
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mount.2' command

$ man mount.2

MOUNT(2) Linux Programmer's Manual MOUNT(2)

NAME

 mount - mount filesystem

SYNOPSIS

 #include <sys/mount.h>

 int mount(const char *source, const char *target,

 const char *filesystemtype, unsigned long mountflags,

 const void *data);

DESCRIPTION

 mount() attaches the filesystem specified by source (which is often a

 pathname referring to a device, but can also be the pathname of a di?

 rectory or file, or a dummy string) to the location (a directory or

 file) specified by the pathname in target.

 Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required

 to mount filesystems.

 Values for the filesystemtype argument supported by the kernel are

 listed in /proc/filesystems (e.g., "btrfs", "ext4", "jfs", "xfs",

 "vfat", "fuse", "tmpfs", "cgroup", "proc", "mqueue", "nfs", "cifs",

 "iso9660"). Further types may become available when the appropriate

 modules are loaded.

 The data argument is interpreted by the different filesystems. Typi?

 cally it is a string of comma-separated options understood by this

 filesystem. See mount(8) for details of the options available for each Page 1/13

 filesystem type.

 A call to mount() performs one of a number of general types of opera?

 tion, depending on the bits specified in mountflags. The choice of

 which operation to perform is determined by testing the bits set in

 mountflags, with the tests being conducted in the order listed here:

 * Remount an existing mount: mountflags includes MS_REMOUNT.

 * Create a bind mount: mountflags includes MS_BIND.

 * Change the propagation type of an existing mount: mountflags in?

 cludes one of MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UNBINDABLE.

 * Move an existing mount to a new location: mountflags includes

 MS_MOVE.

 * Create a new mount: mountflags includes none of the above flags.

 Each of these operations is detailed later in this page. Further flags

 may be specified in mountflags to modify the behavior of mount(), as

 described below.

 Additional mount flags

 The list below describes the additional flags that can be specified in

 mountflags. Note that some operation types ignore some or all of these

 flags, as described later in this page.

 MS_DIRSYNC (since Linux 2.5.19)

 Make directory changes on this filesystem synchronous. (This

 property can be obtained for individual directories or subtrees

 using chattr(1).)

 MS_LAZYTIME (since Linux 4.0)

 Reduce on-disk updates of inode timestamps (atime, mtime, ctime)

 by maintaining these changes only in memory. The on-disk time?

 stamps are updated only when:

 (a) the inode needs to be updated for some change unrelated to

 file timestamps;

 (b) the application employs fsync(2), syncfs(2), or sync(2);

 (c) an undeleted inode is evicted from memory; or

 (d) more than 24 hours have passed since the inode was written

 to disk. Page 2/13

 This mount option significantly reduces writes needed to update

 the inode's timestamps, especially mtime and atime. However, in

 the event of a system crash, the atime and mtime fields on disk

 might be out of date by up to 24 hours.

 Examples of workloads where this option could be of significant

 benefit include frequent random writes to preallocated files, as

 well as cases where the MS_STRICTATIME mount option is also en?

 abled. (The advantage of combining MS_STRICTATIME and MS_LAZY?

 TIME is that stat(2) will return the correctly updated atime,

 but the atime updates will be flushed to disk only in the cases

 listed above.)

 MS_MANDLOCK

 Permit mandatory locking on files in this filesystem. (Manda?

 tory locking must still be enabled on a per-file basis, as de?

 scribed in fcntl(2).) Since Linux 4.5, this mount option re?

 quires the CAP_SYS_ADMIN capability and a kernel configured with

 the CONFIG_MANDATORY_FILE_LOCKING option.

 MS_NOATIME

 Do not update access times for (all types of) files on this

 filesystem.

 MS_NODEV

 Do not allow access to devices (special files) on this filesys?

 tem.

 MS_NODIRATIME

 Do not update access times for directories on this filesystem.

 This flag provides a subset of the functionality provided by

 MS_NOATIME; that is, MS_NOATIME implies MS_NODIRATIME.

 MS_NOEXEC

 Do not allow programs to be executed from this filesystem.

