
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'membarrier.2' command

$ man membarrier.2

MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2)

NAME

 membarrier - issue memory barriers on a set of threads

SYNOPSIS

 #include <linux/membarrier.h>

 int membarrier(int cmd, unsigned int flags, int cpu_id);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The membarrier() system call helps reducing the overhead of the memory

 barrier instructions required to order memory accesses on multi-core

 systems. However, this system call is heavier than a memory barrier,

 so using it effectively is not as simple as replacing memory barriers

 with this system call, but requires understanding of the details below.

 Use of memory barriers needs to be done taking into account that a mem?

 ory barrier always needs to be either matched with its memory barrier

 counterparts, or that the architecture's memory model doesn't require

 the matching barriers.

 There are cases where one side of the matching barriers (which we will

 refer to as "fast side") is executed much more often than the other

 (which we will refer to as "slow side"). This is a prime target for

 the use of membarrier(). The key idea is to replace, for these match?

 ing barriers, the fast-side memory barriers by simple compiler barri?

 ers, for example: Page 1/9

 asm volatile ("" : : : "memory")

 and replace the slow-side memory barriers by calls to membarrier().

 This will add overhead to the slow side, and remove overhead from the

 fast side, thus resulting in an overall performance increase as long as

 the slow side is infrequent enough that the overhead of the membar?

 rier() calls does not outweigh the performance gain on the fast side.

 The cmd argument is one of the following:

 MEMBARRIER_CMD_QUERY (since Linux 4.3)

 Query the set of supported commands. The return value of the

 call is a bit mask of supported commands. MEMBARRIER_CMD_QUERY,

 which has the value 0, is not itself included in this bit mask.

 This command is always supported (on kernels where membarrier()

 is provided).

 MEMBARRIER_CMD_GLOBAL (since Linux 4.16)

 Ensure that all threads from all processes on the system pass

 through a state where all memory accesses to user-space ad?

 dresses match program order between entry to and return from the

 membarrier() system call. All threads on the system are tar?

 geted by this command.

 MEMBARRIER_CMD_GLOBAL_EXPEDITED (since Linux 4.16)

 Execute a memory barrier on all running threads of all processes

 that previously registered with MEMBARRIER_CMD_REGIS?

 TER_GLOBAL_EXPEDITED.

 Upon return from the system call, the calling thread has a guar?

 antee that all running threads have passed through a state where

 all memory accesses to user-space addresses match program order

 between entry to and return from the system call (non-running

 threads are de facto in such a state). This guarantee is pro?

 vided only for the threads of processes that previously regis?

 tered with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED.

 Given that registration is about the intent to receive the bar?

 riers, it is valid to invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED

 from a process that has not employed MEMBARRIER_CMD_REGIS? Page 2/9

 TER_GLOBAL_EXPEDITED.

 The "expedited" commands complete faster than the non-expedited

 ones; they never block, but have the downside of causing extra

 overhead.

 MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED (since Linux 4.16)

 Register the process's intent to receive MEMBAR?

 RIER_CMD_GLOBAL_EXPEDITED memory barriers.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED (since Linux 4.14)

 Execute a memory barrier on each running thread belonging to the

 same process as the calling thread.

 Upon return from the system call, the calling thread has a guar?

 antee that all its running thread siblings have passed through a

 state where all memory accesses to user-space addresses match

 program order between entry to and return from the system call

 (non-running threads are de facto in such a state). This guar?

 antee is provided only for threads in the same process as the

 calling thread.

 The "expedited" commands complete faster than the non-expedited

 ones; they never block, but have the downside of causing extra

 overhead.

 A process must register its intent to use the private expedited

 command prior to using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED (since Linux 4.14)

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EX?

 PEDITED.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE (since Linux 4.16)

 In addition to providing the memory ordering guarantees de?

 scribed in MEMBARRIER_CMD_PRIVATE_EXPEDITED, upon return from

 system call the calling thread has a guarantee that all its run?

 ning thread siblings have executed a core serializing instruc?

 tion. This guarantee is provided only for threads in the same

 process as the calling thread.

 The "expedited" commands complete faster than the non-expedited Page 3/9

 ones, they never block, but have the downside of causing extra

 overhead.

 A process must register its intent to use the private expedited

 sync core command prior to using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE (since Linux 4.16)

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EX?

 PEDITED_SYNC_CORE.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10)

 Ensure the caller thread, upon return from system call, that all

 its running thread siblings have any currently running rseq

 critical sections restarted if flags parameter is 0; if flags

 parameter is MEMBARRIER_CMD_FLAG_CPU, then this operation is

 performed only on CPU indicated by cpu_id. This guarantee is

 provided only for threads in the same process as the calling

 thread.

 RSEQ membarrier is only available in the "private expedited"

 form.

 A process must register its intent to use the private expedited

 rseq command prior to using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10)

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EX?

 PEDITED_RSEQ.

 MEMBARRIER_CMD_SHARED (since Linux 4.3)

 This is an alias for MEMBARRIER_CMD_GLOBAL that exists for

 header backward compatibility.

 The flags argument must be specified as 0 unless the command is MEMBAR?

 RIER_CMD_PRIVATE_EXPEDITED_RSEQ, in which case flags can be either 0 or

 MEMBARRIER_CMD_FLAG_CPU.

 The cpu_id argument is ignored unless flags is MEMBARRIER_CMD_FLAG_CPU,

 in which case it must specify the CPU targeted by this membarrier com?

 mand.

