
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'makedumpfile.8' command

$ man makedumpfile.8

MAKEDUMPFILE(8) Linux System Administrator's Manual MAKEDUMPFILE(8)

NAME

 makedumpfile - make a small dumpfile of kdump

SYNOPSIS

 makedumpfile [OPTION] [-x VMLINUX|-i VMCOREINFO] VMCORE DUMPFILE

 makedumpfile -F [OPTION] [-x VMLINUX|-i VMCOREINFO] VMCORE

 makedumpfile [OPTION] -x VMLINUX [--config FILTERCONFIGFILE] [--eppic

 EPPICMACRO] VMCORE DUMPFILE

 makedumpfile -R DUMPFILE

 makedumpfile --split [OPTION] [-x VMLINUX|-i VMCOREINFO] VMCORE DUMP?

 FILE1 DUMPFILE2 [DUMPFILE3 ..]

 makedumpfile [OPTION] [-x VMLINUX|-i VMCOREINFO] --num-threads THREAD?

 NUM VMCORE DUMPFILE

 makedumpfile --reassemble DUMPFILE1 DUMPFILE2 [DUMPFILE3 ..] DUMPFILE

 makedumpfile -g VMCOREINFO -x VMLINUX

 makedumpfile [OPTION] [--xen-syms XEN-SYMS|--xen-vmcoreinfo VMCORE?

 INFO] VMCORE DUMPFILE

 makedumpfile --dump-dmesg [--partial-dmesg] [-x VMLINUX|-i VMCOREINFO]

 VMCORE LOGFILE

 makedumpfile [OPTION] -x VMLINUX --diskset=VMCORE1 --diskset=VMCORE2

 [--diskset=VMCORE3 ..] DUMPFILE

 makedumpfile -h

 makedumpfile -v Page 1/16

DESCRIPTION

 With kdump, the memory image of the first kernel (called "panicked ker?

 nel") can be taken as /proc/vmcore while the second kernel (called

 "kdump kernel" or "capture kernel") is running. This document repre?

 sents /proc/vmcore as VMCORE. makedumpfile makes a small DUMPFILE by

 compressing dump data or by excluding unnecessary pages for analysis,

 or both. makedumpfile needs the first kernel's debug information, so

 that it can distinguish unnecessary pages by analyzing how the first

 kernel uses the memory. The information can be taken from VMLINUX or

 VMCOREINFO.

 makedumpfile can exclude the following types of pages while copying VM?

 CORE to DUMPFILE, and a user can choose which type of pages will be ex?

 cluded.

 - Pages filled with zero

 - Cache pages without private flag (non-private cache)

 - Cache pages with private flag (private cache)

 - User process data pages

 - Free pages

 makedumpfile provides two DUMPFILE formats (the ELF format and the

 kdump-compressed format). By default, makedumpfile makes a DUMPFILE in

 the kdump-compressed format. The kdump-compressed format is readable

 only with the crash utility, and it can be smaller than the ELF format

 because of the compression support. The ELF format is readable with GDB

 and the crash utility. If a user wants to use GDB, DUMPFILE format has

 to be explicitly specified to be the ELF format.

 Apart from the exclusion of unnecessary pages mentioned above, make?

 dumpfile allows user to filter out targeted kernel data. The filter

 config file can be used to specify kernel/module symbols and its mem?

 bers that need to be filtered out through the erase command syntax.

 makedumpfile reads the filter config and builds the list of memory ad?

 dresses and its sizes after processing filter commands. The memory lo?

 cations that require to be filtered out are then poisoned with charac?

 ter 'X' (58 in Hex). Refer to makedumpfile.conf(5) for file format. Page 2/16

 Eppic macros can also be used to specify kernel symbols and its members

 that need to be filtered. Eppic provides C semantics including language

 constructs such as conditional statements, logical and arithmetic oper?

 ators, functions, nested loops to traverse and erase kernel data. --ep?

 pic requires eppic_makedumpfile.so and eppic library. eppic_makedump?

 file.so can be built from makedumpfile source. Refer to

 http://code.google.com/p/eppic/ to build eppic library libeppic.a and

 for more information on writing eppic macros.

