
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mq_notify.3' command

$ man mq_notify.3

MQ_NOTIFY(3) Linux Programmer's Manual MQ_NOTIFY(3)

NAME

 mq_notify - register for notification when a message is available

SYNOPSIS

 #include <mqueue.h>

 int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

 Link with -lrt.

DESCRIPTION

 mq_notify() allows the calling process to register or unregister for

 delivery of an asynchronous notification when a new message arrives on

 the empty message queue referred to by the message queue descriptor

 mqdes.

 The sevp argument is a pointer to a sigevent structure. For the defi?

 nition and general details of this structure, see sigevent(7).

 If sevp is a non-null pointer, then mq_notify() registers the calling

 process to receive message notification. The sigev_notify field of the

 sigevent structure to which sevp points specifies how notification is

 to be performed. This field has one of the following values:

 SIGEV_NONE

 A "null" notification: the calling process is registered as the

 target for notification, but when a message arrives, no notifi?

 cation is sent.

 SIGEV_SIGNAL Page 1/5

 Notify the process by sending the signal specified in

 sigev_signo. See sigevent(7) for general details. The si_code

 field of the siginfo_t structure will be set to SI_MESGQ. In

 addition, si_pid will be set to the PID of the process that sent

 the message, and si_uid will be set to the real user ID of the

 sending process.

 SIGEV_THREAD

 Upon message delivery, invoke sigev_notify_function as if it

 were the start function of a new thread. See sigevent(7) for

 details.

 Only one process can be registered to receive notification from a mes?

 sage queue.

 If sevp is NULL, and the calling process is currently registered to re?

 ceive notifications for this message queue, then the registration is

 removed; another process can then register to receive a message notifi?

 cation for this queue.

 Message notification occurs only when a new message arrives and the

 queue was previously empty. If the queue was not empty at the time

 mq_notify() was called, then a notification will occur only after the

 queue is emptied and a new message arrives.

 If another process or thread is waiting to read a message from an empty

 queue using mq_receive(3), then any message notification registration

 is ignored: the message is delivered to the process or thread calling

 mq_receive(3), and the message notification registration remains in ef?

 fect.

 Notification occurs once: after a notification is delivered, the noti?

 fication registration is removed, and another process can register for

 message notification. If the notified process wishes to receive the

 next notification, it can use mq_notify() to request a further notifi?

 cation. This should be done before emptying all unread messages from

 the queue. (Placing the queue in nonblocking mode is useful for empty?

 ing the queue of messages without blocking once it is empty.)

RETURN VALUE Page 2/5

 On success mq_notify() returns 0; on error, -1 is returned, with errno

 set to indicate the error.

ERRORS

 EBADF The message queue descriptor specified in mqdes is invalid.

 EBUSY Another process has already registered to receive notification

 for this message queue.

 EINVAL sevp->sigev_notify is not one of the permitted values; or

 sevp->sigev_notify is SIGEV_SIGNAL and sevp->sigev_signo is not

 a valid signal number.

 ENOMEM Insufficient memory.

 POSIX.1-2008 says that an implementation may generate an EINVAL error

 if sevp is NULL, and the caller is not currently registered to receive

 notifications for the queue mqdes.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?mq_notify() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001.

NOTES

 C library/kernel differences

 In the glibc implementation, the mq_notify() library function is imple?

 mented on top of the system call of the same name. When sevp is NULL,

 or specifies a notification mechanism other than SIGEV_THREAD, the li?

 brary function directly invokes the system call. For SIGEV_THREAD,

 much of the implementation resides within the library, rather than the

 kernel. (This is necessarily so, since the thread involved in handling

 the notification is one that must be managed by the C library POSIX

 threads implementation.) The implementation involves the use of a raw Page 3/5

 netlink(7) socket and creates a new thread for each notification that

 is delivered to the process.

EXAMPLES

 The following program registers a notification request for the message

 queue named in its command-line argument. Notification is performed by

 creating a thread. The thread executes a function which reads one mes?

 sage from the queue and then terminates the process.

 Program source

 #include <pthread.h>

 #include <mqueue.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 static void /* Thread start function */

 tfunc(union sigval sv)

 {

 struct mq_attr attr;

 ssize_t nr;

 void *buf;

 mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

 /* Determine max. msg size; allocate buffer to receive msg */

 if (mq_getattr(mqdes, &attr) == -1)

 handle_error("mq_getattr");

 buf = malloc(attr.mq_msgsize);

 if (buf == NULL)

 handle_error("malloc");

 nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);

 if (nr == -1)

 handle_error("mq_receive");

 printf("Read %zd bytes from MQ\n", nr);

 free(buf); Page 4/5

 exit(EXIT_SUCCESS); /* Terminate the process */

 }

 int

 main(int argc, char *argv[])

 {

 mqd_t mqdes;

 struct sigevent sev;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <mq-name>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 mqdes = mq_open(argv[1], O_RDONLY);

 if (mqdes == (mqd_t) -1)

 handle_error("mq_open");

 sev.sigev_notify = SIGEV_THREAD;

 sev.sigev_notify_function = tfunc;

 sev.sigev_notify_attributes = NULL;

 sev.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */

 if (mq_notify(mqdes, &sev) == -1)

 handle_error("mq_notify");

 pause(); /* Process will be terminated by thread function */

 }

SEE ALSO

 mq_close(3), mq_getattr(3), mq_open(3), mq_receive(3), mq_send(3),

 mq_unlink(3), mq_overview(7), sigevent(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MQ_NOTIFY(3)

Page 5/5

