
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'munmap.2' command

$ man munmap.2

MMAP(2) Linux Programmer's Manual MMAP(2)

NAME

 mmap, munmap - map or unmap files or devices into memory

SYNOPSIS

 #include <sys/mman.h>

 void *mmap(void *addr, size_t length, int prot, int flags,

 int fd, off_t offset);

 int munmap(void *addr, size_t length);

 See NOTES for information on feature test macro requirements.

DESCRIPTION

 mmap() creates a new mapping in the virtual address space of the call?

 ing process. The starting address for the new mapping is specified in

 addr. The length argument specifies the length of the mapping (which

 must be greater than 0).

 If addr is NULL, then the kernel chooses the (page-aligned) address at

 which to create the mapping; this is the most portable method of creat?

 ing a new mapping. If addr is not NULL, then the kernel takes it as a

 hint about where to place the mapping; on Linux, the kernel will pick a

 nearby page boundary (but always above or equal to the value specified

 by /proc/sys/vm/mmap_min_addr) and attempt to create the mapping there.

 If another mapping already exists there, the kernel picks a new address

 that may or may not depend on the hint. The address of the new mapping

 is returned as the result of the call. Page 1/15

 The contents of a file mapping (as opposed to an anonymous mapping; see

 MAP_ANONYMOUS below), are initialized using length bytes starting at

 offset offset in the file (or other object) referred to by the file de?

 scriptor fd. offset must be a multiple of the page size as returned by

 sysconf(_SC_PAGE_SIZE).

 After the mmap() call has returned, the file descriptor, fd, can be

 closed immediately without invalidating the mapping.

 The prot argument describes the desired memory protection of the map?

 ping (and must not conflict with the open mode of the file). It is ei?

 ther PROT_NONE or the bitwise OR of one or more of the following flags:

 PROT_EXEC Pages may be executed.

 PROT_READ Pages may be read.

 PROT_WRITE Pages may be written.

 PROT_NONE Pages may not be accessed.

 The flags argument

 The flags argument determines whether updates to the mapping are visi?

 ble to other processes mapping the same region, and whether updates are

 carried through to the underlying file. This behavior is determined by

 including exactly one of the following values in flags:

 MAP_SHARED

 Share this mapping. Updates to the mapping are visible to other

 processes mapping the same region, and (in the case of file-

 backed mappings) are carried through to the underlying file.

 (To precisely control when updates are carried through to the

 underlying file requires the use of msync(2).)

 MAP_SHARED_VALIDATE (since Linux 4.15)

 This flag provides the same behavior as MAP_SHARED except that

 MAP_SHARED mappings ignore unknown flags in flags. By contrast,

 when creating a mapping using MAP_SHARED_VALIDATE, the kernel

 verifies all passed flags are known and fails the mapping with

 the error EOPNOTSUPP for unknown flags. This mapping type is

 also required to be able to use some mapping flags (e.g.,

 MAP_SYNC). Page 2/15

 MAP_PRIVATE

 Create a private copy-on-write mapping. Updates to the mapping

 are not visible to other processes mapping the same file, and

 are not carried through to the underlying file. It is unspeci?

 fied whether changes made to the file after the mmap() call are

 visible in the mapped region.

 Both MAP_SHARED and MAP_PRIVATE are described in POSIX.1-2001 and

 POSIX.1-2008. MAP_SHARED_VALIDATE is a Linux extension.

 In addition, zero or more of the following values can be ORed in flags:

 MAP_32BIT (since Linux 2.4.20, 2.6)

 Put the mapping into the first 2 Gigabytes of the process ad?

 dress space. This flag is supported only on x86-64, for 64-bit

 programs. It was added to allow thread stacks to be allocated

 somewhere in the first 2 GB of memory, so as to improve context-

 switch performance on some early 64-bit processors. Modern

 x86-64 processors no longer have this performance problem, so

 use of this flag is not required on those systems. The

 MAP_32BIT flag is ignored when MAP_FIXED is set.

 MAP_ANON

 Synonym for MAP_ANONYMOUS; provided for compatibility with other

 implementations.

 MAP_ANONYMOUS

 The mapping is not backed by any file; its contents are initial?

 ized to zero. The fd argument is ignored; however, some imple?

 mentations require fd to be -1 if MAP_ANONYMOUS (or MAP_ANON) is

 specified, and portable applications should ensure this. The

 offset argument should be zero. The use of MAP_ANONYMOUS in

 conjunction with MAP_SHARED is supported on Linux only since

 kernel 2.4.