 To analyze the first kernel's memory usage, makedumpfile can refer to

 VMCOREINFO instead of VMLINUX. VMCOREINFO contains the first kernel's

 information (structure size, field offset, etc.), and VMCOREINFO is

 small enough to be included into the second kernel's initrd.

 If the second kernel is running on its initrd without mounting a root

 file system, makedumpfile cannot refer to VMLINUX because the second

 kernel's initrd cannot include a large file like VMLINUX. To solve the

 problem, makedumpfile makes VMCOREINFO beforehand, and it refers to VM?

 COREINFO instead of VMLINUX while the second kernel is running.

 VMCORE has contained VMCOREINFO since linux-2.6.24, and a user does not

 need to specify neither -x nor -i option.

 If the second kernel is running on its initrd without mounting any file

 system, a user needs to transport the dump data to a remote host. To

 transport the dump data by SSH, makedumpfile outputs the dump data in

 the intermediate format (the flattened format) to the standard output.

 By piping the output data to SSH, a user can transport the dump data to

 a remote host. Note that analysis tools (crash utility before version

 5.1.2 or GDB) cannot read the flattened format directly, so on a remote

 host the received data in the flattened format needs to be rearranged

 to a readable DUMPFILE format by makedumpfile (or makedumpfile-R.pl).

 makedumpfile can read a DUMPFILE in the kdump-compressed format instead

 of VMCORE and re-filter it. This feature is useful in situation that

 users need to reduce the file size of DUMPFILE for sending it somewhere

 by ftp/scp/etc. (If all of the page types, which are specified by a new

 dump_level, are excluded from an original DUMPFILE already, a new DUMP? Page 3/16

 FILE is the same as an original DUMPFILE.)

 For example, makedumpfile can create a DUMPFILE of dump_level 31 from

 the one of dump_level 3 like the following:

 Example:

 # makedumpfile -c -d 3 /proc/vmcore dumpfile.1

 # makedumpfile -c -d 31 dumpfile.1 dumpfile.2

 makedumpfile can read VMCORE(s) in three kinds of sadump formats: sin?

 gle partition format, diskset format and media backup format, and can

 convert each of them into kdump-compressed format with filtering and

 compression processing. Note that for VMCORE(s) created by sadump, you

 always need to pass VMLINUX with -x option. Also, to pass multiple VM?

 COREs created on diskset configuration, you need to use --diskset op?

 tion.

OPTIONS

 -c,-l,-p,-z

 Compress dump data by the page using the following compression

 library respectively:

 -c : zlib

 -l : lzo

 -p : snappy

 -z : zstd

 (-l, -p and -z option need USELZO=on, USESNAPPY=on and

 USEZSTD=on respectively when building makedumpfile)

 A user cannot specify this option with -E option, because the

 ELF format does not support compressed data.

 Example:

 # makedumpfile -c -d 31 -x vmlinux /proc/vmcore dumpfile

 -d dump_level

 Specify the type of unnecessary page for analysis.

 Pages of the specified type are not copied to DUMPFILE. The page

 type marked in the following table is excluded. A user can spec?

 ify multiple page types by setting the sum of each page type for

 dump_level. The maximum of dump_level is 31. Note that a Page 4/16

 dump_level for Xen dump filtering is 0 or 1 on a machine other

 than x86_64. On a x86_64 machine, even 2 or bigger dump level

 will be effective if you specify domain-0's vmlinux with -x op?

 tion. Then the pages are excluded only from domain-0.

 If specifying multiple dump_levels with the delimiter ',', make?

 dumpfile retries to create DUMPFILE using the next dump_level

 when the size of a dumpfile exceeds the limit specified with

 '-L' or when a "No space on device" error happens. For example,

 if dump_level is "11,31" and makedumpfile fails with dump_level

 11, makedumpfile retries with dump_level 31.

 Example:

 # makedumpfile -d 11 -x vmlinux /proc/vmcore dumpfile

 # makedumpfile -d 11,31 -x vmlinux /proc/vmcore dumpfile

 Base level:

 dump_level consists of five bits, so there are five base levels

 to specify the type of unnecessary page.

