
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mount_namespaces.7' command

$ man mount_namespaces.7

MOUNT_NAMESPACES(7) Linux Programmer's Manual MOUNT_NAMESPACES(7)

NAME

 mount_namespaces - overview of Linux mount namespaces

DESCRIPTION

 For an overview of namespaces, see namespaces(7).

 Mount namespaces provide isolation of the list of mount points seen by

 the processes in each namespace instance. Thus, the processes in each

 of the mount namespace instances will see distinct single-directory hi?

 erarchies.

 The views provided by the /proc/[pid]/mounts, /proc/[pid]/mountinfo,

 and /proc/[pid]/mountstats files (all described in proc(5)) correspond

 to the mount namespace in which the process with the PID [pid] resides.

 (All of the processes that reside in the same mount namespace will see

 the same view in these files.)

 A new mount namespace is created using either clone(2) or unshare(2)

 with the CLONE_NEWNS flag. When a new mount namespace is created, its

 mount point list is initialized as follows:

 * If the namespace is created using clone(2), the mount point list of

 the child's namespace is a copy of the mount point list in the par?

 ent's namespace.

 * If the namespace is created using unshare(2), the mount point list

 of the new namespace is a copy of the mount point list in the

 caller's previous mount namespace. Page 1/18

 Subsequent modifications to the mount point list (mount(2) and

 umount(2)) in either mount namespace will not (by default) affect the

 mount point list seen in the other namespace (but see the following

 discussion of shared subtrees).

 Restrictions on mount namespaces

 Note the following points with respect to mount namespaces:

 * Each mount namespace has an owner user namespace. As explained

 above, when a new mount namespace is created, its mount point list

 is initialized as a copy of the mount point list of another mount

 namespace. If the new namespace and the namespace from which the

 mount point list was copied are owned by different user namespaces,

 then the new mount namespace is considered less privileged.

 * When creating a less privileged mount namespace, shared mounts are

 reduced to slave mounts. (Shared and slave mounts are discussed be?

 low.) This ensures that mappings performed in less privileged mount

 namespaces will not propagate to more privileged mount namespaces.

 * Mounts that come as a single unit from a more privileged mount name?

 space are locked together and may not be separated in a less privi?

 leged mount namespace. (The unshare(2) CLONE_NEWNS operation brings

 across all of the mounts from the original mount namespace as a sin?

 gle unit, and recursive mounts that propagate between mount name?

 spaces propagate as a single unit.)

 * The mount(2) flags MS_RDONLY, MS_NOSUID, MS_NOEXEC, and the "atime"

 flags (MS_NOATIME, MS_NODIRATIME, MS_RELATIME) settings become

 locked when propagated from a more privileged to a less privileged

 mount namespace, and may not be changed in the less privileged mount

 namespace.

 * A file or directory that is a mount point in one namespace that is

 not a mount point in another namespace, may be renamed, unlinked, or

 removed (rmdir(2)) in the mount namespace in which it is not a mount

 point (subject to the usual permission checks). Consequently, the

 mount point is removed in the mount namespace where it was a mount

 point. Page 2/18

 Previously (before Linux 3.18), attempting to unlink, rename, or re?

 move a file or directory that was a mount point in another mount

 namespace would result in the error EBUSY. That behavior had tech?

 nical problems of enforcement (e.g., for NFS) and permitted denial-

 of-service attacks against more privileged users. (i.e., preventing

 individual files from being updated by bind mounting on top of

 them).

SHARED SUBTREES

 After the implementation of mount namespaces was completed, experience

 showed that the isolation that they provided was, in some cases, too

 great. For example, in order to make a newly loaded optical disk

 available in all mount namespaces, a mount operation was required in

 each namespace. For this use case, and others, the shared subtree fea?

 ture was introduced in Linux 2.6.15. This feature allows for auto?

 matic, controlled propagation of mount and unmount events between name?

 spaces (or, more precisely, between the members of a peer group that

 are propagating events to one another).

