
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mkfs.xfs.8' command

$ man mkfs.xfs.8

mkfs.xfs(8) System Manager's Manual mkfs.xfs(8)

NAME

 mkfs.xfs - construct an XFS filesystem

SYNOPSIS

 mkfs.xfs [-b block_size_options] [-m global_metadata_options] [-d

 data_section_options] [-f] [-i inode_options] [-l log_section_op?

 tions] [-n naming_options] [-p protofile] [-q] [-r real?

 time_section_options] [-s sector_size_options] [-L label] [-N] [

 -K] device

 mkfs.xfs -V

DESCRIPTION

 mkfs.xfs constructs an XFS filesystem by writing on a special file us?

 ing the values found in the arguments of the command line. It is in?

 voked automatically by mkfs(8) when it is given the -t xfs option.

 In its simplest (and most commonly used form), the size of the filesys?

 tem is determined from the disk driver. As an example, to make a

 filesystem with an internal log on the first partition on the first

 SCSI disk, use:

 mkfs.xfs /dev/sda1

 The metadata log can be placed on another device to reduce the number

 of disk seeks. To create a filesystem on the first partition on the

 first SCSI disk with a 10MiB log located on the first partition on the

 second SCSI disk, use: Page 1/22

 mkfs.xfs -l logdev=/dev/sdb1,size=10m /dev/sda1

 Each of the option elements in the argument list above can be given as

 multiple comma-separated suboptions if multiple suboptions apply to the

 same option. Equivalently, each main option can be given multiple

 times with different suboptions. For example, -l internal,size=10m and

 -l internal -l size=10m are equivalent.

 In the descriptions below, sizes are given in sectors, bytes, blocks,

 kilobytes, megabytes, gigabytes, etc. Sizes are treated as hexadecimal

 if prefixed by 0x or 0X, octal if prefixed by 0, or decimal otherwise.

 The following lists possible multiplication suffixes:

 s - multiply by sector size (default = 512, see -s option be?

 low).

 b - multiply by filesystem block size (default = 4K, see -b op?

 tion below).

 k - multiply by one kilobyte (1,024 bytes).

 m - multiply by one megabyte (1,048,576 bytes).

 g - multiply by one gigabyte (1,073,741,824 bytes).

 t - multiply by one terabyte (1,099,511,627,776 bytes).

 p - multiply by one petabyte (1,024 terabytes).

 e - multiply by one exabyte (1,048,576 terabytes).

 When specifying parameters in units of sectors or filesystem blocks,

 the -s option or the -b option may be used to specify the size of the

 sector or block. If the size of the block or sector is not specified,

 the default sizes (block: 4KiB, sector: 512B) will be used.

 Many feature options allow an optional argument of 0 or 1, to explic?

 itly disable or enable the functionality.

OPTIONS

 Options may be specified either on the command line or in a configura?

 tion file. Not all command line options can be specified in configura?

 tion files; only the command line options followed by a [section] label

 can be used in a configuration file.

 Options that can be used in configuration files are grouped into re?

 lated sections containing multiple options. The command line options Page 2/22

 and configuration files use the same option sections and grouping.

 Configuration file section names are listed in the command line option

 sections below. Option names and values are the same for both command

 line and configuration file specification.

 Options specified are the combined set of command line parameters and

 configuration file parameters. Duplicated options will result in a re?

 specification error, regardless of the location they were specified at.

 -c configuration_file_option

 This option specifies the files that mkfs configuration will be

 obtained from. The valid configuration_file_option is:

 options=name

 The configuration options will be sourced from the

 file specified by the name option string. This op?

 tion can be use either an absolute or relative path

 to the configuration file to be read.

 -b block_size_options

 Section Name: [block]

 This option specifies the fundamental block size of the filesys?

 tem. The valid block_size_option is:

 size=value

 The filesystem block size is specified with a value

 in bytes. The default value is 4096 bytes (4 KiB),

 the minimum is 512, and the maximum is 65536 (64

 KiB).

 Although mkfs.xfs will accept any of these values

 and create a valid filesystem, XFS on Linux can only

 mount filesystems with pagesize or smaller blocks.