 1 : Exclude the pages filled with zero.

 2 : Exclude the non-private cache pages.

 4 : Exclude all cache pages.

 8 : Exclude the user process data pages.

 16 : Exclude the free pages.

 Here is the all combinations of the bits.

 | |non- | | |

 dump | zero |private|private| user | free

 level | page |cache |cache | data | page

 -------+------+-------+-------+------+------

 0 | | | | |

 1 | X | | | |

 2 | | X | | |

 3 | X | X | | |

 4 | | X | X | |

 5 | X | X | X | |

 6 | | X | X | | Page 5/16

 7 | X | X | X | |

 8 | | | | X |

 9 | X | | | X |

 10 | | X | | X |

 11 | X | X | | X |

 12 | | X | X | X |

 13 | X | X | X | X |

 14 | | X | X | X |

 15 | X | X | X | X |

 16 | | | | | X

 17 | X | | | | X

 18 | | X | | | X

 19 | X | X | | | X

 20 | | X | X | | X

 21 | X | X | X | | X

 22 | | X | X | | X

 23 | X | X | X | | X

 24 | | | | X | X

 25 | X | | | X | X

 26 | | X | | X | X

 27 | X | X | | X | X

 28 | | X | X | X | X

 29 | X | X | X | X | X

 30 | | X | X | X | X

 31 | X | X | X | X | X

 -L SIZE

 Limit the size of the output file to SIZE bytes. An incomplete

 DUMPFILE or LOGFILE is written if the size would otherwise ex?

 ceed SIZE.

 -E Create DUMPFILE in the ELF format.

 This option cannot be specified with the -c, -l or -p options,

 because the ELF format does not support compressed data.

 Example: Page 6/16

 # makedumpfile -E -d 31 -x vmlinux /proc/vmcore dumpfile

 -f Force existing DUMPFILE to be overwritten and mem-usage to work

 with older kernel as well.

 Example:

 # makedumpfile -f -d 31 -x vmlinux /proc/vmcore dumpfile

 This command overwrites DUMPFILE even if it already exists.

 # makedumpfile -f --mem-usage /proc/kcore

 Kernel version lesser than v4.11 will not work with --mem-usage

 functionality until it has been patched with upstream commit

 464920104bf7. Therefore if you have patched your older kernel

 then use -f.

 -x VMLINUX

 Specify the first kernel's VMLINUX with debug information to an?

 alyze the first kernel's memory usage.

 This option is necessary if VMCORE does not contain VMCOREINFO,

 [-i VMCOREINFO] is not specified, and dump_level is 2 or more.

 The page size of the first kernel and the second kernel should

 match.

 Example:

 # makedumpfile -d 31 -x vmlinux /proc/vmcore dumpfile

 -i VMCOREINFO

 Specify VMCOREINFO instead of VMLINUX for analyzing the first

 kernel's memory usage.

 VMCOREINFO should be made beforehand by makedumpfile with -g op?

 tion, and it contains the first kernel's information.

 This option is necessary if VMCORE does not contain VMCOREINFO,

 [-x VMLINUX] is not specified, and dump_level is 2 or more.

 Example:

 # makedumpfile -d 31 -i vmcoreinfo /proc/vmcore dumpfile

 -g VMCOREINFO

 Generate VMCOREINFO from the first kernel's VMLINUX with debug

 information.

 VMCOREINFO must be generated on the system that is running the Page 7/16

 first kernel. With -i option, a user can specify VMCOREINFO gen?

 erated on the other system that is running the same first ker?

 nel. [-x VMLINUX] must be specified.

 Example:

 # makedumpfile -g vmcoreinfo -x vmlinux

 --config FILTERCONFIGFILE

 Used in conjunction with -x VMLINUX option, to specify the fil?

 ter config file FILTERCONFIGFILE that contains erase commands to

 filter out desired kernel data from vmcore while creating DUMP?

 FILE. For filter command syntax please refer to makedump?

 file.conf(5).