 MS_NOSUID

 Do not honor set-user-ID and set-group-ID bits or file capabili?

 ties when executing programs from this filesystem.

 MS_RDONLY Page 3/13

 Mount filesystem read-only.

 MS_REC (since Linux 2.4.11)

 Used in conjunction with MS_BIND to create a recursive bind

 mount, and in conjunction with the propagation type flags to re?

 cursively change the propagation type of all of the mounts in a

 subtree. See below for further details.

 MS_RELATIME (since Linux 2.6.20)

 When a file on this filesystem is accessed, update the file's

 last access time (atime) only if the current value of atime is

 less than or equal to the file's last modification time (mtime)

 or last status change time (ctime). This option is useful for

 programs, such as mutt(1), that need to know when a file has

 been read since it was last modified. Since Linux 2.6.30, the

 kernel defaults to the behavior provided by this flag (unless

 MS_NOATIME was specified), and the MS_STRICTATIME flag is re?

 quired to obtain traditional semantics. In addition, since

 Linux 2.6.30, the file's last access time is always updated if

 it is more than 1 day old.

 MS_SILENT (since Linux 2.6.17)

 Suppress the display of certain (printk()) warning messages in

 the kernel log. This flag supersedes the misnamed and obsolete

 MS_VERBOSE flag (available since Linux 2.4.12), which has the

 same meaning.

 MS_STRICTATIME (since Linux 2.6.30)

 Always update the last access time (atime) when files on this

 filesystem are accessed. (This was the default behavior before

 Linux 2.6.30.) Specifying this flag overrides the effect of

 setting the MS_NOATIME and MS_RELATIME flags.

 MS_SYNCHRONOUS

 Make writes on this filesystem synchronous (as though the O_SYNC

 flag to open(2) was specified for all file opens to this

 filesystem).

 MS_NOSYMFOLLOW (since Linux 5.10) Page 4/13

 Do not follow symbolic links when resolving paths. Symbolic

 links can still be created, and readlink(1), readlink(2), real?

 path(1), and realpath(3) all still work properly.

 From Linux 2.4 onward, some of the above flags are settable on a per-

 mount basis, while others apply to the superblock of the mounted

 filesystem, meaning that all mounts of the same filesystem share those

 flags. (Previously, all of the flags were per-superblock.)

 The per-mount-point flags are as follows:

 * Since Linux 2.4: MS_NODEV, MS_NOEXEC, and MS_NOSUID flags are set?

 table on a per-mount-point basis.

 * Additionally, since Linux 2.6.16: MS_NOATIME and MS_NODIRATIME.

 * Additionally, since Linux 2.6.20: MS_RELATIME.

 The following flags are per-superblock: MS_DIRSYNC, MS_LAZYTIME,

 MS_MANDLOCK, MS_SILENT, and MS_SYNCHRONOUS. The initial settings of

 these flags are determined on the first mount of the filesystem, and

 will be shared by all subsequent mounts of the same filesystem. Subse?

 quently, the settings of the flags can be changed via a remount opera?

 tion (see below). Such changes will be visible via all mount points

 associated with the filesystem.

 Since Linux 2.6.16, MS_RDONLY can be set or cleared on a per-mount-

 point basis as well as on the underlying filesystem superblock. The

 mounted filesystem will be writable only if neither the filesystem nor

 the mountpoint are flagged as read-only.

 Remounting an existing mount

 An existing mount may be remounted by specifying MS_REMOUNT in mount?

 flags. This allows you to change the mountflags and data of an exist?

 ing mount without having to unmount and remount the filesystem. target

 should be the same value specified in the initial mount() call.

 The source and filesystemtype arguments are ignored.

 The mountflags and data arguments should match the values used in the

 original mount() call, except for those parameters that are being de?

 liberately changed.

 The following mountflags can be changed: MS_LAZYTIME, MS_MANDLOCK, Page 5/13

 MS_NOATIME, MS_NODEV, MS_NODIRATIME, MS_NOEXEC, MS_NOSUID, MS_RELATIME,

 MS_RDONLY, MS_STRICTATIME (whose effect is to clear the MS_NOATIME and

 MS_RELATIME flags), and MS_SYNCHRONOUS. Attempts to change the setting

 of the MS_DIRSYNC and MS_SILENT flags during a remount are silently ig?

 nored. Note that changes to per-superblock flags are visible via all

 mount points of the associated filesystem (because the per-superblock

 flags are shared by all mount points).