 -m global_metadata_options

 Section Name: [metadata]

 These options specify metadata format options that either apply

 to the entire filesystem or aren't easily characterised by a

 specific functionality group. The valid global_metadata_options

 are: Page 3/22

 bigtime=value

 This option enables filesystems that can handle in?

 ode timestamps from December 1901 to July 2486, and

 quota timer expirations from January 1970 to July

 2486. The value is either 0 to disable the feature,

 or 1 to enable large timestamps.

 If this feature is not enabled, the filesystem can

 only handle timestamps from December 1901 to January

 2038, and quota timers from January 1970 to February

 2106.

 By default, mkfs.xfs in RHEL9 will enable this fea?

 ture. If the option -m crc=0 is used, the large

 timestamp feature is not supported and is disabled.

 crc=value

 This is used to create a filesystem which maintains

 and checks CRC information in all metadata objects

 on disk. The value is either 0 to disable the fea?

 ture, or 1 to enable the use of CRCs.

 CRCs enable enhanced error detection due to hardware

 issues, whilst the format changes also improves

 crash recovery algorithms and the ability of various

 tools to validate and repair metadata corruptions

 when they are found. The CRC algorithm used is

 CRC32c, so the overhead is dependent on CPU archi?

 tecture as some CPUs have hardware acceleration of

 this algorithm. Typically the overhead of calculat?

 ing and checking the CRCs is not noticeable in nor?

 mal operation.

 By default, mkfs.xfs will enable metadata CRCs.

 Formatting a filesystem without CRCs selects the V4

 format, which is deprecated and will be removed from

 upstream in September 2030. Distributors may choose

 to withdraw support for the V4 format earlier than Page 4/22

 this date. Several other options, noted below, are

 only tunable on V4 formats, and will be removed

 along with the V4 format itself.

 finobt=value

 This option enables the use of a separate free inode

 btree index in each allocation group. The value is

 either 0 to disable the feature, or 1 to create a

 free inode btree in each allocation group.

 The free inode btree mirrors the existing allocated

 inode btree index which indexes both used and free

 inodes. The free inode btree does not index used in?

 odes, allowing faster, more consistent inode alloca?

 tion performance as filesystems age.

 By default, mkfs.xfs will create free inode btrees

 for filesystems created with the (default) -m crc=1

 option set. When the option -m crc=0 is used, the

 free inode btree feature is not supported and is

 disabled.

 inobtcount=value

 This option causes the filesystem to record the num?

 ber of blocks used by the inode btree and the free

 inode btree. This can be used to reduce mount times

 when the free inode btree is enabled.

 By default, mkfs.xfs in RHEL9 will enable this op?

 tion. This feature is only available for filesys?

 tems created with the (default) -m finobt=1 option

 set. When the option -m finobt=0 is used, the inode

 btree counter feature is not supported and is dis?

 abled.

 uuid=value

 Use the given value as the filesystem UUID for the

 newly created filesystem. The default is to gener?

 ate a random UUID. Page 5/22

 rmapbt=value

 This option enables the creation of a reverse-map?

 ping btree index in each allocation group. The

 value is either 0 to disable the feature, or 1 to

 create the btree.

 The reverse mapping btree maps filesystem blocks to

 the owner of the filesystem block. Most of the map?

 pings will be to an inode number and an offset,

 though there will also be mappings to filesystem

 metadata. This secondary metadata can be used to

 validate the primary metadata or to pinpoint exactly

 which data has been lost when a disk error occurs.

 By default, mkfs.xfs will not create reverse mapping

 btrees. This feature is only available for filesys?

 tems created with the (default) -m crc=1 option set.

 When the option -m crc=0 is used, the reverse map?

 ping btree feature is not supported and is disabled.

 reflink=value

 This option enables the use of a separate reference

 count btree index in each allocation group. The

 value is either 0 to disable the feature, or 1 to

 create a reference count btree in each allocation

 group.

 The reference count btree enables the sharing of

 physical extents between the data forks of different

 files, which is commonly known as "reflink". Unlike

 traditional Unix filesystems which assume that every

 inode and logical block pair map to a unique physi?

 cal block, a reflink-capable XFS filesystem removes

 the uniqueness requirement, allowing up to four bil?

 lion arbitrary inode/logical block pairs to map to a

 physical block. If a program tries to write to a

 multiply-referenced block in a file, the write will Page 6/22

 be redirected to a new block, and that file's logi?

 cal-to-physical mapping will be changed to the new

 block ("copy on write"). This feature enables the

 creation of per-file snapshots and deduplication.