 Each mount point is marked (via mount(2)) as having one of the follow?

 ing propagation types:

 MS_SHARED

 This mount point shares events with members of a peer group.

 Mount and unmount events immediately under this mount point will

 propagate to the other mount points that are members of the peer

 group. Propagation here means that the same mount or unmount

 will automatically occur under all of the other mount points in

 the peer group. Conversely, mount and unmount events that take

 place under peer mount points will propagate to this mount

 point.

 MS_PRIVATE

 This mount point is private; it does not have a peer group.

 Mount and unmount events do not propagate into or out of this

 mount point.

 MS_SLAVE Page 3/18

 Mount and unmount events propagate into this mount point from a

 (master) shared peer group. Mount and unmount events under this

 mount point do not propagate to any peer.

 Note that a mount point can be the slave of another peer group

 while at the same time sharing mount and unmount events with a

 peer group of which it is a member. (More precisely, one peer

 group can be the slave of another peer group.)

 MS_UNBINDABLE

 This is like a private mount, and in addition this mount can't

 be bind mounted. Attempts to bind mount this mount (mount(2)

 with the MS_BIND flag) will fail.

 When a recursive bind mount (mount(2) with the MS_BIND and

 MS_REC flags) is performed on a directory subtree, any bind

 mounts within the subtree are automatically pruned (i.e., not

 replicated) when replicating that subtree to produce the target

 subtree.

 For a discussion of the propagation type assigned to a new mount, see

 NOTES.

 The propagation type is a per-mount-point setting; some mount points

 may be marked as shared (with each shared mount point being a member of

 a distinct peer group), while others are private (or slaved or unbind?

 able).

 Note that a mount's propagation type determines whether mounts and un?

 mounts of mount points immediately under the mount point are propa?

 gated. Thus, the propagation type does not affect propagation of

 events for grandchildren and further removed descendant mount points.

 What happens if the mount point itself is unmounted is determined by

 the propagation type that is in effect for the parent of the mount

 point.

 Members are added to a peer group when a mount point is marked as

 shared and either:

 * the mount point is replicated during the creation of a new mount

 namespace; or Page 4/18

 * a new bind mount is created from the mount point.

 In both of these cases, the new mount point joins the peer group of

 which the existing mount point is a member.

 A new peer group is also created when a child mount point is created

 under an existing mount point that is marked as shared. In this case,

 the new child mount point is also marked as shared and the resulting

 peer group consists of all the mount points that are replicated under

 the peers of parent mount.

 A mount ceases to be a member of a peer group when either the mount is

 explicitly unmounted, or when the mount is implicitly unmounted because

 a mount namespace is removed (because it has no more member processes).

 The propagation type of the mount points in a mount namespace can be

 discovered via the "optional fields" exposed in /proc/[pid]/mountinfo.

 (See proc(5) for details of this file.) The following tags can appear

 in the optional fields for a record in that file:

 shared:X

 This mount point is shared in peer group X. Each peer group has

 a unique ID that is automatically generated by the kernel, and

 all mount points in the same peer group will show the same ID.

 (These IDs are assigned starting from the value 1, and may be

 recycled when a peer group ceases to have any members.)

 master:X

 This mount is a slave to shared peer group X.

 propagate_from:X (since Linux 2.6.26)

 This mount is a slave and receives propagation from shared peer

 group X. This tag will always appear in conjunction with a mas?

 ter:X tag. Here, X is the closest dominant peer group under the

 process's root directory. If X is the immediate master of the

 mount, or if there is no dominant peer group under the same

 root, then only the master:X field is present and not the propa?

 gate_from:X field. For further details, see below.

 unbindable

 This is an unbindable mount. Page 5/18

 If none of the above tags is present, then this is a private mount.