 --eppic EPPICMACRO

 Used in conjunction with -x VMLINUX option, to specify the eppic

 macro file that contains filter rules or directory that contains

 eppic macro files to filter out desired kernel data from vmcore

 while creating DUMPFILE. When directory is specified, all the

 eppic macros in the directory are processed.

 -F Output the dump data in the flattened format to the standard

 output for transporting the dump data by SSH.

 Analysis tools (crash utility before version 5.1.2 or GDB) can?

 not read the flattened format directly. For analysis, the dump

 data in the flattened format should be rearranged to a normal

 DUMPFILE (readable with analysis tools) by -R option. By which

 option is specified with -F option, the format of the rearranged

 DUMPFILE is fixed. In other words, it is impossible to specify

 the DUMPFILE format when the dump data is rearranged with -R op?

 tion. If specifying -E option with -F option, the format of the

 rearranged DUMPFILE is the ELF format. Otherwise, it is the

 kdump-compressed format. All the messages are output to standard

 error output by -F option because standard output is used for

 the dump data.

 Example:

 # makedumpfile -F -c -d 31 -x vmlinux /proc/vmcore \ Page 8/16

 | ssh user@host "cat > dumpfile.tmp"

 # makedumpfile -F -c -d 31 -x vmlinux /proc/vmcore \

 | ssh user@host "makedumpfile -R dumpfile"

 # makedumpfile -F -E -d 31 -i vmcoreinfo /proc/vmcore \

 | ssh user@host "makedumpfile -R dumpfile"

 # makedumpfile -F -E --xen-vmcoreinfo VMCOREINFO /proc/vmcore \

 | ssh user@host "makedumpfile -R dumpfile"

 -R Rearrange the dump data in the flattened format from the stan?

 dard input to a normal DUMPFILE (readable with analysis tools).

 Example:

 # makedumpfile -R dumpfile < dumpfile.tmp

 # makedumpfile -F -d 31 -x vmlinux /proc/vmcore \

 | ssh user@host "makedumpfile -R dumpfile"

 Instead of using -R option, a perl script "makedumpfile-R.pl"

 rearranges the dump data in the flattened format to a normal

 DUMPFILE, too. The perl script does not depend on architecture,

 and most systems have perl command. Even if a remote host does

 not have makedumpfile, it is possible to rearrange the dump data

 in the flattened format to a readable DUMPFILE on a remote host

 by running this script.

 Example:

 # makedumpfile -F -d 31 -x vmlinux /proc/vmcore \

 | ssh user@host "makedumpfile-R.pl dumpfile"

 --split

 Split the dump data to multiple DUMPFILEs in parallel. If speci?

 fying DUMPFILEs on different storage devices, a device can share

 I/O load with other devices and it reduces time for saving the

 dump data. The file size of each DUMPFILE is smaller than the

 system memory size which is divided by the number of DUMPFILEs.

 This feature supports only the kdump-compressed format.

 Example:

 # makedumpfile --split -d 31 -x vmlinux /proc/vmcore dumpfile1

 dumpfile2 Page 9/16

 --num-threads THREADNUM

 Using multiple threads to read and compress data of each page in

 parallel. And it will reduces time for saving DUMPFILE. Note

 that if the usable cpu number is less than the thread number, it

 may lead to great performance degradation. This feature only

 supports creating DUMPFILE in kdump-comressed format from VMCORE

 in kdump-compressed format or elf format.

 Example:

 # makedumpfile -d 31 --num-threads 4 /proc/vmcore dumpfile

 --reassemble

 Reassemble multiple DUMPFILEs, which are created by --split op?

 tion, into one DUMPFILE. dumpfile1 and dumpfile2 are reassembled

 into dumpfile on the following example.

 Example:

 # makedumpfile --reassemble dumpfile1 dumpfile2 dumpfile

 -b <order>

 Cache 2^order pages in ram when generating DUMPFILE before writ?

 ing to output. The default value is 4.