 It is only available for the data forks of regular

 files.

 By default, mkfs.xfs will create reference count

 btrees and therefore will enable the reflink fea?

 ture. This feature is only available for filesys?

 tems created with the (default) -m crc=1 option set.

 When the option -m crc=0 is used, the reference

 count btree feature is not supported and reflink is

 disabled.

 Note: the filesystem DAX mount option (-o dax) is

 incompatible with reflink-enabled XFS filesystems.

 To use filesystem DAX with XFS, specify the -m re?

 flink=0 option to mkfs.xfs to disable the reflink

 feature.

 -d data_section_options

 Section Name: [data]

 These options specify the location, size, and other parameters

 of the data section of the filesystem. The valid data_sec?

 tion_options are:

 agcount=value

 This is used to specify the number of allocation

 groups. The data section of the filesystem is di?

 vided into allocation groups to improve the perfor?

 mance of XFS. More allocation groups imply that more

 parallelism can be achieved when allocating blocks

 and inodes. The minimum allocation group size is 16

 MiB; the maximum size is just under 1 TiB. The data

 section of the filesystem is divided into value al?

 location groups (default value is scaled automati? Page 7/22

 cally based on the underlying device size).

 agsize=value

 This is an alternative to using the agcount subop?

 tion. The value is the desired size of the alloca?

 tion group expressed in bytes (usually using the m

 or g suffixes). This value must be a multiple of

 the filesystem block size, and must be at least

 16MiB, and no more than 1TiB, and may be automati?

 cally adjusted to properly align with the stripe ge?

 ometry. The agcount and agsize suboptions are mutu?

 ally exclusive.

 cowextsize=value

 Set the copy-on-write extent size hint on all inodes

 created by mkfs.xfs. The value must be provided in

 units of filesystem blocks. If the value is zero,

 the default value (currently 32 blocks) will be

 used. Directories will pass on this hint to newly

 created regular files and directories.

 name=value

 This can be used to specify the name of the special

 file containing the filesystem. In this case, the

 log section must be specified as internal (with a

 size, see the -l option below) and there can be no

 real-time section.

 file[=value]

 This is used to specify that the file given by the

 name suboption is a regular file. The value is ei?

 ther 0 or 1, with 1 signifying that the file is reg?

 ular. This suboption is used only to make a filesys?

 tem image. If the value is omitted then 1 is as?

 sumed.

 size=value

 This is used to specify the size of the data sec? Page 8/22

 tion. This suboption is required if -d file[=1] is

 given. Otherwise, it is only needed if the filesys?

 tem should occupy less space than the size of the

 special file.

 sunit=value

 This is used to specify the stripe unit for a RAID

 device or a logical volume. The value has to be

 specified in 512-byte block units. Use the su subop?

 tion to specify the stripe unit size in bytes. This

 suboption ensures that data allocations will be

 stripe unit aligned when the current end of file is

 being extended and the file size is larger than

 512KiB. Also inode allocations and the internal log

 will be stripe unit aligned.

 su=value

 This is an alternative to using sunit. The su sub?

 option is used to specify the stripe unit for a RAID

 device or a striped logical volume. The value has to

 be specified in bytes, (usually using the m or g

 suffixes). This value must be a multiple of the

 filesystem block size.

 swidth=value

 This is used to specify the stripe width for a RAID

 device or a striped logical volume. The value has to

 be specified in 512-byte block units. Use the sw

 suboption to specify the stripe width size in bytes.

 This suboption is required if -d sunit has been

 specified and it has to be a multiple of the -d

 sunit suboption.

 sw=value

 suboption is an alternative to using swidth. The sw

 suboption is used to specify the stripe width for a

 RAID device or striped logical volume. The value is Page 9/22

 expressed as a multiplier of the stripe unit, usu?

 ally the same as the number of stripe members in the

 logical volume configuration, or data disks in a

 RAID device.