 MAP_DENYWRITE

 This flag is ignored. (Long ago?Linux 2.0 and earlier?it sig?

 naled that attempts to write to the underlying file should fail

 with ETXTBSY. But this was a source of denial-of-service at? Page 3/15

 tacks.)

 MAP_EXECUTABLE

 This flag is ignored.

 MAP_FILE

 Compatibility flag. Ignored.

 MAP_FIXED

 Don't interpret addr as a hint: place the mapping at exactly

 that address. addr must be suitably aligned: for most architec?

 tures a multiple of the page size is sufficient; however, some

 architectures may impose additional restrictions. If the memory

 region specified by addr and len overlaps pages of any existing

 mapping(s), then the overlapped part of the existing mapping(s)

 will be discarded. If the specified address cannot be used,

 mmap() will fail.

 Software that aspires to be portable should use the MAP_FIXED

 flag with care, keeping in mind that the exact layout of a

 process's memory mappings is allowed to change significantly be?

 tween kernel versions, C library versions, and operating system

 releases. Carefully read the discussion of this flag in NOTES!

 MAP_FIXED_NOREPLACE (since Linux 4.17)

 This flag provides behavior that is similar to MAP_FIXED with

 respect to the addr enforcement, but differs in that

 MAP_FIXED_NOREPLACE never clobbers a preexisting mapped range.

 If the requested range would collide with an existing mapping,

 then this call fails with the error EEXIST. This flag can

 therefore be used as a way to atomically (with respect to other

 threads) attempt to map an address range: one thread will suc?

 ceed; all others will report failure.

 Note that older kernels which do not recognize the

 MAP_FIXED_NOREPLACE flag will typically (upon detecting a colli?

 sion with a preexisting mapping) fall back to a "non-MAP_FIXED"

 type of behavior: they will return an address that is different

 from the requested address. Therefore, backward-compatible Page 4/15

 software should check the returned address against the requested

 address.

 MAP_GROWSDOWN

 This flag is used for stacks. It indicates to the kernel vir?

 tual memory system that the mapping should extend downward in

 memory. The return address is one page lower than the memory

 area that is actually created in the process's virtual address

 space. Touching an address in the "guard" page below the map?

 ping will cause the mapping to grow by a page. This growth can

 be repeated until the mapping grows to within a page of the high

 end of the next lower mapping, at which point touching the

 "guard" page will result in a SIGSEGV signal.

 MAP_HUGETLB (since Linux 2.6.32)

 Allocate the mapping using "huge pages." See the Linux kernel

 source file Documentation/admin-guide/mm/hugetlbpage.rst for

 further information, as well as NOTES, below.

 MAP_HUGE_2MB, MAP_HUGE_1GB (since Linux 3.8)

 Used in conjunction with MAP_HUGETLB to select alternative

 hugetlb page sizes (respectively, 2 MB and 1 GB) on systems that

 support multiple hugetlb page sizes.

 More generally, the desired huge page size can be configured by

 encoding the base-2 logarithm of the desired page size in the

 six bits at the offset MAP_HUGE_SHIFT. (A value of zero in this

 bit field provides the default huge page size; the default huge

 page size can be discovered via the Hugepagesize field exposed

 by /proc/meminfo.) Thus, the above two constants are defined

 as:

 #define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)

 #define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)

 The range of huge page sizes that are supported by the system

 can be discovered by listing the subdirectories in /sys/ker?

 nel/mm/hugepages.

 MAP_LOCKED (since Linux 2.5.37) Page 5/15

 Mark the mapped region to be locked in the same way as mlock(2).

 This implementation will try to populate (prefault) the whole

 range but the mmap() call doesn't fail with ENOMEM if this

 fails. Therefore major faults might happen later on. So the

 semantic is not as strong as mlock(2). One should use mmap()

 plus mlock(2) when major faults are not acceptable after the

 initialization of the mapping. The MAP_LOCKED flag is ignored

 in older kernels.

 MAP_NONBLOCK (since Linux 2.5.46)

 This flag is meaningful only in conjunction with MAP_POPULATE.

 Don't perform read-ahead: create page tables entries only for

 pages that are already present in RAM. Since Linux 2.6.23, this

 flag causes MAP_POPULATE to do nothing. One day, the combina?

 tion of MAP_POPULATE and MAP_NONBLOCK may be reimplemented.

 MAP_NORESERVE

 Do not reserve swap space for this mapping. When swap space is

 reserved, one has the guarantee that it is possible to modify

 the mapping. When swap space is not reserved one might get

 SIGSEGV upon a write if no physical memory is available. See

 also the discussion of the file /proc/sys/vm/overcommit_memory

 in proc(5). In kernels before 2.6, this flag had effect only

 for private writable mappings.

