
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'muntrace.3' command

$ man muntrace.3

MTRACE(3) Linux Programmer's Manual MTRACE(3)

NAME

 mtrace, muntrace - malloc tracing

SYNOPSIS

 #include <mcheck.h>

 void mtrace(void);

 void muntrace(void);

DESCRIPTION

 The mtrace() function installs hook functions for the memory-allocation

 functions (malloc(3), realloc(3) memalign(3), free(3)). These hook

 functions record tracing information about memory allocation and de?

 allocation. The tracing information can be used to discover memory

 leaks and attempts to free nonallocated memory in a program.

 The muntrace() function disables the hook functions installed by

 mtrace(), so that tracing information is no longer recorded for the

 memory-allocation functions. If no hook functions were successfully

 installed by mtrace(), muntrace() does nothing.

 When mtrace() is called, it checks the value of the environment vari?

 able MALLOC_TRACE, which should contain the pathname of a file in which

 the tracing information is to be recorded. If the pathname is success?

 fully opened, it is truncated to zero length.

 If MALLOC_TRACE is not set, or the pathname it specifies is invalid or

 not writable, then no hook functions are installed, and mtrace() has no Page 1/4

 effect. In set-user-ID and set-group-ID programs, MALLOC_TRACE is ig?

 nored, and mtrace() has no effect.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?mtrace(), muntrace() ? Thread safety ? MT-Unsafe ?

 ???

CONFORMING TO

 These functions are GNU extensions.

NOTES

 In normal usage, mtrace() is called once at the start of execution of a

 program, and muntrace() is never called.

 The tracing output produced after a call to mtrace() is textual, but

 not designed to be human readable. The GNU C library provides a Perl

 script, mtrace(1), that interprets the trace log and produces human-

 readable output. For best results, the traced program should be com?

 piled with debugging enabled, so that line-number information is

 recorded in the executable.

 The tracing performed by mtrace() incurs a performance penalty (if MAL?

 LOC_TRACE points to a valid, writable pathname).

BUGS

 The line-number information produced by mtrace(1) is not always pre?

 cise: the line number references may refer to the previous or following

 (nonblank) line of the source code.

EXAMPLES

 The shell session below demonstrates the use of the mtrace() function

 and the mtrace(1) command in a program that has memory leaks at two

 different locations. The demonstration uses the following program:

 $ cat t_mtrace.c

 #include <mcheck.h> Page 2/4

 #include <stdlib.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 mtrace();

 for (int j = 0; j < 2; j++)

 malloc(100); /* Never freed--a memory leak */

 calloc(16, 16); /* Never freed--a memory leak */

 exit(EXIT_SUCCESS);

 }

 When we run the program as follows, we see that mtrace() diagnosed mem?

 ory leaks at two different locations in the program:

 $ cc -g t_mtrace.c -o t_mtrace

 $ export MALLOC_TRACE=/tmp/t

 $./t_mtrace

 $ mtrace ./t_mtrace $MALLOC_TRACE

 Memory not freed:

 Address Size Caller

 0x084c9378 0x64 at /home/cecilia/t_mtrace.c:12

 0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12

 0x084c9448 0x100 at /home/cecilia/t_mtrace.c:16

 The first two messages about unfreed memory correspond to the two mal?

 loc(3) calls inside the for loop. The final message corresponds to the

 call to calloc(3) (which in turn calls malloc(3)).

SEE ALSO

 mtrace(1), malloc(3), malloc_hook(3), mcheck(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/. Page 3/4

GNU 2020-11-01 MTRACE(3)

Page 4/4