 When a filesystem is created on a logical volume de?

 vice, mkfs.xfs will automatically query the logical

 volume for appropriate sunit and swidth values.

 noalign

 This option disables automatic geometry detection

 and creates the filesystem without stripe geometry

 alignment even if the underlying storage device pro?

 vides this information.

 rtinherit=value

 If value is set to 1, all inodes created by mkfs.xfs

 will be created with the realtime flag set. The de?

 fault is 0. Directories will pass on this flag to

 newly created regular files and directories.

 projinherit=value

 All inodes created by mkfs.xfs will be assigned the

 project quota id provided in value. Directories

 will pass on the project id to newly created regular

 files and directories.

 extszinherit=value

 All inodes created by mkfs.xfs will have this value

 extent size hint applied. The value must be pro?

 vided in units of filesystem blocks. Directories

 will pass on this hint to newly created regular

 files and directories.

 daxinherit=value

 If value is set to 1, all inodes created by mkfs.xfs

 will be created with the DAX flag set. The default

 is 0. Directories will pass on this flag to newly

 created regular files and directories. By default, Page 10/22

 mkfs.xfs will not enable DAX mode.

 -f Force overwrite when an existing filesystem is detected on the

 device. By default, mkfs.xfs will not write to the device if it

 suspects that there is a filesystem or partition table on the

 device already.

 -i inode_options

 Section Name: [inode]

 This option specifies the inode size of the filesystem, and

 other inode allocation parameters. The XFS inode contains a

 fixed-size part and a variable-size part. The variable-size

 part, whose size is affected by this option, can contain: direc?

 tory data, for small directories; attribute data, for small at?

 tribute sets; symbolic link data, for small symbolic links; the

 extent list for the file, for files with a small number of ex?

 tents; and the root of a tree describing the location of extents

 for the file, for files with a large number of extents.

 The valid inode_options are:

 size=value | perblock=value

 The inode size is specified either as a value in

 bytes with size= or as the number fitting in a

 filesystem block with perblock=. The minimum (and

 default) value is 256 bytes without crc, 512 bytes

 with crc enabled. The maximum value is 2048 (2 KiB)

 subject to the restriction that the inode size can?

 not exceed one half of the filesystem block size.

 XFS uses 64-bit inode numbers internally; however,

 the number of significant bits in an inode number is

 affected by filesystem geometry. In practice,

 filesystem size and inode size are the predominant

 factors. The Linux kernel (on 32 bit hardware plat?

 forms) and most applications cannot currently handle

 inode numbers greater than 32 significant bits, so

 if no inode size is given on the command line, Page 11/22

 mkfs.xfs will attempt to choose a size such that in?

 ode numbers will be < 32 bits. If an inode size is

 specified, or if a filesystem is sufficiently large,

 mkfs.xfs will warn if this will create inode numbers

 > 32 significant bits.

 maxpct=value

 This specifies the maximum percentage of space in

 the filesystem that can be allocated to inodes. The

 default value is 25% for filesystems under 1TB, 5%

 for filesystems under 50TB and 1% for filesystems

 over 50TB.

 In the default inode allocation mode, inode blocks

 are chosen such that inode numbers will not exceed

 32 bits, which restricts the inode blocks to the

 lower portion of the filesystem. The data block al?

 locator will avoid these low blocks to accommodate

 the specified maxpct, so a high value may result in

 a filesystem with nothing but inodes in a signifi?

 cant portion of the lower blocks of the filesystem.

 (This restriction is not present when the filesystem

 is mounted with the inode64 option on 64-bit plat?

 forms).

 Setting the value to 0 means that essentially all of

 the filesystem can become inode blocks, subject to

 inode32 restrictions.

 This value can be modified with xfs_growfs(8).

 align[=value]

 This is used to specify that inode allocation is or

 is not aligned. The value is either 0 or 1, with 1

 signifying that inodes are allocated aligned. If

 the value is omitted, 1 is assumed. The default is

 that inodes are aligned. Aligned inode access is

 normally more efficient than unaligned access; Page 12/22

 alignment must be established at the time the

 filesystem is created, since inodes are allocated at

 that time. This option can be used to turn off in?

 ode alignment when the filesystem needs to be mount?

 able by a version of IRIX that does not have the in?

 ode alignment feature (any release of IRIX before

 6.2, and IRIX 6.2 without XFS patches).

 This option is only tunable on the deprecated V4

 format.

 attr=value

 This is used to specify the version of extended at?

 tribute inline allocation policy to be used. By de?

 fault, this is 2, which uses an efficient algorithm

 for managing the available inline inode space be?

 tween attribute and extent data.