 --cyclic-buffer buffer_size

 Specify the buffer size in kilo bytes for bitmap data. Filter?

 ing processing will be divided into multi cycles to fix the mem?

 ory consumption, the number of cycles is represented as:

 num_of_cycles = system_memory / (buffer_size * 1024 *

 bit_per_bytes * page_size)

 The lesser number of cycles, the faster working speed is ex?

 pected. By default, buffer_size will be calculated automati?

 cally depending on system memory size, so ordinary users don't

 need to specify this option.

 Example:

 # makedumpfile --cyclic-buffer 1024 -d 31 -x vmlinux /proc/vm?

 core dumpfile

 --splitblock-size splitblock_size

 Specify the splitblock size in kilo bytes for analysis with Page 10/16

 --split. If --splitblock N is specified, difference of each

 splitted dumpfile size is at most N kilo bytes.

 Example:

 # makedumpfile --splitblock-size 1024 -d 31 -x vmlinux --split

 /proc/vmcore dumpfile1 dumpfile2

 --work-dir

 Specify the working directory for the temporary bitmap file. If

 this option isn't specified, the bitmap will be saved on memory.

 Filtering processing has to do 2 pass scanning to fix the memory

 consumption, but it can be avoided by using working directory on

 file system. So if you specify this option, the filtering speed

 may be bit faster.

 Example:

 # makedumpfile --work-dir /tmp -d 31 -x vmlinux /proc/vmcore

 dumpfile

 --non-mmap

 Never use mmap(2) to read VMCORE even if it supports mmap(2).

 Generally, reading VMCORE with mmap(2) is faster than without

 it, so ordinary users don't need to specify this option. This

 option is mainly for debugging.

 Example:

 # makedumpfile --non-mmap -d 31 -x vmlinux /proc/vmcore dumpfile

 --xen-syms XEN-SYMS

 Specify the XEN-SYMS with debug information to analyze the xen's

 memory usage. This option extracts the part of xen and do?

 main-0.

 Example:

 # makedumpfile -E --xen-syms xen-syms /proc/vmcore dumpfile

 --xen-vmcoreinfo VMCOREINFO

 Specify VMCOREINFO instead of XEN-SYMS for analyzing the xen's

 memory usage.

 VMCOREINFO should be made beforehand by makedumpfile with -g op?

 tion, and it contains the xen's information. Page 11/16

 Example:

 # makedumpfile -E --xen-vmcoreinfo VMCOREINFO /proc/vmcore dump?

 file

 -X Exclude all the user domain pages from Xen kdump's VMCORE, and

 extracts the part of xen and domain-0. If VMCORE contains VMCOR?

 EINFO for Xen, it is not necessary to specify --xen-syms and

 --xen-vmcoreinfo.

 Example:

 # makedumpfile -E -X /proc/vmcore dumpfile

 --xen_phys_start xen_phys_start_address

 This option is only for x86_64. Specify the xen_phys_start_ad?

 dress, if the xen code/data is relocatable and VMCORE does not

 contain xen_phys_start_address in the CRASHINFO.

 xen_phys_start_address can be taken from the line of "Hypervisor

 code and data" in /proc/iomem. For example, specify 0xcee00000

 as xen_phys_start_address if /proc/iomem is the following:

 # cat /proc/iomem

 ...

 cee00000-cfd99999 : Hypervisor code and data

 ...

 Example:

 # makedumpfile -E -X --xen_phys_start 0xcee00000 /proc/vmcore

 dumpfile

 --message-level message_level

 Specify the message types.

 Users can restrict outputs printed by specifying message_level

 with this option. The message type marked with an X in the fol?