 Since Linux 3.17, if none of MS_NOATIME, MS_NODIRATIME, MS_RELATIME, or

 MS_STRICTATIME is specified in mountflags, then the remount operation

 preserves the existing values of these flags (rather than defaulting to

 MS_RELATIME).

 Since Linux 2.6.26, the MS_REMOUNT flag can be used with MS_BIND to

 modify only the per-mount-point flags. This is particularly useful for

 setting or clearing the "read-only" flag on a mount point without

 changing the underlying filesystem. Specifying mountflags as:

 MS_REMOUNT | MS_BIND | MS_RDONLY

 will make access through this mountpoint read-only, without affecting

 other mount points.

 Creating a bind mount

 If mountflags includes MS_BIND (available since Linux 2.4), then per?

 form a bind mount. A bind mount makes a file or a directory subtree

 visible at another point within the single directory hierarchy. Bind

 mounts may cross filesystem boundaries and span chroot(2) jails.

 The filesystemtype and data arguments are ignored.

 The remaining bits (other than MS_REC, described below) in the mount?

 flags argument are also ignored. (The bind mount has the same mount

 options as the underlying mount point.) However, see the discussion of

 remounting above, for a method of making an existing bind mount read-

 only.

 By default, when a directory is bind mounted, only that directory is

 mounted; if there are any submounts under the directory tree, they are

 not bind mounted. If the MS_REC flag is also specified, then a recur?

 sive bind mount operation is performed: all submounts under the source Page 6/13

 subtree (other than unbindable mounts) are also bind mounted at the

 corresponding location in the target subtree.

 Changing the propagation type of an existing mount

 If mountflags includes one of MS_SHARED, MS_PRIVATE, MS_SLAVE, or

 MS_UNBINDABLE (all available since Linux 2.6.15), then the propagation

 type of an existing mount is changed. If more than one of these flags

 is specified, an error results.

 The only other flags that can be specified while changing the propaga?

 tion type are MS_REC (described below) and MS_SILENT (which is ig?

 nored).

 The source, filesystemtype, and data arguments are ignored.

 The meanings of the propagation type flags are as follows:

 MS_SHARED

 Make this mount point shared. Mount and unmount events immedi?

 ately under this mount point will propagate to the other mount

 points that are members of this mount's peer group. Propagation

 here means that the same mount or unmount will automatically oc?

 cur under all of the other mount points in the peer group. Con?

 versely, mount and unmount events that take place under peer

 mount points will propagate to this mount point.

 MS_PRIVATE

 Make this mount point private. Mount and unmount events do not

 propagate into or out of this mount point.

 MS_SLAVE

 If this is a shared mount point that is a member of a peer group

 that contains other members, convert it to a slave mount. If

 this is a shared mount point that is a member of a peer group

 that contains no other members, convert it to a private mount.

 Otherwise, the propagation type of the mount point is left un?

 changed.

 When a mount point is a slave, mount and unmount events propa?

 gate into this mount point from the (master) shared peer group

 of which it was formerly a member. Mount and unmount events un? Page 7/13

 der this mount point do not propagate to any peer.

 A mount point can be the slave of another peer group while at

 the same time sharing mount and unmount events with a peer group

 of which it is a member.

 MS_UNBINDABLE

 Make this mount unbindable. This is like a private mount, and

 in addition this mount can't be bind mounted. When a recursive

 bind mount (mount() with the MS_BIND and MS_REC flags) is per?

 formed on a directory subtree, any unbindable mounts within the

 subtree are automatically pruned (i.e., not replicated) when

 replicating that subtree to produce the target subtree.

 By default, changing the propagation type affects only the target mount

 point. If the MS_REC flag is also specified in mountflags, then the

 propagation type of all mount points under target is also changed.

 For further details regarding mount propagation types (including the

 default propagation type assigned to new mounts), see mount_name?

 spaces(7).

