
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mremap.2' command

$ man mremap.2

MREMAP(2)                  Linux Programmer's Manual                 MREMAP(2)

NAME

       mremap - remap a virtual memory address

SYNOPSIS

       #define _GNU_SOURCE         /* See feature_test_macros(7) */

       #include <sys/mman.h>

       void *mremap(void *old_address, size_t old_size,

                    size_t new_size, int flags, ... /* void *new_address */);

DESCRIPTION

       mremap()  expands  (or shrinks) an existing memory mapping, potentially

       moving it at the same time (controlled by the flags  argument  and  the

       available virtual address space).

       old_address  is  the  old  address of the virtual memory block that you

       want to expand (or shrink).  Note  that  old_address  has  to  be  page

       aligned.   old_size  is  the  old  size  of  the  virtual memory block.

       new_size is the requested size of the virtual memory  block  after  the

       resize.   An optional fifth argument, new_address, may be provided; see

       the description of MREMAP_FIXED below.

       If the value of old_size is zero, and old_address refers to a shareable

       mapping  (see mmap(2) MAP_SHARED), then mremap() will create a new map?

       ping of the same pages.  new_size will be the size of the  new  mapping

       and  the location of the new mapping may be specified with new_address;

       see the description of MREMAP_FIXED below.  If a  new  mapping  is  re? Page 1/5



       quested  via  this  method,  then  the MREMAP_MAYMOVE flag must also be

       specified.

       The flags bit-mask argument may be 0, or include the following flags:

       MREMAP_MAYMOVE

              By default, if there is not sufficient space to expand a mapping

              at  its  current location, then mremap() fails.  If this flag is

              specified, then the kernel is permitted to relocate the  mapping

              to a new virtual address, if necessary.  If the mapping is relo?

              cated, then absolute pointers into the old mapping location  be?

              come  invalid  (offsets  relative to the starting address of the

              mapping should be employed).

       MREMAP_FIXED (since Linux 2.3.31)

              This flag serves a similar purpose  to  the  MAP_FIXED  flag  of

              mmap(2).   If  this  flag  is specified, then mremap() accepts a

              fifth  argument,  void *new_address,  which  specifies  a  page-

              aligned  address to which the mapping must be moved.  Any previ?

              ous mapping at the address range specified  by  new_address  and

              new_size is unmapped.

              If  MREMAP_FIXED  is specified, then MREMAP_MAYMOVE must also be

              specified.

       MREMAP_DONTUNMAP (since Linux 5.7)

              This flag, which must be used in  conjunction  with  MREMAP_MAY?

              MOVE,  remaps  a mapping to a new address but does not unmap the

              mapping at old_address.

              The MREMAP_DONTUNMAP flag can be used only with  private  anony?

              mous mappings (see the description of MAP_PRIVATE and MAP_ANONY?

              MOUS in mmap(2)).

              After completion, any access to the range specified  by  old_ad?

              dress  and old_size will result in a page fault.  The page fault

              will be handled by a userfaultfd(2) handler if the address is in

              a  range  previously registered with userfaultfd(2).  Otherwise,

              the kernel allocates a zero-filled page to handle the fault.

              The MREMAP_DONTUNMAP flag may be used to atomically move a  map? Page 2/5



              ping while leaving the source mapped.  See NOTES for some possi?

              ble applications of MREMAP_DONTUNMAP.

       If the memory segment specified by old_address and old_size  is  locked

       (using mlock(2) or similar), then this lock is maintained when the seg?

       ment is resized and/or relocated.  As a consequence, the amount of mem?

       ory locked by the process may change.

RETURN VALUE

       On  success  mremap() returns a pointer to the new virtual memory area.

       On error, the value MAP_FAILED (that is, (void *) -1) is returned,  and

       errno is set appropriately.

ERRORS

       EAGAIN The  caller tried to expand a memory segment that is locked, but

              this was not possible without exceeding the  RLIMIT_MEMLOCK  re?

              source limit.

       EFAULT Some address in the range old_address to old_address+old_size is

              an invalid virtual memory address for  this  process.   You  can

              also  get  EFAULT  even  if  there exist mappings that cover the

              whole address space requested, but those mappings are of differ?

              ent types.