 The previous version 1, which has fixed regions for

 attribute and extent data, is kept for backwards

 compatibility with kernels older than version

 2.6.16.

 This option is only tunable on the deprecated V4

 format.

 projid32bit[=value]

 This is used to enable 32bit quota project identi?

 fiers. The value is either 0 or 1, with 1 signifying

 that 32bit projid are to be enabled. If the value

 is omitted, 1 is assumed. (This default changed in

 release version 3.2.0.)

 This option is only tunable on the deprecated V4

 format.

 sparse[=value]

 Enable sparse inode chunk allocation. The value is

 either 0 or 1, with 1 signifying that sparse alloca?

 tion is enabled. If the value is omitted, 1 is as? Page 13/22

 sumed. Sparse inode allocation is disabled by de?

 fault. This feature is only available for filesys?

 tems formatted with -m crc=1.

 When enabled, sparse inode allocation allows the

 filesystem to allocate smaller than the standard

 64-inode chunk when free space is severely limited.

 This feature is useful for filesystems that might

 fragment free space over time such that no free ex?

 tents are large enough to accommodate a chunk of 64

 inodes. Without this feature enabled, inode alloca?

 tions can fail with out of space errors under severe

 fragmented free space conditions.

 -l log_section_options

 Section Name: [log]

 These options specify the location, size, and other parameters

 of the log section of the filesystem. The valid log_section_op?

 tions are:

 agnum=value

 If the log is internal, allocate it in this AG.

 internal[=value]

 This is used to specify that the log section is a

 piece of the data section instead of being another

 device or logical volume. The value is either 0 or

 1, with 1 signifying that the log is internal. If

 the value is omitted, 1 is assumed.

 logdev=device

 This is used to specify that the log section should

 reside on the device separate from the data section.

 The internal=1 and logdev options are mutually ex?

 clusive.

 size=value

 This is used to specify the size of the log section.

 If the log is contained within the data section and Page 14/22

 size isn't specified, mkfs.xfs will try to select a

 suitable log size depending on the size of the

 filesystem. The actual logsize depends on the

 filesystem block size and the directory block size.

 Otherwise, the size suboption is only needed if the

 log section of the filesystem should occupy less

 space than the size of the special file. The value

 is specified in bytes or blocks, with a b suffix

 meaning multiplication by the filesystem block size,

 as described above. The overriding minimum value for

 size is 512 blocks. With some combinations of

 filesystem block size, inode size, and directory

 block size, the minimum log size is larger than 512

 blocks.

 version=value

 This specifies the version of the log. The current

 default is 2, which allows for larger log buffer

 sizes, as well as supporting stripe-aligned log

 writes (see the sunit and su options, below).

 The previous version 1, which is limited to 32k log

 buffers and does not support stripe-aligned writes,

 is kept for backwards compatibility with very old

 2.4 kernels.

 This option is only tunable on the deprecated V4

 format.

 sunit=value

 This specifies the alignment to be used for log

 writes. The value has to be specified in 512-byte

 block units. Use the su suboption to specify the log

 stripe unit size in bytes. Log writes will be

 aligned on this boundary, and rounded up to this

 boundary. This gives major improvements in perfor?

 mance on some configurations such as software RAID5 Page 15/22

 when the sunit is specified as the filesystem block

 size. The equivalent byte value must be a multiple

 of the filesystem block size. Version 2 logs are au?

 tomatically selected if the log sunit suboption is

 specified.

 The su suboption is an alternative to using sunit.

 su=value

 This is used to specify the log stripe. The value

 has to be specified in bytes, (usually using the s

 or b suffixes). This value must be a multiple of the

 filesystem block size. Version 2 logs are automati?

 cally selected if the log su suboption is specified.

 lazy-count=value

 This changes the method of logging various persis?

 tent counters in the superblock. Under metadata in?

 tensive workloads, these counters are updated and

 logged frequently enough that the superblock updates

 become a serialization point in the filesystem. The

 value can be either 0 or 1.

 With lazy-count=1, the superblock is not modified or

 logged on every change of the persistent counters.