 Moving a mount

 If mountflags contains the flag MS_MOVE (available since Linux 2.4.18),

 then move a subtree: source specifies an existing mount point and tar?

 get specifies the new location to which that mount point is to be relo?

 cated. The move is atomic: at no point is the subtree unmounted.

 The remaining bits in the mountflags argument are ignored, as are the

 filesystemtype and data arguments.

 Creating a new mount point

 If none of MS_REMOUNT, MS_BIND, MS_MOVE, MS_SHARED, MS_PRIVATE,

 MS_SLAVE, or MS_UNBINDABLE is specified in mountflags, then mount()

 performs its default action: creating a new mount point. source speci?

 fies the source for the new mount point, and target specifies the di?

 rectory at which to create the mount point.

 The filesystemtype and data arguments are employed, and further bits

 may be specified in mountflags to modify the behavior of the call.

RETURN VALUE Page 8/13

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 The error values given below result from filesystem type independent

 errors. Each filesystem type may have its own special errors and its

 own special behavior. See the Linux kernel source code for details.

 EACCES A component of a path was not searchable. (See also path_reso?

 lution(7).)

 EACCES Mounting a read-only filesystem was attempted without giving the

 MS_RDONLY flag.

 The filesystem may be read-only for various reasons, including:

 it resides on a read-only optical disk; it is resides on a de?

 vice with a physical switch that has been set to mark the device

 read-only; the filesystem implementation was compiled with read-

 only support; or errors were detected when initially mounting

 the filesystem, so that it was marked read-only and can't be re?

 mounted as read-write (until the errors are fixed).

 Some filesystems instead return the error EROFS on an attempt to

 mount a read-only filesystem.

 EACCES The block device source is located on a filesystem mounted with

 the MS_NODEV option.

 EBUSY An attempt was made to stack a new mount directly on top of an

 existing mount point that was created in this mount namespace

 with the same source and target.

 EBUSY source cannot be remounted read-only, because it still holds

 files open for writing.

 EFAULT One of the pointer arguments points outside the user address

 space.

 EINVAL source had an invalid superblock.

 EINVAL A remount operation (MS_REMOUNT) was attempted, but source was

 not already mounted on target.

 EINVAL A move operation (MS_MOVE) was attempted, but the mount tree un?

 der source includes unbindable mounts and target is a mount Page 9/13

 point that has propagation type MS_SHARED.

 EINVAL A move operation (MS_MOVE) was attempted, but the parent mount

 of source mount has propagation type MS_SHARED.

 EINVAL A move operation (MS_MOVE) was attempted, but source was not a

 mount point, or was '/'.

 EINVAL A bind operation (MS_BIND) was requested where source referred a

 mount namespace magic link (i.e., a /proc/[pid]/ns/mnt magic

 link or a bind mount to such a link) and the propagation type of

 the parent mount of target was MS_SHARED, but propagation of the

 requested bind mount could lead to a circular dependency that

 might prevent the mount namespace from ever being freed.

 EINVAL mountflags includes more than one of MS_SHARED, MS_PRIVATE,

 MS_SLAVE, or MS_UNBINDABLE.

 EINVAL mountflags includes MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UN?

 BINDABLE and also includes a flag other than MS_REC or

 MS_SILENT.

 EINVAL An attempt was made to bind mount an unbindable mount.

 EINVAL In an unprivileged mount namespace (i.e., a mount namespace

 owned by a user namespace that was created by an unprivileged

 user), a bind mount operation (MS_BIND) was attempted without

 specifying (MS_REC), which would have revealed the filesystem

 tree underneath one of the submounts of the directory being

 bound.

 ELOOP Too many links encountered during pathname resolution.

 ELOOP A move operation was attempted, and target is a descendant of

 source.

 EMFILE (In case no block device is required:) Table of dummy devices is

 full.

 ENAMETOOLONG

 A pathname was longer than MAXPATHLEN.

 ENODEV filesystemtype not configured in the kernel.

 ENOENT A pathname was empty or had a nonexistent component.

 ENOMEM The kernel could not allocate a free page to copy filenames or Page 10/13

 data into.