 MAP_POPULATE (since Linux 2.5.46)

 Populate (prefault) page tables for a mapping. For a file map?

 ping, this causes read-ahead on the file. This will help to re?

 duce blocking on page faults later. MAP_POPULATE is supported

 for private mappings only since Linux 2.6.23.

 MAP_STACK (since Linux 2.6.27)

 Allocate the mapping at an address suitable for a process or

 thread stack.

 This flag is currently a no-op on Linux. However, by employing

 this flag, applications can ensure that they transparently ob?

 tain support if the flag is implemented in the future. Thus, it Page 6/15

 is used in the glibc threading implementation to allow for the

 fact that some architectures may (later) require special treat?

 ment for stack allocations. A further reason to employ this

 flag is portability: MAP_STACK exists (and has an effect) on

 some other systems (e.g., some of the BSDs).

 MAP_SYNC (since Linux 4.15)

 This flag is available only with the MAP_SHARED_VALIDATE mapping

 type; mappings of type MAP_SHARED will silently ignore this

 flag. This flag is supported only for files supporting DAX (di?

 rect mapping of persistent memory). For other files, creating a

 mapping with this flag results in an EOPNOTSUPP error.

 Shared file mappings with this flag provide the guarantee that

 while some memory is mapped writable in the address space of the

 process, it will be visible in the same file at the same offset

 even after the system crashes or is rebooted. In conjunction

 with the use of appropriate CPU instructions, this provides

 users of such mappings with a more efficient way of making data

 modifications persistent.

 MAP_UNINITIALIZED (since Linux 2.6.33)

 Don't clear anonymous pages. This flag is intended to improve

 performance on embedded devices. This flag is honored only if

 the kernel was configured with the CONFIG_MMAP_ALLOW_UNINITIAL?

 IZED option. Because of the security implications, that option

 is normally enabled only on embedded devices (i.e., devices

 where one has complete control of the contents of user memory).

 Of the above flags, only MAP_FIXED is specified in POSIX.1-2001 and

 POSIX.1-2008. However, most systems also support MAP_ANONYMOUS (or its

 synonym MAP_ANON).

 munmap()

 The munmap() system call deletes the mappings for the specified address

 range, and causes further references to addresses within the range to

 generate invalid memory references. The region is also automatically

 unmapped when the process is terminated. On the other hand, closing Page 7/15

 the file descriptor does not unmap the region.

 The address addr must be a multiple of the page size (but length need

 not be). All pages containing a part of the indicated range are un?

 mapped, and subsequent references to these pages will generate SIGSEGV.

 It is not an error if the indicated range does not contain any mapped

 pages.

RETURN VALUE

 On success, mmap() returns a pointer to the mapped area. On error, the

 value MAP_FAILED (that is, (void *) -1) is returned, and errno is set

 to indicate the cause of the error.

 On success, munmap() returns 0. On failure, it returns -1, and errno

 is set to indicate the cause of the error (probably to EINVAL).

ERRORS

 EACCES A file descriptor refers to a non-regular file. Or a file map?

 ping was requested, but fd is not open for reading. Or

 MAP_SHARED was requested and PROT_WRITE is set, but fd is not

 open in read/write (O_RDWR) mode. Or PROT_WRITE is set, but the

 file is append-only.

 EAGAIN The file has been locked, or too much memory has been locked

 (see setrlimit(2)).

 EBADF fd is not a valid file descriptor (and MAP_ANONYMOUS was not

 set).

 EEXIST MAP_FIXED_NOREPLACE was specified in flags, and the range cov?

 ered by addr and length clashes with an existing mapping.

 EINVAL We don't like addr, length, or offset (e.g., they are too large,

 or not aligned on a page boundary).

 EINVAL (since Linux 2.6.12) length was 0.

 EINVAL flags contained none of MAP_PRIVATE, MAP_SHARED or

 MAP_SHARED_VALIDATE.

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENODEV The underlying filesystem of the specified file does not support

 memory mapping. Page 8/15

 ENOMEM No memory is available.

 ENOMEM The process's maximum number of mappings would have been ex?

 ceeded. This error can also occur for munmap(), when unmapping

 a region in the middle of an existing mapping, since this re?

 sults in two smaller mappings on either side of the region being

 unmapped.

 ENOMEM (since Linux 4.7) The process's RLIMIT_DATA limit, described in

 getrlimit(2), would have been exceeded.

