RTMGRP_IPV4_IFADDR (IPv4 addresses add/delete events)  mul?

       ticast groups.

           struct sockaddr_nl sa;

           memset(&sa, 0, sizeof(sa));

           sa.nl_family = AF_NETLINK;

           sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR;

           fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);

           bind(fd, (struct sockaddr *) &sa, sizeof(sa));

       The next example demonstrates how to send a netlink message to the ker?

       nel (pid 0).  Note that the application must take care of  message  se?

       quence numbers in order to reliably track acknowledgements.

           struct nlmsghdr *nh;    /* The nlmsghdr with payload to send */

           struct sockaddr_nl sa;

           struct iovec iov = { nh, nh->nlmsg_len };

           struct msghdr msg;

           msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };

           memset(&sa, 0, sizeof(sa));

           sa.nl_family = AF_NETLINK;

           nh->nlmsg_pid = 0;

           nh->nlmsg_seq = ++sequence_number;

           /* Request an ack from kernel by setting NLM_F_ACK */

           nh->nlmsg_flags |= NLM_F_ACK;

           sendmsg(fd, &msg, 0);

       And the last example is about reading netlink message.

           int len; Page 8/9



           /* 8192 to avoid message truncation on platforms with

              page size > 4096 */

           struct nlmsghdr buf[8192/sizeof(struct nlmsghdr)];

           struct iovec iov = { buf, sizeof(buf) };

           struct sockaddr_nl sa;

           struct msghdr msg;

           struct nlmsghdr *nh;

           msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };

           len = recvmsg(fd, &msg, 0);

           for (nh = (struct nlmsghdr *) buf; NLMSG_OK (nh, len);

                nh = NLMSG_NEXT (nh, len)) {

               /* The end of multipart message */

               if (nh->nlmsg_type == NLMSG_DONE)

                   return;

               if (nh->nlmsg_type == NLMSG_ERROR)

                   /* Do some error handling */

               ...

               /* Continue with parsing payload */

               ...

           }

SEE ALSO

       cmsg(3), netlink(3), capabilities(7), rtnetlink(7), sock_diag(7)

       information about libnetlink ?ftp://ftp.inr.ac.ru/ip-routing/iproute2*?

       information about libnl ?http://www.infradead.org/~tgr/libnl/?

       RFC 3549 "Linux Netlink as an IP Services Protocol"

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A

       description of the project, information about reporting bugs,  and  the

       latest     version     of     this    page,    can    be    found    at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-06-09                        NETLINK(7)

Page 9/9


