
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'memalign.3' command

$ man memalign.3

POSIX_MEMALIGN(3) Linux Programmer's Manual POSIX_MEMALIGN(3)

NAME

 posix_memalign, aligned_alloc, memalign, valloc, pvalloc - allocate

 aligned memory

SYNOPSIS

 #include <stdlib.h>

 int posix_memalign(void **memptr, size_t alignment, size_t size);

 void *aligned_alloc(size_t alignment, size_t size);

 void *valloc(size_t size);

 #include <malloc.h>

 void *memalign(size_t alignment, size_t size);

 void *pvalloc(size_t size);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 posix_memalign(): _POSIX_C_SOURCE >= 200112L

 aligned_alloc(): _ISOC11_SOURCE

 valloc():

 Since glibc 2.12:

 (_XOPEN_SOURCE >= 500) && !(_POSIX_C_SOURCE >= 200112L)

 || /* Glibc since 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

 Before glibc 2.12:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

 (The (nonstandard) header file <malloc.h> also exposes the dec? Page 1/4

 laration of valloc(); no feature test macros are required.)

DESCRIPTION

 The function posix_memalign() allocates size bytes and places the ad?

 dress of the allocated memory in *memptr. The address of the allocated

 memory will be a multiple of alignment, which must be a power of two

 and a multiple of sizeof(void *). This address can later be success?

 fully passed to free(3). If size is 0, then the value placed in

 *memptr is either NULL or a unique pointer value.

 The obsolete function memalign() allocates size bytes and returns a

 pointer to the allocated memory. The memory address will be a multiple

 of alignment, which must be a power of two.

 The function aligned_alloc() is the same as memalign(), except for the

 added restriction that size should be a multiple of alignment.

 The obsolete function valloc() allocates size bytes and returns a

 pointer to the allocated memory. The memory address will be a multiple

 of the page size. It is equivalent to memalign(sysconf(_SC_PAGE?

 SIZE),size).

 The obsolete function pvalloc() is similar to valloc(), but rounds the

 size of the allocation up to the next multiple of the system page size.

 For all of these functions, the memory is not zeroed.

RETURN VALUE

 aligned_alloc(), memalign(), valloc(), and pvalloc() return a pointer

 to the allocated memory on success. On error, NULL is returned, and

 errno is set to indicate the cause of the error.

 posix_memalign() returns zero on success, or one of the error values

 listed in the next section on failure. The value of errno is not set.

 On Linux (and other systems), posix_memalign() does not modify memptr

 on failure. A requirement standardizing this behavior was added in

 POSIX.1-2008 TC2.

ERRORS

 EINVAL The alignment argument was not a power of two, or was not a mul?

 tiple of sizeof(void *).

 ENOMEM There was insufficient memory to fulfill the allocation request. Page 2/4

VERSIONS

 The functions memalign(), valloc(), and pvalloc() have been available

 since at least glibc 2.0.

 The function aligned_alloc() was added to glibc in version 2.16.

 The function posix_memalign() is available since glibc 2.1.91.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?aligned_alloc(), ? Thread safety ? MT-Safe ?

 ?memalign(), ? ? ?

 ?posix_memalign() ? ? ?

 ??

 ?valloc(), ? Thread safety ? MT-Unsafe init ?

 ?pvalloc() ? ? ?

 ??

CONFORMING TO

 The function valloc() appeared in 3.0BSD. It is documented as being

 obsolete in 4.3BSD, and as legacy in SUSv2. It does not appear in

 POSIX.1.

 The function pvalloc() is a GNU extension.

 The function memalign() appears in SunOS 4.1.3 but not in 4.4BSD.

 The function posix_memalign() comes from POSIX.1d and is specified in

 POSIX.1-2001 and POSIX.1-2008.

 The function aligned_alloc() is specified in the C11 standard.

 Headers

 Everybody agrees that posix_memalign() is declared in <stdlib.h>.

 On some systems memalign() is declared in <stdlib.h> instead of <mal?

 loc.h>.

 According to SUSv2, valloc() is declared in <stdlib.h>. Glibc declares

 it in <malloc.h>, and also in <stdlib.h> if suitable feature test Page 3/4

 macros are defined (see above).

NOTES

 On many systems there are alignment restrictions, for example, on buf?

 fers used for direct block device I/O. POSIX specifies the path?

 conf(path,_PC_REC_XFER_ALIGN) call that tells what alignment is needed.

 Now one can use posix_memalign() to satisfy this requirement.

 posix_memalign() verifies that alignment matches the requirements de?

 tailed above. memalign() may not check that the alignment argument is

 correct.

 POSIX requires that memory obtained from posix_memalign() can be freed

 using free(3). Some systems provide no way to reclaim memory allocated

 with memalign() or valloc() (because one can pass to free(3) only a

 pointer obtained from malloc(3), while, for example, memalign() would

 call malloc(3) and then align the obtained value). The glibc implemen?

 tation allows memory obtained from any of these functions to be re?

 claimed with free(3).

 The glibc malloc(3) always returns 8-byte aligned memory addresses, so

 these functions are needed only if you require larger alignment values.

SEE ALSO

 brk(2), getpagesize(2), free(3), malloc(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 POSIX_MEMALIGN(3)

Page 4/4

