
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'msgctl.2' command

$ man msgctl.2

MSGCTL(2) Linux Programmer's Manual MSGCTL(2)

NAME

 msgctl - System V message control operations

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/msg.h>

 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION

 msgctl() performs the control operation specified by cmd on the Sys?

 tem V message queue with identifier msqid.

 The msqid_ds data structure is defined in <sys/msg.h> as follows:

 struct msqid_ds {

 struct ipc_perm msg_perm; /* Ownership and permissions */

 time_t msg_stime; /* Time of last msgsnd(2) */

 time_t msg_rtime; /* Time of last msgrcv(2) */

 time_t msg_ctime; /* Time of creation or last

 modification by msgctl() */

 unsigned long msg_cbytes; /* # of bytes in queue */

 msgqnum_t msg_qnum; /* # number of messages in queue */

 msglen_t msg_qbytes; /* Maximum # of bytes in queue */

 pid_t msg_lspid; /* PID of last msgsnd(2) */

 pid_t msg_lrpid; /* PID of last msgrcv(2) */ Page 1/6

 };

 The fields of the msgid_ds structure are as follows:

 msg_perm This is an ipc_perm structure (see below) that specifies the

 access permissions on the message queue.

 msg_stime Time of the last msgsnd(2) system call.

 msg_rtime Time of the last msgrcv(2) system call.

 msg_ctime Time of creation of queue or time of last msgctl() IPC_SET

 operation.

 msg_cbytes Number of bytes in all messages currently on the message

 queue. This is a nonstandard Linux extension that is not

 specified in POSIX.

 msg_qnum Number of messages currently on the message queue.

 msg_qbytes Maximum number of bytes of message text allowed on the mes?

 sage queue.

 msg_lspid ID of the process that performed the last msgsnd(2) system

 call.

 msg_lrpid ID of the process that performed the last msgrcv(2) system

 call.

 The ipc_perm structure is defined as follows (the highlighted fields

 are settable using IPC_SET):

 struct ipc_perm {

 key_t __key; /* Key supplied to msgget(2) */

 uid_t uid; /* Effective UID of owner */

 gid_t gid; /* Effective GID of owner */

 uid_t cuid; /* Effective UID of creator */

 gid_t cgid; /* Effective GID of creator */

 unsigned short mode; /* Permissions */

 unsigned short __seq; /* Sequence number */

 };

 The least significant 9 bits of the mode field of the ipc_perm struc?

 ture define the access permissions for the message queue. The permis?

 sion bits are as follows:

 0400 Read by user Page 2/6

 0200 Write by user

 0040 Read by group

 0020 Write by group

 0004 Read by others

 0002 Write by others

 Bits 0100, 0010, and 0001 (the execute bits) are unused by the system.

 Valid values for cmd are:

 IPC_STAT

 Copy information from the kernel data structure associated with

 msqid into the msqid_ds structure pointed to by buf. The caller

 must have read permission on the message queue.

 IPC_SET

 Write the values of some members of the msqid_ds structure

 pointed to by buf to the kernel data structure associated with

 this message queue, updating also its msg_ctime member.

 The following members of the structure are updated: msg_qbytes,

 msg_perm.uid, msg_perm.gid, and (the least significant 9 bits

 of) msg_perm.mode.

 The effective UID of the calling process must match the owner

 (msg_perm.uid) or creator (msg_perm.cuid) of the message queue,

 or the caller must be privileged. Appropriate privilege (Linux:

 the CAP_SYS_RESOURCE capability) is required to raise the

 msg_qbytes value beyond the system parameter MSGMNB.

 IPC_RMID

 Immediately remove the message queue, awakening all waiting

 reader and writer processes (with an error return and errno set

 to EIDRM). The calling process must have appropriate privileges

 or its effective user ID must be either that of the creator or

 owner of the message queue. The third argument to msgctl() is

 ignored in this case.