 MS_SHARED and MS_PRIVATE example

 Suppose that on a terminal in the initial mount namespace, we mark one

 mount point as shared and another as private, and then view the mounts

 in /proc/self/mountinfo:

 sh1# mount --make-shared /mntS

 sh1# mount --make-private /mntP

 sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 77 61 8:17 / /mntS rw,relatime shared:1

 83 61 8:15 / /mntP rw,relatime

 From the /proc/self/mountinfo output, we see that /mntS is a shared

 mount in peer group 1, and that /mntP has no optional tags, indicating

 that it is a private mount. The first two fields in each record in

 this file are the unique ID for this mount, and the mount ID of the

 parent mount. We can further inspect this file to see that the parent

 mount point of /mntS and /mntP is the root directory, /, which is

 mounted as private:

 sh1# cat /proc/self/mountinfo | awk '$1 == 61' | sed 's/ - .*//'

 61 0 8:2 / / rw,relatime

 On a second terminal, we create a new mount namespace where we run a

 second shell and inspect the mounts:

 $ PS1='sh2# ' sudo unshare -m --propagation unchanged sh

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 222 145 8:17 / /mntS rw,relatime shared:1

 225 145 8:15 / /mntP rw,relatime

 The new mount namespace received a copy of the initial mount name?

 space's mount points. These new mount points maintain the same propa?

 gation types, but have unique mount IDs. (The --propagation unchanged

 option prevents unshare(1) from marking all mounts as private when cre?

 ating a new mount namespace, which it does by default.)

 In the second terminal, we then create submounts under each of /mntS

 and /mntP and inspect the set-up:

 sh2# mkdir /mntS/a Page 6/18

 sh2# mount /dev/sdb6 /mntS/a

 sh2# mkdir /mntP/b

 sh2# mount /dev/sdb7 /mntP/b

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 222 145 8:17 / /mntS rw,relatime shared:1

 225 145 8:15 / /mntP rw,relatime

 178 222 8:22 / /mntS/a rw,relatime shared:2

 230 225 8:23 / /mntP/b rw,relatime

 From the above, it can be seen that /mntS/a was created as shared (in?

 heriting this setting from its parent mount) and /mntP/b was created as

 a private mount.

 Returning to the first terminal and inspecting the set-up, we see that

 the new mount created under the shared mount point /mntS propagated to

 its peer mount (in the initial mount namespace), but the new mount cre?

 ated under the private mount point /mntP did not propagate:

 sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 77 61 8:17 / /mntS rw,relatime shared:1

 83 61 8:15 / /mntP rw,relatime

 179 77 8:22 / /mntS/a rw,relatime shared:2

 MS_SLAVE example

 Making a mount point a slave allows it to receive propagated mount and

 unmount events from a master shared peer group, while preventing it

 from propagating events to that master. This is useful if we want to

 (say) receive a mount event when an optical disk is mounted in the mas?

 ter shared peer group (in another mount namespace), but want to prevent

 mount and unmount events under the slave mount from having side effects

 in other namespaces.

 We can demonstrate the effect of slaving by first marking two mount

 points as shared in the initial mount namespace:

 sh1# mount --make-shared /mntX

 sh1# mount --make-shared /mntY

 sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 132 83 8:23 / /mntX rw,relatime shared:1 Page 7/18

 133 83 8:22 / /mntY rw,relatime shared:2

 On a second terminal, we create a new mount namespace and inspect the

 mount points:

 sh2# unshare -m --propagation unchanged sh

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 168 167 8:23 / /mntX rw,relatime shared:1

 169 167 8:22 / /mntY rw,relatime shared:2

 In the new mount namespace, we then mark one of the mount points as a

 slave:

 sh2# mount --make-slave /mntY

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 168 167 8:23 / /mntX rw,relatime shared:1

 169 167 8:22 / /mntY rw,relatime master:2

 From the above output, we see that /mntY is now a slave mount that is

 receiving propagation events from the shared peer group with the ID 2.