 EOVERFLOW

 On 32-bit architecture together with the large file extension

 (i.e., using 64-bit off_t): the number of pages used for length

 plus number of pages used for offset would overflow unsigned

 long (32 bits).

 EPERM The prot argument asks for PROT_EXEC but the mapped area belongs

 to a file on a filesystem that was mounted no-exec.

 EPERM The operation was prevented by a file seal; see fcntl(2).

 ETXTBSY

 MAP_DENYWRITE was set but the object specified by fd is open for

 writing.

 Use of a mapped region can result in these signals:

 SIGSEGV

 Attempted write into a region mapped as read-only.

 SIGBUS Attempted access to a page of the buffer that lies beyond the

 end of the mapped file. For an explanation of the treatment of

 the bytes in the page that corresponds to the end of a mapped

 file that is not a multiple of the page size, see NOTES.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?mmap(), munmap() ? Thread safety ? MT-Safe ? Page 9/15

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD.

 On POSIX systems on which mmap(), msync(2), and munmap() are available,

 _POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0.

 (See also sysconf(3).)

NOTES

 Memory mapped by mmap() is preserved across fork(2), with the same at?

 tributes.

 A file is mapped in multiples of the page size. For a file that is not

 a multiple of the page size, the remaining bytes in the partial page at

 the end of the mapping are zeroed when mapped, and modifications to

 that region are not written out to the file. The effect of changing

 the size of the underlying file of a mapping on the pages that corre?

 spond to added or removed regions of the file is unspecified.

 On some hardware architectures (e.g., i386), PROT_WRITE implies

 PROT_READ. It is architecture dependent whether PROT_READ implies

 PROT_EXEC or not. Portable programs should always set PROT_EXEC if

 they intend to execute code in the new mapping.

 The portable way to create a mapping is to specify addr as 0 (NULL),

 and omit MAP_FIXED from flags. In this case, the system chooses the

 address for the mapping; the address is chosen so as not to conflict

 with any existing mapping, and will not be 0. If the MAP_FIXED flag is

 specified, and addr is 0 (NULL), then the mapped address will be 0

 (NULL).

 Certain flags constants are defined only if suitable feature test

 macros are defined (possibly by default): _DEFAULT_SOURCE with glibc

 2.19 or later; or _BSD_SOURCE or _SVID_SOURCE in glibc 2.19 and ear?

 lier. (Employing _GNU_SOURCE also suffices, and requiring that macro

 specifically would have been more logical, since these flags are all

 Linux-specific.) The relevant flags are: MAP_32BIT, MAP_ANONYMOUS (and

 the synonym MAP_ANON), MAP_DENYWRITE, MAP_EXECUTABLE, MAP_FILE,

 MAP_GROWSDOWN, MAP_HUGETLB, MAP_LOCKED, MAP_NONBLOCK, MAP_NORESERVE, Page 10/15

 MAP_POPULATE, and MAP_STACK.

 An application can determine which pages of a mapping are currently

 resident in the buffer/page cache using mincore(2).

 Using MAP_FIXED safely

 The only safe use for MAP_FIXED is where the address range specified by

 addr and length was previously reserved using another mapping; other?

 wise, the use of MAP_FIXED is hazardous because it forcibly removes

 preexisting mappings, making it easy for a multithreaded process to

 corrupt its own address space.

 For example, suppose that thread A looks through /proc/<pid>/maps in

 order to locate an unused address range that it can map using

 MAP_FIXED, while thread B simultaneously acquires part or all of that

 same address range. When thread A subsequently employs

 mmap(MAP_FIXED), it will effectively clobber the mapping that thread B

 created. In this scenario, thread B need not create a mapping di?

 rectly; simply making a library call that, internally, uses dlopen(3)

 to load some other shared library, will suffice. The dlopen(3) call

 will map the library into the process's address space. Furthermore,

 almost any library call may be implemented in a way that adds memory

 mappings to the address space, either with this technique, or by simply

 allocating memory. Examples include brk(2), malloc(3), pthread_cre?

 ate(3), and the PAM libraries ?http://www.linux-pam.org?.

 Since Linux 4.17, a multithreaded program can use the MAP_FIXED_NORE?

 PLACE flag to avoid the hazard described above when attempting to cre?

 ate a mapping at a fixed address that has not been reserved by a preex?

 isting mapping.

 Timestamps changes for file-backed mappings

 For file-backed mappings, the st_atime field for the mapped file may be

 updated at any time between the mmap() and the corresponding unmapping;

 the first reference to a mapped page will update the field if it has

 not been already.