 All memory accesses performed in program order from each targeted

 thread are guaranteed to be ordered with respect to membarrier(). Page 4/9

 If we use the semantic barrier() to represent a compiler barrier forc?

 ing memory accesses to be performed in program order across the bar?

 rier, and smp_mb() to represent explicit memory barriers forcing full

 memory ordering across the barrier, we have the following ordering ta?

 ble for each pairing of barrier(), membarrier(), and smp_mb(). The

 pair ordering is detailed as (O: ordered, X: not ordered):

 barrier() smp_mb() membarrier()

 barrier() X X O

 smp_mb() X O O

 membarrier() O O O

RETURN VALUE

 On success, the MEMBARRIER_CMD_QUERY operation returns a bit mask of

 supported commands, and the MEMBARRIER_CMD_GLOBAL, MEMBAR?

 RIER_CMD_GLOBAL_EXPEDITED, MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED,

 MEMBARRIER_CMD_PRIVATE_EXPEDITED, MEMBARRIER_CMD_REGISTER_PRIVATE_EXPE?

 DITED, MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE, and MEMBAR?

 RIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE operations return zero.

 On error, -1 is returned, and errno is set appropriately.

 For a given command, with flags set to 0, this system call is guaran?

 teed to always return the same value until reboot. Further calls with

 the same arguments will lead to the same result. Therefore, with flags

 set to 0, error handling is required only for the first call to membar?

 rier().

ERRORS

 EINVAL cmd is invalid, or flags is nonzero, or the MEMBAR?

 RIER_CMD_GLOBAL command is disabled because the nohz_full CPU

 parameter has been set, or the MEMBARRIER_CMD_PRIVATE_EXPE?

 DITED_SYNC_CORE and MEMBARRIER_CMD_REGISTER_PRIVATE_EXPE?

 DITED_SYNC_CORE commands are not implemented by the architec?

 ture.

 ENOSYS The membarrier() system call is not implemented by this kernel.

 EPERM The current process was not registered prior to using private

 expedited commands. Page 5/9

VERSIONS

 The membarrier() system call was added in Linux 4.3.

 Before Linux 5.10, the prototype for membarrier() was:

 int membarrier(int cmd, int flags);

CONFORMING TO

 membarrier() is Linux-specific.

NOTES

 A memory barrier instruction is part of the instruction set of archi?

 tectures with weakly ordered memory models. It orders memory accesses

 prior to the barrier and after the barrier with respect to matching

 barriers on other cores. For instance, a load fence can order loads

 prior to and following that fence with respect to stores ordered by

 store fences.

 Program order is the order in which instructions are ordered in the

 program assembly code.

 Examples where membarrier() can be useful include implementations of

 Read-Copy-Update libraries and garbage collectors.

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2).

EXAMPLES

 Assuming a multithreaded application where "fast_path()" is executed

 very frequently, and where "slow_path()" is executed infrequently, the

 following code (x86) can be transformed using membarrier():

 #include <stdlib.h>

 static volatile int a, b;

 static void

 fast_path(int *read_b)

 {

 a = 1;

 asm volatile ("mfence" : : : "memory");

 *read_b = b;

 }

 static void Page 6/9

 slow_path(int *read_a)

 {

 b = 1;

 asm volatile ("mfence" : : : "memory");

 *read_a = a;

 }

 int

 main(int argc, char **argv)

 {

 int read_a, read_b;

 /*

 * Real applications would call fast_path() and slow_path()

 * from different threads. Call those from main() to keep

 * this example short.

 */

 slow_path(&read_a);

 fast_path(&read_b);

 /*

 * read_b == 0 implies read_a == 1 and

 * read_a == 0 implies read_b == 1.

 */

 if (read_b == 0 && read_a == 0)

 abort();

 exit(EXIT_SUCCESS);

 }

 The code above transformed to use membarrier() becomes:

 #define _GNU_SOURCE

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <linux/membarrier.h>

 static volatile int a, b; Page 7/9

 static int

 membarrier(int cmd, unsigned int flags, int cpu_id)

 {

 return syscall(__NR_membarrier, cmd, flags, cpu_id);

 }

 static int

 init_membarrier(void)

 {

 int ret;

 /* Check that membarrier() is supported. */

 ret = membarrier(MEMBARRIER_CMD_QUERY, 0, 0);

 if (ret < 0) {

 perror("membarrier");

 return -1;

 }

 if (!(ret & MEMBARRIER_CMD_GLOBAL)) {

 fprintf(stderr,

 "membarrier does not support MEMBARRIER_CMD_GLOBAL\n");

 return -1;

 }

 return 0;

 }

 static void

 fast_path(int *read_b)

 {

 a = 1;

 asm volatile ("" : : : "memory");

 *read_b = b;

 }

 static void

 slow_path(int *read_a)

 {

 b = 1; Page 8/9

 membarrier(MEMBARRIER_CMD_GLOBAL, 0, 0);

 *read_a = a;

 }

 int

 main(int argc, char **argv)

 {

 int read_a, read_b;

 if (init_membarrier())

 exit(EXIT_FAILURE);

 /*

 * Real applications would call fast_path() and slow_path()

 * from different threads. Call those from main() to keep

 * this example short.

 */

 slow_path(&read_a);

 fast_path(&read_b);

 /*

 * read_b == 0 implies read_a == 1 and

 * read_a == 0 implies read_b == 1.

 */

 if (read_b == 0 && read_a == 0)

 abort();

 exit(EXIT_SUCCESS);

 }

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MEMBARRIER(2)

Page 9/9