 Instead, enough information is kept in other parts

 of the filesystem to be able to maintain the persis?

 tent counter values without needed to keep them in

 the superblock. This gives significant improvements

 in performance on some configurations. The default

 value is 1 (on) so you must specify lazy-count=0 if

 you want to disable this feature for older kernels

 which don't support it.

 This option is only tunable on the deprecated V4

 format.

 -n naming_options

 Section Name: [naming] Page 16/22

 These options specify the version and size parameters for the

 naming (directory) area of the filesystem. The valid naming_op?

 tions are:

 size=value

 The directory block size is specified with a value

 in bytes. The block size must be a power of 2 and

 cannot be less than the filesystem block size. The

 default size value for version 2 directories is 4096

 bytes (4 KiB), unless the filesystem block size is

 larger than 4096, in which case the default value is

 the filesystem block size. For version 1 directo?

 ries the block size is the same as the filesystem

 block size.

 version=value

 The naming (directory) version value can be either 2

 or 'ci', defaulting to 2 if unspecified. With ver?

 sion 2 directories, the directory block size can be

 any power of 2 size from the filesystem block size

 up to 65536.

 The version=ci option enables ASCII only case-insen?

 sitive filename lookup and version 2 directories.

 Filenames are case-preserving, that is, the names

 are stored in directories using the case they were

 created with.

 Note: Version 1 directories are not supported.

 ftype=value

 This feature allows the inode type to be stored in

 the directory structure so that the readdir(3) and

 getdents(2) do not need to look up the inode to de?

 termine the inode type.

 The value is either 0 or 1, with 1 signifying that

 filetype information will be stored in the directory

 structure. The default value is 1. Page 17/22

 When CRCs are enabled (the default), the ftype func?

 tionality is always enabled, and cannot be turned

 off.

 In other words, this option is only tunable on the

 deprecated V4 format.

 -p protofile

 If the optional -p protofile argument is given, mkfs.xfs uses

 protofile as a prototype file and takes its directions from that

 file. The blocks and inodes specifiers in the protofile are

 provided for backwards compatibility, but are otherwise unused.

 The syntax of the protofile is defined by a number of tokens

 separated by spaces or newlines. Note that the line numbers are

 not part of the syntax but are meant to help you in the follow?

 ing discussion of the file contents.

 1 /stand/diskboot

 2 4872 110

 3 d--777 3 1

 4 usr d--777 3 1

 5 sh ---755 3 1 /bin/sh

 6 ken d--755 6 1

 7 $

 8 b0 b--644 3 1 0 0

 9 c0 c--644 3 1 0 0

 10 fifo p--644 3 1

 11 slink l--644 3 1 /a/symbolic/link

 12 : This is a comment line

 13 $

 14 $

 Line 1 is a dummy string. (It was formerly the bootfilename.)

 It is present for backward compatibility; boot blocks are not

 used on SGI systems.

 Note that some string of characters must be present as the first

 line of the proto file to cause it to be parsed correctly; the Page 18/22

 value of this string is immaterial since it is ignored.

 Line 2 contains two numeric values (formerly the numbers of

 blocks and inodes). These are also merely for backward compati?

 bility: two numeric values must appear at this point for the

 proto file to be correctly parsed, but their values are immate?

 rial since they are ignored.

 The lines 3 through 11 specify the files and directories you

 want to include in this filesystem. Line 3 defines the root di?

 rectory. Other directories and files that you want in the

 filesystem are indicated by lines 4 through 6 and lines 8

 through 10. Line 11 contains symbolic link syntax.

 Notice the dollar sign ($) syntax on line 7. This syntax directs

 the mkfs.xfs command to terminate the branch of the filesystem

 it is currently on and then continue from the directory speci?

 fied by the next line, in this case line 8. It must be the last

 character on a line. The colon on line 12 introduces a comment;

 all characters up until the following newline are ignored. Note

 that this means you cannot have a file in a prototype file whose

 name contains a colon. The $ on lines 13 and 14 end the

 process, since no additional specifications follow.