 The st_ctime and st_mtime field for a file mapped with PROT_WRITE and

 MAP_SHARED will be updated after a write to the mapped region, and be? Page 11/15

 fore a subsequent msync(2) with the MS_SYNC or MS_ASYNC flag, if one

 occurs.

 Huge page (Huge TLB) mappings

 For mappings that employ huge pages, the requirements for the arguments

 of mmap() and munmap() differ somewhat from the requirements for map?

 pings that use the native system page size.

 For mmap(), offset must be a multiple of the underlying huge page size.

 The system automatically aligns length to be a multiple of the underly?

 ing huge page size.

 For munmap(), addr, and length must both be a multiple of the underly?

 ing huge page size.

 C library/kernel differences

 This page describes the interface provided by the glibc mmap() wrapper

 function. Originally, this function invoked a system call of the same

 name. Since kernel 2.4, that system call has been superseded by

 mmap2(2), and nowadays the glibc mmap() wrapper function invokes

 mmap2(2) with a suitably adjusted value for offset.

BUGS

 On Linux, there are no guarantees like those suggested above under

 MAP_NORESERVE. By default, any process can be killed at any moment

 when the system runs out of memory.

 In kernels before 2.6.7, the MAP_POPULATE flag has effect only if prot

 is specified as PROT_NONE.

 SUSv3 specifies that mmap() should fail if length is 0. However, in

 kernels before 2.6.12, mmap() succeeded in this case: no mapping was

 created and the call returned addr. Since kernel 2.6.12, mmap() fails

 with the error EINVAL for this case.

 POSIX specifies that the system shall always zero fill any partial page

 at the end of the object and that system will never write any modifica?

 tion of the object beyond its end. On Linux, when you write data to

 such partial page after the end of the object, the data stays in the

 page cache even after the file is closed and unmapped and even though

 the data is never written to the file itself, subsequent mappings may Page 12/15

 see the modified content. In some cases, this could be fixed by call?

 ing msync(2) before the unmap takes place; however, this doesn't work

 on tmpfs(5) (for example, when using the POSIX shared memory interface

 documented in shm_overview(7)).

EXAMPLES

 The following program prints part of the file specified in its first

 command-line argument to standard output. The range of bytes to be

 printed is specified via offset and length values in the second and

 third command-line arguments. The program creates a memory mapping of

 the required pages of the file and then uses write(2) to output the de?

 sired bytes.

 Program source

 #include <sys/mman.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 int

 main(int argc, char *argv[])

 {

 char *addr;

 int fd;

 struct stat sb;

 off_t offset, pa_offset;

 size_t length;

 ssize_t s;

 if (argc < 3 || argc > 4) {

 fprintf(stderr, "%s file offset [length]\n", argv[0]);

 exit(EXIT_FAILURE);

 } Page 13/15

 fd = open(argv[1], O_RDONLY);

 if (fd == -1)

 handle_error("open");

 if (fstat(fd, &sb) == -1) /* To obtain file size */

 handle_error("fstat");

 offset = atoi(argv[2]);

 pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);

 /* offset for mmap() must be page aligned */

 if (offset >= sb.st_size) {

 fprintf(stderr, "offset is past end of file\n");

 exit(EXIT_FAILURE);

 }

 if (argc == 4) {

 length = atoi(argv[3]);

 if (offset + length > sb.st_size)

 length = sb.st_size - offset;

 /* Can't display bytes past end of file */

 } else { /* No length arg ==> display to end of file */

 length = sb.st_size - offset;

 }

 addr = mmap(NULL, length + offset - pa_offset, PROT_READ,

 MAP_PRIVATE, fd, pa_offset);

 if (addr == MAP_FAILED)

 handle_error("mmap");

 s = write(STDOUT_FILENO, addr + offset - pa_offset, length);

 if (s != length) {

 if (s == -1)

 handle_error("write");

 fprintf(stderr, "partial write");

 exit(EXIT_FAILURE);

 }

 munmap(addr, length + offset - pa_offset);

 close(fd); Page 14/15

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ftruncate(2), getpagesize(2), memfd_create(2), mincore(2), mlock(2),

 mmap2(2), mprotect(2), mremap(2), msync(2), remap_file_pages(2), setr?

 limit(2), shmat(2), userfaultfd(2), shm_open(3), shm_overview(7)

 The descriptions of the following files in proc(5): /proc/[pid]/maps,

 /proc/[pid]/map_files, and /proc/[pid]/smaps.

 B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128?129 and 389?391.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 MMAP(2)

Page 15/15

