
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mknodat.2' command

$ man mknodat.2

MKNOD(2) Linux Programmer's Manual MKNOD(2)

NAME

 mknod, mknodat - create a special or ordinary file

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <unistd.h>

 int mknod(const char *pathname, mode_t mode, dev_t dev);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 mknod():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 The system call mknod() creates a filesystem node (file, device special

 file, or named pipe) named pathname, with attributes specified by mode

 and dev.

 The mode argument specifies both the file mode to use and the type of

 node to be created. It should be a combination (using bitwise OR) of Page 1/4

 one of the file types listed below and zero or more of the file mode

 bits listed in inode(7).

 The file mode is modified by the process's umask in the usual way: in

 the absence of a default ACL, the permissions of the created node are

 (mode & ~umask).

 The file type must be one of S_IFREG, S_IFCHR, S_IFBLK, S_IFIFO, or

 S_IFSOCK to specify a regular file (which will be created empty), char?

 acter special file, block special file, FIFO (named pipe), or UNIX do?

 main socket, respectively. (Zero file type is equivalent to type

 S_IFREG.)

 If the file type is S_IFCHR or S_IFBLK, then dev specifies the major

 and minor numbers of the newly created device special file (makedev(3)

 may be useful to build the value for dev); otherwise it is ignored.

 If pathname already exists, or is a symbolic link, this call fails with

 an EEXIST error.

 The newly created node will be owned by the effective user ID of the

 process. If the directory containing the node has the set-group-ID bit

 set, or if the filesystem is mounted with BSD group semantics, the new

 node will inherit the group ownership from its parent directory; other?

 wise it will be owned by the effective group ID of the process.

 mknodat()

 The mknodat() system call operates in exactly the same way as mknod(),

 except for the differences described here.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling

 process, as is done by mknod() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like mknod()).

 If pathname is absolute, then dirfd is ignored.

 See openat(2) for an explanation of the need for mknodat().

RETURN VALUE Page 2/4

 mknod() and mknodat() return zero on success, or -1 if an error oc?

 curred (in which case, errno is set appropriately).

ERRORS

 EACCES The parent directory does not allow write permission to the

 process, or one of the directories in the path prefix of path?

 name did not allow search permission. (See also path_resolu?

 tion(7).)

 EDQUOT The user's quota of disk blocks or inodes on the filesystem has

 been exhausted.

 EEXIST pathname already exists. This includes the case where pathname

 is a symbolic link, dangling or not.

 EFAULT pathname points outside your accessible address space.

 EINVAL mode requested creation of something other than a regular file,

 device special file, FIFO or socket.

 ELOOP Too many symbolic links were encountered in resolving pathname.

 ENAMETOOLONG

 pathname was too long.

 ENOENT A directory component in pathname does not exist or is a dan?

 gling symbolic link.

 ENOMEM Insufficient kernel memory was available.

 ENOSPC The device containing pathname has no room for the new node.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a

 directory.

 EPERM mode requested creation of something other than a regular file,

 FIFO (named pipe), or UNIX domain socket, and the caller is not

 privileged (Linux: does not have the CAP_MKNOD capability); also

 returned if the filesystem containing pathname does not support

 the type of node requested.

 EROFS pathname refers to a file on a read-only filesystem.

 The following additional errors can occur for mknodat():

 EBADF dirfd is not a valid file descriptor.

 ENOTDIR Page 3/4

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

VERSIONS

 mknodat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

CONFORMING TO

 mknod(): SVr4, 4.4BSD, POSIX.1-2001 (but see below), POSIX.1-2008.

 mknodat(): POSIX.1-2008.

NOTES

 POSIX.1-2001 says: "The only portable use of mknod() is to create a

 FIFO-special file. If mode is not S_IFIFO or dev is not 0, the behav?

 ior of mknod() is unspecified." However, nowadays one should never use

 mknod() for this purpose; one should use mkfifo(3), a function espe?

 cially defined for this purpose.

 Under Linux, mknod() cannot be used to create directories. One should

 make directories with mkdir(2).

 There are many infelicities in the protocol underlying NFS. Some of

 these affect mknod() and mknodat().

SEE ALSO

 mknod(1), chmod(2), chown(2), fcntl(2), mkdir(2), mount(2), socket(2),

 stat(2), umask(2), unlink(2), makedev(3), mkfifo(3), acl(5), path_reso?

 lution(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 MKNOD(2)

Page 4/4