 IPC_INFO (Linux-specific)

 Return information about system-wide message queue limits and

 parameters in the structure pointed to by buf. This structure Page 3/6

 is of type msginfo (thus, a cast is required), defined in

 <sys/msg.h> if the _GNU_SOURCE feature test macro is defined:

 struct msginfo {

 int msgpool; /* Size in kibibytes of buffer pool

 used to hold message data;

 unused within kernel */

 int msgmap; /* Maximum number of entries in message

 map; unused within kernel */

 int msgmax; /* Maximum number of bytes that can be

 written in a single message */

 int msgmnb; /* Maximum number of bytes that can be

 written to queue; used to initialize

 msg_qbytes during queue creation

 (msgget(2)) */

 int msgmni; /* Maximum number of message queues */

 int msgssz; /* Message segment size;

 unused within kernel */

 int msgtql; /* Maximum number of messages on all queues

 in system; unused within kernel */

 unsigned short msgseg;

 /* Maximum number of segments;

 unused within kernel */

 };

 The msgmni, msgmax, and msgmnb settings can be changed via /proc

 files of the same name; see proc(5) for details.

 MSG_INFO (Linux-specific)

 Return a msginfo structure containing the same information as

 for IPC_INFO, except that the following fields are returned with

 information about system resources consumed by message queues:

 the msgpool field returns the number of message queues that cur?

 rently exist on the system; the msgmap field returns the total

 number of messages in all queues on the system; and the msgtql

 field returns the total number of bytes in all messages in all Page 4/6

 queues on the system.

 MSG_STAT (Linux-specific)

 Return a msqid_ds structure as for IPC_STAT. However, the msqid

 argument is not a queue identifier, but instead an index into

 the kernel's internal array that maintains information about all

 message queues on the system.

 MSG_STAT_ANY (Linux-specific, since Linux 4.17)

 Return a msqid_ds structure as for MSG_STAT. However,

 msg_perm.mode is not checked for read access for msqid meaning

 that any user can employ this operation (just as any user may

 read /proc/sysvipc/msg to obtain the same information).

RETURN VALUE

 On success, IPC_STAT, IPC_SET, and IPC_RMID return 0. A successful

 IPC_INFO or MSG_INFO operation returns the index of the highest used

 entry in the kernel's internal array recording information about all

 message queues. (This information can be used with repeated MSG_STAT

 or MSG_STAT_ANY operations to obtain information about all queues on

 the system.) A successful MSG_STAT or MSG_STAT_ANY operation returns

 the identifier of the queue whose index was given in msqid.

 On error, -1 is returned with errno indicating the error.

ERRORS

 On failure, errno is set to one of the following:

 EACCES The argument cmd is equal to IPC_STAT or MSG_STAT, but the call?

 ing process does not have read permission on the message queue

 msqid, and does not have the CAP_IPC_OWNER capability in the

 user namespace that governs its IPC namespace.

 EFAULT The argument cmd has the value IPC_SET or IPC_STAT, but the ad?

 dress pointed to by buf isn't accessible.

 EIDRM The message queue was removed.

 EINVAL Invalid value for cmd or msqid. Or: for a MSG_STAT operation,

 the index value specified in msqid referred to an array slot

 that is currently unused.

 EPERM The argument cmd has the value IPC_SET or IPC_RMID, but the ef? Page 5/6

 fective user ID of the calling process is not the creator (as

 found in msg_perm.cuid) or the owner (as found in msg_perm.uid)

 of the message queue, and the caller is not privileged (Linux:

 does not have the CAP_SYS_ADMIN capability).

 EPERM An attempt (IPC_SET) was made to increase msg_qbytes beyond the

 system parameter MSGMNB, but the caller is not privileged

 (Linux: does not have the CAP_SYS_RESOURCE capability).

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux

 or by any version of POSIX. However, some old implementations required

 the inclusion of these header files, and the SVID also documented their

 inclusion. Applications intended to be portable to such old systems

 may need to include these header files.

 The IPC_INFO, MSG_STAT, and MSG_INFO operations are used by the ipcs(1)

 program to provide information on allocated resources. In the future

 these may modified or moved to a /proc filesystem interface.

 Various fields in the struct msqid_ds were typed as short under Linux

 2.2 and have become long under Linux 2.4. To take advantage of this, a

 recompilation under glibc-2.1.91 or later should suffice. (The kernel

 distinguishes old and new calls by an IPC_64 flag in cmd.)

SEE ALSO

 msgget(2), msgrcv(2), msgsnd(2), capabilities(7), mq_overview(7),

 sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MSGCTL(2)

Page 6/6