 File specifications provide the following:

 * file mode

 * user ID

 * group ID

 * the file's beginning contents

 A 6-character string defines the mode for a file. The first

 character of this string defines the file type. The character

 range for this first character is -bcdpl. A file may be a regu?

 lar file, a block special file, a character special file, direc?

 tory files, named pipes (first-in, first out files), and sym?

 bolic links. The second character of the mode string is used to

 specify setuserID mode, in which case it is u. If setuserID

 mode is not specified, the second character is -. The third Page 19/22

 character of the mode string is used to specify the setgroupID

 mode, in which case it is g. If setgroupID mode is not speci?

 fied, the third character is -. The remaining characters of the

 mode string are a three digit octal number. This octal number

 defines the owner, group, and other read, write, and execute

 permissions for the file, respectively. For more information on

 file permissions, see the chmod(1) command.

 Following the mode character string are two decimal number to?

 kens that specify the user and group IDs of the file's owner.

 In a regular file, the next token specifies the pathname from

 which the contents and size of the file are copied. In a block

 or character special file, the next token are two decimal num?

 bers that specify the major and minor device numbers. When a

 file is a symbolic link, the next token specifies the contents

 of the link.

 When the file is a directory, the mkfs.xfs command creates the

 entries dot (.) and dot-dot (..) and then reads the list of

 names and file specifications in a recursive manner for all of

 the entries in the directory. A scan of the protofile is always

 terminated with the dollar ($) token.

 -q Quiet option. Normally mkfs.xfs prints the parameters of the

 filesystem to be constructed; the -q flag suppresses this.

 -r realtime_section_options

 Section Name: [realtime]

 These options specify the location, size, and other parameters

 of the real-time section of the filesystem. The valid real?

 time_section_options are:

 rtdev=device

 This is used to specify the device which should con?

 tain the real-time section of the filesystem. The

 suboption value is the name of a block device.

 extsize=value

 This is used to specify the size of the blocks in Page 20/22

 the real-time section of the filesystem. This value

 must be a multiple of the filesystem block size. The

 minimum allowed size is the filesystem block size or

 4 KiB (whichever is larger); the default size is the

 stripe width for striped volumes or 64 KiB for non-

 striped volumes; the maximum allowed size is 1 GiB.

 The real-time extent size should be carefully chosen

 to match the parameters of the physical media used.

 size=value

 This is used to specify the size of the real-time

 section. This suboption is only needed if the real-

 time section of the filesystem should occupy less

 space than the size of the partition or logical vol?

 ume containing the section.

 noalign

 This option disables stripe size detection, enforc?

 ing a realtime device with no stripe geometry.

 -s sector_size_options

 Section Name: [sector]

 This option specifies the fundamental sector size of the

 filesystem. The valid sector_size_option is:

 size=value

 The sector size is specified with a value in bytes.

 The default sector_size is 512 bytes. The minimum

 value for sector size is 512; the maximum is 32768

 (32 KiB). The sector_size must be a power of 2 size

 and cannot be made larger than the filesystem block

 size.

 -L label

 Set the filesystem label. XFS filesystem labels can be at most

 12 characters long; if label is longer than 12 characters,

 mkfs.xfs will not proceed with creating the filesystem. Refer

 to the mount(8) and xfs_admin(8) manual entries for additional Page 21/22

 information.

 -N Causes the file system parameters to be printed out without re?

 ally creating the file system.

 -K Do not attempt to discard blocks at mkfs time.

 -V Prints the version number and exits.

Configuration File Format

 The configuration file uses a basic INI format to specify sections and

 options within a section. Section and option names are case sensitive.

 Section names must not contain whitespace. Options are name-value

 pairs, ended by the first whitespace in the line. Option names cannot

 contain whitespace. Full line comments can be added by starting a line

 with a # symbol. If values contain whitespace, then it must be quoted.

 The following example configuration file sets the block size to 4096

 bytes, turns on reverse mapping btrees and sets the inode size to 2048

 bytes.

 # Example mkfs.xfs configuration file

 [block]

 size=4k

 [metadata]

 rmapbt=1

 [inode]

 size=2048

Example Of Backward Compatible Configuration Files

 An example of a configuration file that facilitates creation of Red Hat

 Enterprise Linux 8 compatible XFS filesystems while running on Red Hat

 Enterprise Linux 9 can be found at: /usr/share/xf?

 sprogs/mkfs/rhel8.0.conf

SEE ALSO

 xfs(5), mkfs(8), mount(8), xfs_info(8), xfs_admin(8).

BUGS

 With a prototype file, it is not possible to specify hard links.

 mkfs.xfs(8)

Page 22/22