 Continuing in the new namespace, we create submounts under each of

 /mntX and /mntY:

 sh2# mkdir /mntX/a

 sh2# mount /dev/sda3 /mntX/a

 sh2# mkdir /mntY/b

 sh2# mount /dev/sda5 /mntY/b

 When we inspect the state of the mount points in the new mount name?

 space, we see that /mntX/a was created as a new shared mount (inherit?

 ing the "shared" setting from its parent mount) and /mntY/b was created

 as a private mount:

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 168 167 8:23 / /mntX rw,relatime shared:1

 169 167 8:22 / /mntY rw,relatime master:2

 173 168 8:3 / /mntX/a rw,relatime shared:3

 175 169 8:5 / /mntY/b rw,relatime

 Returning to the first terminal (in the initial mount namespace), we

 see that the mount /mntX/a propagated to the peer (the shared /mntX),

 but the mount /mntY/b was not propagated: Page 8/18

 sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 132 83 8:23 / /mntX rw,relatime shared:1

 133 83 8:22 / /mntY rw,relatime shared:2

 174 132 8:3 / /mntX/a rw,relatime shared:3

 Now we create a new mount point under /mntY in the first shell:

 sh1# mkdir /mntY/c

 sh1# mount /dev/sda1 /mntY/c

 sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 132 83 8:23 / /mntX rw,relatime shared:1

 133 83 8:22 / /mntY rw,relatime shared:2

 174 132 8:3 / /mntX/a rw,relatime shared:3

 178 133 8:1 / /mntY/c rw,relatime shared:4

 When we examine the mount points in the second mount namespace, we see

 that in this case the new mount has been propagated to the slave mount

 point, and that the new mount is itself a slave mount (to peer group

 4):

 sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 168 167 8:23 / /mntX rw,relatime shared:1

 169 167 8:22 / /mntY rw,relatime master:2

 173 168 8:3 / /mntX/a rw,relatime shared:3

 175 169 8:5 / /mntY/b rw,relatime

 179 169 8:1 / /mntY/c rw,relatime master:4

 MS_UNBINDABLE example

 One of the primary purposes of unbindable mounts is to avoid the "mount

 point explosion" problem when repeatedly performing bind mounts of a

 higher-level subtree at a lower-level mount point. The problem is il?

 lustrated by the following shell session.

 Suppose we have a system with the following mount points:

 # mount | awk '{print $1, $2, $3}'

 /dev/sda1 on /

 /dev/sdb6 on /mntX

 /dev/sdb7 on /mntY

 Suppose furthermore that we wish to recursively bind mount the root di? Page 9/18

 rectory under several users' home directories. We do this for the

 first user, and inspect the mount points:

 # mount --rbind / /home/cecilia/

 # mount | awk '{print $1, $2, $3}'

 /dev/sda1 on /

 /dev/sdb6 on /mntX

 /dev/sdb7 on /mntY

 /dev/sda1 on /home/cecilia

 /dev/sdb6 on /home/cecilia/mntX

 /dev/sdb7 on /home/cecilia/mntY

 When we repeat this operation for the second user, we start to see the

 explosion problem:

 # mount --rbind / /home/henry

 # mount | awk '{print $1, $2, $3}'

 /dev/sda1 on /

 /dev/sdb6 on /mntX

 /dev/sdb7 on /mntY

 /dev/sda1 on /home/cecilia

 /dev/sdb6 on /home/cecilia/mntX

 /dev/sdb7 on /home/cecilia/mntY

 /dev/sda1 on /home/henry

 /dev/sdb6 on /home/henry/mntX

 /dev/sdb7 on /home/henry/mntY

 /dev/sda1 on /home/henry/home/cecilia

 /dev/sdb6 on /home/henry/home/cecilia/mntX

 /dev/sdb7 on /home/henry/home/cecilia/mntY

 Under /home/henry, we have not only recursively added the /mntX and

 /mntY mounts, but also the recursive mounts of those directories under

 /home/cecilia that were created in the previous step. Upon repeating

 the step for a third user, it becomes obvious that the explosion is ex?

 ponential in nature:

 # mount --rbind / /home/otto

 # mount | awk '{print $1, $2, $3}' Page 10/18

 /dev/sda1 on /

 /dev/sdb6 on /mntX

 /dev/sdb7 on /mntY

 /dev/sda1 on /home/cecilia

 /dev/sdb6 on /home/cecilia/mntX

 /dev/sdb7 on /home/cecilia/mntY

 /dev/sda1 on /home/henry

 /dev/sdb6 on /home/henry/mntX

 /dev/sdb7 on /home/henry/mntY

 /dev/sda1 on /home/henry/home/cecilia

 /dev/sdb6 on /home/henry/home/cecilia/mntX

 /dev/sdb7 on /home/henry/home/cecilia/mntY

 /dev/sda1 on /home/otto

 /dev/sdb6 on /home/otto/mntX

 /dev/sdb7 on /home/otto/mntY

 /dev/sda1 on /home/otto/home/cecilia

 /dev/sdb6 on /home/otto/home/cecilia/mntX

 /dev/sdb7 on /home/otto/home/cecilia/mntY

 /dev/sda1 on /home/otto/home/henry

 /dev/sdb6 on /home/otto/home/henry/mntX

 /dev/sdb7 on /home/otto/home/henry/mntY

 /dev/sda1 on /home/otto/home/henry/home/cecilia

 /dev/sdb6 on /home/otto/home/henry/home/cecilia/mntX

 /dev/sdb7 on /home/otto/home/henry/home/cecilia/mntY

 The mount explosion problem in the above scenario can be avoided by

 making each of the new mounts unbindable. The effect of doing this is

 that recursive mounts of the root directory will not replicate the un?

 bindable mounts. We make such a mount for the first user:

 # mount --rbind --make-unbindable / /home/cecilia

 Before going further, we show that unbindable mounts are indeed unbind?

 able:

 # mkdir /mntZ

 # mount --bind /home/cecilia /mntZ Page 11/18

 mount: wrong fs type, bad option, bad superblock on /home/cecilia,

 missing codepage or helper program, or other error

 In some cases useful info is found in syslog - try

 dmesg | tail or so.

 Now we create unbindable recursive bind mounts for the other two users:

 # mount --rbind --make-unbindable / /home/henry

 # mount --rbind --make-unbindable / /home/otto

 Upon examining the list of mount points, we see there has been no ex?

 plosion of mount points, because the unbindable mounts were not repli?

 cated under each user's directory:

 # mount | awk '{print $1, $2, $3}'

 /dev/sda1 on /

 /dev/sdb6 on /mntX

 /dev/sdb7 on /mntY

 /dev/sda1 on /home/cecilia

 /dev/sdb6 on /home/cecilia/mntX

 /dev/sdb7 on /home/cecilia/mntY

 /dev/sda1 on /home/henry

 /dev/sdb6 on /home/henry/mntX

 /dev/sdb7 on /home/henry/mntY

 /dev/sda1 on /home/otto

 /dev/sdb6 on /home/otto/mntX

 /dev/sdb7 on /home/otto/mntY

 Propagation type transitions

 The following table shows the effect that applying a new propagation

 type (i.e., mount --make-xxxx) has on the existing propagation type of

 a mount point. The rows correspond to existing propagation types, and

 the columns are the new propagation settings. For reasons of space,

 "private" is abbreviated as "priv" and "unbindable" as "unbind".

 make-shared make-slave make-priv make-unbind

 ???

 shared ?shared slave/priv [1] priv unbind

 slave ?slave+shared slave [2] priv unbind Page 12/18

 slave+shared ?slave+shared slave priv unbind

 private ?shared priv [2] priv unbind

 unbindable ?shared unbind [2] priv unbind

 Note the following details to the table:

 [1] If a shared mount is the only mount in its peer group, making it a

 slave automatically makes it private.

 [2] Slaving a nonshared mount has no effect on the mount.