 lowing table is printed. For example, according to the table,

 specifying 7 as message_level means progress indicator, common

 message, and error message are printed, and this is a default

 value. Note that the maximum value of message_level is 31. Page 12/16

 message | progress | common | error | debug | report

 level | indicator| message | message | message | message

 ---------+----------+---------+---------+---------+---------

 0 | | | | |

 1 | X | | | |

 2 | | X | | |

 3 | X | X | | |

 4 | | | X | |

 5 | X | | X | |

 6 | | X | X | |

 * 7 | X | X | X | |

 8 | | | | X |

 9 | X | | | X |

 10 | | X | | X |

 11 | X | X | | X |

 12 | | | X | X |

 13 | X | | X | X |

 14 | | X | X | X |

 15 | X | X | X | X |

 16 | | | | | X

 17 | X | | | | X

 18 | | X | | | X

 19 | X | X | | | X

 20 | | | X | | X

 21 | X | | X | | X

 22 | | X | X | | X

 23 | X | X | X | | X

 24 | | | | X | X

 25 | X | | | X | X

 26 | | X | | X | X

 27 | X | X | | X | X

 28 | | | X | X | X

 29 | X | | X | X | X Page 13/16

 30 | | X | X | X | X

 31 | X | X | X | X | X

 --vtop virtual_address

 This option is useful, when user debugs the translation problem

 of virtual address. If specifing virtual_address, its physical

 address is printed. It makes debugging easy by comparing the

 output of this option with the one of "vtop" subcommand of the

 crash utility. "--vtop" option only prints the translation out?

 put, and it does not affect the dumpfile creation.

 --dump-dmesg

 This option overrides the normal behavior of makedumpfile. In?

 stead of compressing and filtering a VMCORE to make it smaller,

 it simply extracts the dmesg log from a VMCORE and writes it to

 the specified LOGFILE. If a VMCORE does not contain VMCOREINFO

 for dmesg, it is necessary to specfiy [-x VMLINUX] or [-i VMCOR?

 EINFO].

 Example:

 # makedumpfile --dump-dmesg /proc/vmcore dmesgfile

 # makedumpfile --dump-dmesg -x vmlinux /proc/vmcore dmesgfile

 --partial-dmesg

 This option will make --dump-dmesg extract only dmesg logs since

 that buffer was last cleared on the crashed kernel, through

 "dmesg --clear" for example.

 --mem-usage

 This option is currently supported on x86_64, arm64, ppc64 and

 s390x. This option is used to show the page numbers of current

 system in different use. It should be executed in 1st kernel. By

 the help of this, user can know how many pages is dumpable when

 different dump_level is specified. It analyzes the 'System Ram'

 and 'kernel text' program segment of /proc/kcore excluding the

 crashkernel range, then calculates the page number of different

 kind per vmcoreinfo. So currently /proc/kcore need be specified

 explicitly. Page 14/16

 Example:

 # makedumpfile --mem-usage /proc/kcore

 --diskset=VMCORE

 Specify multiple VMCOREs created on sadump diskset configuration

 the same number of times as the number of VMCOREs in increasing

 order from left to right. VMCOREs are assembled into a single

 DUMPFILE.

 Example:

 # makedumpfile -x vmlinux --diskset=vmcore1 --diskset=vmcore2

 dumpfile

 -D Print debugging message.

 -h (--help)

 Show help message and LZO/snappy support status (enabled/dis?

 abled).

 -v Show the version of makedumpfile.

 --check-params

 Only check whether the command-line parameters are valid or not,

 and exit. Preferable to be given as the first parameter.

 --dry-run

 Do not write the output dump file while still performing opera?

 tions specified by other options. This option cannot be used

 with the --dump-dmesg, --reassemble and -g options.

 --show-stats

 Display report messages. This is an alternative to enabling bit

 4 in the level provided to --message-level.

ENVIRONMENT VARIABLES

 TMPDIR This environment variable is used in 1st kernel environment for

 a temporary memory bitmap file. If your machine has a lots of

 memory and you use small tmpfs on /tmp, makedumpfile can fail

 for a little memory because makedumpfile makes a very large

 temporary memory bitmap file in this case. To avoid this fail?

 ure, you should specify --work-dir option to use file system on

 storage for the bitmap file. Page 15/16

DIAGNOSTICS

 makedumpfile exits with the following value.

 0 : makedumpfile succeeded.

 1 : makedumpfile failed without the following reasons.

 2 : makedumpfile failed due to the different version between VMLINUX

 and VMCORE.

AUTHORS

 Written by Masaki Tachibana, and Ken'ichi Ohmichi.

SEE ALSO

 crash(8), gdb(1), kexec(8), makedumpfile.conf(5)

makedumpfile v1.7.2 20 Oct 2022 MAKEDUMPFILE(8)

Page 16/16