 ENOTBLK

 source is not a block device (and a device was required).

 ENOTDIR

 target, or a prefix of source, is not a directory.

 ENXIO The major number of the block device source is out of range.

 EPERM The caller does not have the required privileges.

 EROFS Mounting a read-only filesystem was attempted without giving the

 MS_RDONLY flag. See EACCES, above.

VERSIONS

 The definitions of MS_DIRSYNC, MS_MOVE, MS_PRIVATE, MS_REC, MS_RELA?

 TIME, MS_SHARED, MS_SLAVE, MS_STRICTATIME, and MS_UNBINDABLE were added

 to glibc headers in version 2.12.

CONFORMING TO

 This function is Linux-specific and should not be used in programs in?

 tended to be portable.

NOTES

 Since Linux 2.4 a single filesystem can be mounted at multiple mount

 points, and multiple mounts can be stacked on the same mount point.

 The mountflags argument may have the magic number 0xC0ED (MS_MGC_VAL)

 in the top 16 bits. (All of the other flags discussed in DESCRIPTION

 occupy the low order 16 bits of mountflags.) Specifying MS_MGC_VAL was

 required in kernel versions prior to 2.4, but since Linux 2.4 is no

 longer required and is ignored if specified.

 The original MS_SYNC flag was renamed MS_SYNCHRONOUS in 1.1.69 when a

 different MS_SYNC was added to <mman.h>.

 Before Linux 2.4 an attempt to execute a set-user-ID or set-group-ID

 program on a filesystem mounted with MS_NOSUID would fail with EPERM.

 Since Linux 2.4 the set-user-ID and set-group-ID bits are just silently

 ignored in this case.

 Mount namespaces

 Starting with kernel 2.4.19, Linux provides mount namespaces. A mount

 namespace is the set of filesystem mounts that are visible to a Page 11/13

 process. Mount namespaces can be (and usually are) shared between mul?

 tiple processes, and changes to the namespace (i.e., mounts and un?

 mounts) by one process are visible to all other processes sharing the

 same namespace. (The pre-2.4.19 Linux situation can be considered as

 one in which a single namespace was shared by every process on the sys?

 tem.)

 A child process created by fork(2) shares its parent's mount namespace;

 the mount namespace is preserved across an execve(2).

 A process can obtain a private mount namespace if: it was created using

 the clone(2) CLONE_NEWNS flag, in which case its new namespace is ini?

 tialized to be a copy of the namespace of the process that called

 clone(2); or it calls unshare(2) with the CLONE_NEWNS flag, which

 causes the caller's mount namespace to obtain a private copy of the

 namespace that it was previously sharing with other processes, so that

 future mounts and unmounts by the caller are invisible to other pro?

 cesses (except child processes that the caller subsequently creates)

 and vice versa.

 For further details on mount namespaces, see mount_namespaces(7).

 Parental relationship between mount points

 Each mount point has a parent mount point. The overall parental rela?

 tionship of all mount points defines the single directory hierarchy

 seen by the processes within a mount namespace.

 The parent of a new mount point is defined when the mount point is cre?

 ated. In the usual case, the parent of a new mount is the mount point

 of the filesystem containing the directory or file at which the new

 mount is attached. In the case where a new mount is stacked on top of

 an existing mount, the parent of the new mount is the previous mount

 that was stacked at that location.

 The parental relationship between mount points can be discovered via

 the /proc/[pid]/mountinfo file (see below).

 /proc/[pid]/mounts and /proc/[pid]/mountinfo

 The Linux-specific /proc/[pid]/mounts file exposes the list of mount

 points in the mount namespace of the process with the specified ID. Page 12/13

 The /proc/[pid]/mountinfo file exposes even more information about

 mount points, including the propagation type and mount ID information

 that makes it possible to discover the parental relationship between

 mount points. See proc(5) and mount_namespaces(7) for details of this

 file.

SEE ALSO

 mountpoint(1), chroot(2), ioctl_iflags(2), pivot_root(2), umount(2),

 mount_namespaces(7), path_resolution(7), findmnt(8), lsblk(8),

 mount(8), umount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 MOUNT(2)

Page 13/13