 Bind (MS_BIND) semantics

 Suppose that the following command is performed:

 mount --bind A/a B/b

 Here, A is the source mount point, B is the destination mount point, a

 is a subdirectory path under the mount point A, and b is a subdirectory

 path under the mount point B. The propagation type of the resulting

 mount, B/b, depends on the propagation types of the mount points A and

 B, and is summarized in the following table.

 source(A)

 shared private slave unbind

 ???

 dest(B) shared ?shared shared slave+shared invalid

 nonshared?shared private slave invalid

 Note that a recursive bind of a subtree follows the same semantics as

 for a bind operation on each mount in the subtree. (Unbindable mounts

 are automatically pruned at the target mount point.)

 For further details, see Documentation/filesystems/sharedsubtree.txt in

 the kernel source tree.

 Move (MS_MOVE) semantics

 Suppose that the following command is performed:

 mount --move A B/b

 Here, A is the source mount point, B is the destination mount point,

 and b is a subdirectory path under the mount point B. The propagation

 type of the resulting mount, B/b, depends on the propagation types of

 the mount points A and B, and is summarized in the following table.

 source(A) Page 13/18

 shared private slave unbind

 ??

 dest(B) shared ?shared shared slave+shared invalid

 nonshared?shared private slave unbindable

 Note: moving a mount that resides under a shared mount is invalid.

 For further details, see Documentation/filesystems/sharedsubtree.txt in

 the kernel source tree.

 Mount semantics

 Suppose that we use the following command to create a mount point:

 mount device B/b

 Here, B is the destination mount point, and b is a subdirectory path

 under the mount point B. The propagation type of the resulting mount,

 B/b, follows the same rules as for a bind mount, where the propagation

 type of the source mount is considered always to be private.

 Unmount semantics

 Suppose that we use the following command to tear down a mount point:

 unmount A

 Here, A is a mount point on B/b, where B is the parent mount and b is a

 subdirectory path under the mount point B. If B is shared, then all

 most-recently-mounted mounts at b on mounts that receive propagation

 from mount B and do not have submounts under them are unmounted.

 The /proc/[pid]/mountinfo propagate_from tag

 The propagate_from:X tag is shown in the optional fields of a

 /proc/[pid]/mountinfo record in cases where a process can't see a

 slave's immediate master (i.e., the pathname of the master is not

 reachable from the filesystem root directory) and so cannot determine

 the chain of propagation between the mounts it can see.

 In the following example, we first create a two-link master-slave chain

 between the mounts /mnt, /tmp/etc, and /mnt/tmp/etc. Then the ch?

 root(1) command is used to make the /tmp/etc mount point unreachable

 from the root directory, creating a situation where the master of

 /mnt/tmp/etc is not reachable from the (new) root directory of the

 process. Page 14/18

 First, we bind mount the root directory onto /mnt and then bind mount

 /proc at /mnt/proc so that after the later chroot(1) the proc(5)

 filesystem remains visible at the correct location in the chroot-ed en?

 vironment.

 # mkdir -p /mnt/proc

 # mount --bind / /mnt

 # mount --bind /proc /mnt/proc

 Next, we ensure that the /mnt mount is a shared mount in a new peer

 group (with no peers):

 # mount --make-private /mnt # Isolate from any previous peer group

 # mount --make-shared /mnt

 # cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

 239 61 8:2 / /mnt ... shared:102

 248 239 0:4 / /mnt/proc ... shared:5

 Next, we bind mount /mnt/etc onto /tmp/etc:

 # mkdir -p /tmp/etc

 # mount --bind /mnt/etc /tmp/etc

 # cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'

 239 61 8:2 / /mnt ... shared:102

 248 239 0:4 / /mnt/proc ... shared:5

 267 40 8:2 /etc /tmp/etc ... shared:102

 Initially, these two mount points are in the same peer group, but we

 then make the /tmp/etc a slave of /mnt/etc, and then make /tmp/etc

 shared as well, so that it can propagate events to the next slave in

 the chain:

 # mount --make-slave /tmp/etc

 # mount --make-shared /tmp/etc

 # cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'

 239 61 8:2 / /mnt ... shared:102

 248 239 0:4 / /mnt/proc ... shared:5

 267 40 8:2 /etc /tmp/etc ... shared:105 master:102

 Then we bind mount /tmp/etc onto /mnt/tmp/etc. Again, the two mount

 points are initially in the same peer group, but we then make Page 15/18

 /mnt/tmp/etc a slave of /tmp/etc:

 # mkdir -p /mnt/tmp/etc

 # mount --bind /tmp/etc /mnt/tmp/etc

 # mount --make-slave /mnt/tmp/etc

 # cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'

 239 61 8:2 / /mnt ... shared:102

 248 239 0:4 / /mnt/proc ... shared:5

 267 40 8:2 /etc /tmp/etc ... shared:105 master:102

 273 239 8:2 /etc /mnt/tmp/etc ... master:105

 From the above, we see that /mnt is the master of the slave /tmp/etc,

 which in turn is the master of the slave /mnt/tmp/etc.

 We then chroot(1) to the /mnt directory, which renders the mount with

 ID 267 unreachable from the (new) root directory:

 # chroot /mnt

 When we examine the state of the mounts inside the chroot-ed environ?

 ment, we see the following:

 # cat /proc/self/mountinfo | sed 's/ - .*//'

 239 61 8:2 / / ... shared:102

 248 239 0:4 / /proc ... shared:5

 273 239 8:2 /etc /tmp/etc ... master:105 propagate_from:102

 Above, we see that the mount with ID 273 is a slave whose master is the

 peer group 105. The mount point for that master is unreachable, and so

 a propagate_from tag is displayed, indicating that the closest dominant

 peer group (i.e., the nearest reachable mount in the slave chain) is

 the peer group with the ID 102 (corresponding to the /mnt mount point

 before the chroot(1) was performed.

VERSIONS

 Mount namespaces first appeared in Linux 2.4.19.

CONFORMING TO

 Namespaces are a Linux-specific feature.

NOTES

 The propagation type assigned to a new mount point depends on the prop?

 agation type of the parent mount. If the mount point has a parent Page 16/18

 (i.e., it is a non-root mount point) and the propagation type of the

 parent is MS_SHARED, then the propagation type of the new mount is also

 MS_SHARED. Otherwise, the propagation type of the new mount is MS_PRI?

 VATE.

 Notwithstanding the fact that the default propagation type for new

 mount points is in many cases MS_PRIVATE, MS_SHARED is typically more

 useful. For this reason, systemd(1) automatically remounts all mount

 points as MS_SHARED on system startup. Thus, on most modern systems,

 the default propagation type is in practice MS_SHARED.

 Since, when one uses unshare(1) to create a mount namespace, the goal

 is commonly to provide full isolation of the mount points in the new

 namespace, unshare(1) (since util-linux version 2.27) in turn reverses

 the step performed by systemd(1), by making all mount points private in

 the new namespace. That is, unshare(1) performs the equivalent of the

 following in the new mount namespace:

 mount --make-rprivate /

 To prevent this, one can use the --propagation unchanged option to un?

 share(1).

 An application that creates a new mount namespace directly using

 clone(2) or unshare(2) may desire to prevent propagation of mount

 events to other mount namespaces (as is done by unshare(1)). This can

 be done by changing the propagation type of mount points in the new

 namespace to either MS_SLAVE or MS_PRIVATE. using a call such as the

 following:

 mount(NULL, "/", MS_SLAVE | MS_REC, NULL);

 For a discussion of propagation types when moving mounts (MS_MOVE) and

 creating bind mounts (MS_BIND), see Documentation/filesystems/shared?

 subtree.txt.

EXAMPLES

 See pivot_root(2).

SEE ALSO

 unshare(1), clone(2), mount(2), pivot_root(2), setns(2), umount(2), un?

 share(2), proc(5), namespaces(7), user_namespaces(7), findmnt(8), Page 17/18

 mount(8), pivot_root(8), umount(8)

 Documentation/filesystems/sharedsubtree.txt in the kernel source tree.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MOUNT_NAMESPACES(7)

Page 18/18