       EINVAL An invalid argument was given.  Possible causes are:

              *  old_address was not page aligned;

              *  a   value   other  than  MREMAP_MAYMOVE  or  MREMAP_FIXED  or

                 MREMAP_DONTUNMAP was specified in flags;

              *  new_size was zero;

              *  new_size or new_address was invalid;

              *  the new address range specified by new_address  and  new_size

                 overlapped the old address range specified by old_address and

                 old_size;

              *  MREMAP_FIXED or MREMAP_DONTUNMAP was specified  without  also

                 specifying MREMAP_MAYMOVE;

              *  MREMAP_DONTUNMAP  was specified, but one or more pages in the

                 range specified by old_address and old_size were not  private

                 anonymous; Page 3/5



              *  MREMAP_DONTUNMAP  was specified and old_size was not equal to

                 new_size;

              *  old_size was zero and old_address does not refer to a  share?

                 able mapping (but see BUGS);

              *  old_size  was zero and the MREMAP_MAYMOVE flag was not speci?

                 fied.

       ENOMEM Not enough memory was available to complete the operation.  Pos?

              sible causes are:

              *  The memory area cannot be expanded at the current virtual ad?

                 dress, and the MREMAP_MAYMOVE flag is not set in flags.   Or,

                 there is not enough (virtual) memory available.

              *  MREMAP_DONTUNMAP was used causing a new mapping to be created

                 that would exceed the (virtual)  memory  available.   Or,  it

                 would exceed the maximum number of allowed mappings.

CONFORMING TO

       This  call  is  Linux-specific,  and should not be used in programs in?

       tended to be portable.

NOTES

       mremap() changes the  mapping  between  virtual  addresses  and  memory

       pages.  This can be used to implement a very efficient realloc(3).

       In Linux, memory is divided into pages.  A process has (one or) several

       linear virtual memory segments.  Each virtual memory segment has one or

       more  mappings  to real memory pages (in the page table).  Each virtual

       memory segment has its own protection (access rights), which may  cause

       a  segmentation  violation  (SIGSEGV)  if the memory is accessed incor?

       rectly (e.g., writing to a read-only segment).  Accessing virtual  mem?

       ory outside of the segments will also cause a segmentation violation.

       If  mremap()  is used to move or expand an area locked with mlock(2) or

       equivalent, the mremap() call will make a best effort to  populate  the

       new area but will not fail with ENOMEM if the area cannot be populated.

       Prior   to  version  2.4,  glibc  did  not  expose  the  definition  of

       MREMAP_FIXED, and the prototype for mremap()  did  not  allow  for  the

       new_address argument. Page 4/5



   MREMAP_DONTUNMAP use cases

       Possible applications for MREMAP_DONTUNMAP include:

       *  Non-cooperative  userfaultfd(2):  an application can yank out a vir?

          tual address range using MREMAP_DONTUNMAP and then  employ  a  user?

          faultfd(2) handler to handle the page faults that subsequently occur

          as other threads in the process touch pages in the yanked range.

       *  Garbage collection: MREMAP_DONTUNMAP can be used in conjunction with

          userfaultfd(2)  to implement garbage collection algorithms (e.g., in

          a Java virtual machine).  Such an implementation can be cheaper (and

          simpler)  than  conventional  garbage collection techniques that in?

          volve marking pages with protection PROT_NONE  in  conjunction  with

          the of a SIGSEGV handler to catch accesses to those pages.

BUGS

       Before  Linux 4.14, if old_size was zero and the mapping referred to by

       old_address was a private mapping (mmap(2) MAP_PRIVATE), mremap()  cre?

       ated a new private mapping unrelated to the original mapping.  This be?

       havior was unintended and probably unexpected  in  user-space  applica?

       tions (since the intention of mremap() is to create a new mapping based

       on the original mapping).  Since Linux 4.14, mremap()  fails  with  the

       error EINVAL in this scenario.

SEE ALSO

       brk(2),  getpagesize(2), getrlimit(2), mlock(2), mmap(2), sbrk(2), mal?

       loc(3), realloc(3)

       Your favorite text book on operating systems for  more  information  on

       paged  memory  (e.g.,  Modern Operating Systems by Andrew S. Tanenbaum,

       Inside Linux by Randolph Bentson, The Design of the UNIX Operating Sys?

       tem by Maurice J. Bach)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A

       description of the project, information about reporting bugs,  and  the

       latest     version     of     this    page,    can    be    found    at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-06-09                         MREMAP(2) Page 5/5


