
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'madvise.2' command

$ man madvise.2

MADVISE(2) Linux Programmer's Manual MADVISE(2)

NAME

 madvise - give advice about use of memory

SYNOPSIS

 #include <sys/mman.h>

 int madvise(void *addr, size_t length, int advice);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 madvise():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Up to and including glibc 2.19:

 _BSD_SOURCE

DESCRIPTION

 The madvise() system call is used to give advice or directions to the

 kernel about the address range beginning at address addr and with size

 length bytes In most cases, the goal of such advice is to improve sys?

 tem or application performance.

 Initially, the system call supported a set of "conventional" advice

 values, which are also available on several other implementations.

 (Note, though, that madvise() is not specified in POSIX.) Subse?

 quently, a number of Linux-specific advice values have been added.

 Conventional advice values

 The advice values listed below allow an application to tell the kernel Page 1/9

 how it expects to use some mapped or shared memory areas, so that the

 kernel can choose appropriate read-ahead and caching techniques. These

 advice values do not influence the semantics of the application (except

 in the case of MADV_DONTNEED), but may influence its performance. All

 of the advice values listed here have analogs in the POSIX-specified

 posix_madvise(3) function, and the values have the same meanings, with

 the exception of MADV_DONTNEED.

 The advice is indicated in the advice argument, which is one of the

 following:

 MADV_NORMAL

 No special treatment. This is the default.

 MADV_RANDOM

 Expect page references in random order. (Hence, read ahead may

 be less useful than normally.)

 MADV_SEQUENTIAL

 Expect page references in sequential order. (Hence, pages in

 the given range can be aggressively read ahead, and may be freed

 soon after they are accessed.)

 MADV_WILLNEED

 Expect access in the near future. (Hence, it might be a good

 idea to read some pages ahead.)

 MADV_DONTNEED

 Do not expect access in the near future. (For the time being,

 the application is finished with the given range, so the kernel

 can free resources associated with it.)

 After a successful MADV_DONTNEED operation, the semantics of

 memory access in the specified region are changed: subsequent

 accesses of pages in the range will succeed, but will result in

 either repopulating the memory contents from the up-to-date con?

 tents of the underlying mapped file (for shared file mappings,

 shared anonymous mappings, and shmem-based techniques such as

 System V shared memory segments) or zero-fill-on-demand pages

 for anonymous private mappings. Page 2/9

 Note that, when applied to shared mappings, MADV_DONTNEED might

 not lead to immediate freeing of the pages in the range. The

 kernel is free to delay freeing the pages until an appropriate

 moment. The resident set size (RSS) of the calling process will

 be immediately reduced however.

 MADV_DONTNEED cannot be applied to locked pages, Huge TLB pages,

 or VM_PFNMAP pages. (Pages marked with the kernel-internal

 VM_PFNMAP flag are special memory areas that are not managed by

 the virtual memory subsystem. Such pages are typically created

 by device drivers that map the pages into user space.)

 Linux-specific advice values

 The following Linux-specific advice values have no counterparts in the

 POSIX-specified posix_madvise(3), and may or may not have counterparts

 in the madvise() interface available on other implementations. Note

 that some of these operations change the semantics of memory accesses.

 MADV_REMOVE (since Linux 2.6.16)

 Free up a given range of pages and its associated backing store.

 This is equivalent to punching a hole in the corresponding byte

 range of the backing store (see fallocate(2)). Subsequent ac?

 cesses in the specified address range will see bytes containing

 zero.

 The specified address range must be mapped shared and writable.

 This flag cannot be applied to locked pages, Huge TLB pages, or

 VM_PFNMAP pages.

 In the initial implementation, only tmpfs(5) was supported

 MADV_REMOVE; but since Linux 3.5, any filesystem which supports

 the fallocate(2) FALLOC_FL_PUNCH_HOLE mode also supports

 MADV_REMOVE. Hugetlbfs fails with the error EINVAL and other

 filesystems fail with the error EOPNOTSUPP.

 MADV_DONTFORK (since Linux 2.6.16)

 Do not make the pages in this range available to the child after

 a fork(2). This is useful to prevent copy-on-write semantics

 from changing the physical location of a page if the parent Page 3/9

 writes to it after a fork(2). (Such page relocations cause

 problems for hardware that DMAs into the page.)

 MADV_DOFORK (since Linux 2.6.16)

 Undo the effect of MADV_DONTFORK, restoring the default behav?

 ior, whereby a mapping is inherited across fork(2).

 MADV_HWPOISON (since Linux 2.6.32)

 Poison the pages in the range specified by addr and length and

 handle subsequent references to those pages like a hardware mem?

 ory corruption. This operation is available only for privileged

 (CAP_SYS_ADMIN) processes. This operation may result in the

 calling process receiving a SIGBUS and the page being unmapped.

 This feature is intended for testing of memory error-handling

 code; it is available only if the kernel was configured with

 CONFIG_MEMORY_FAILURE.

 MADV_MERGEABLE (since Linux 2.6.32)

 Enable Kernel Samepage Merging (KSM) for the pages in the range

 specified by addr and length. The kernel regularly scans those

 areas of user memory that have been marked as mergeable, looking

 for pages with identical content. These are replaced by a sin?

 gle write-protected page (which is automatically copied if a

 process later wants to update the content of the page). KSM

 merges only private anonymous pages (see mmap(2)).

 The KSM feature is intended for applications that generate many

 instances of the same data (e.g., virtualization systems such as

 KVM). It can consume a lot of processing power; use with care.

 See the Linux kernel source file Documentation/admin-

 guide/mm/ksm.rst for more details.

 The MADV_MERGEABLE and MADV_UNMERGEABLE operations are available

 only if the kernel was configured with CONFIG_KSM.

 MADV_UNMERGEABLE (since Linux 2.6.32)

 Undo the effect of an earlier MADV_MERGEABLE operation on the

 specified address range; KSM unmerges whatever pages it had

 merged in the address range specified by addr and length. Page 4/9

 MADV_SOFT_OFFLINE (since Linux 2.6.33)

 Soft offline the pages in the range specified by addr and

 length. The memory of each page in the specified range is pre?

 served (i.e., when next accessed, the same content will be visi?

 ble, but in a new physical page frame), and the original page is

 offlined (i.e., no longer used, and taken out of normal memory

 management). The effect of the MADV_SOFT_OFFLINE operation is

 invisible to (i.e., does not change the semantics of) the call?

 ing process.

 This feature is intended for testing of memory error-handling

 code; it is available only if the kernel was configured with

 CONFIG_MEMORY_FAILURE.

 MADV_HUGEPAGE (since Linux 2.6.38)

 Enable Transparent Huge Pages (THP) for pages in the range spec?

 ified by addr and length. Currently, Transparent Huge Pages

 work only with private anonymous pages (see mmap(2)). The ker?

 nel will regularly scan the areas marked as huge page candidates

 to replace them with huge pages. The kernel will also allocate

 huge pages directly when the region is naturally aligned to the

 huge page size (see posix_memalign(2)).

 This feature is primarily aimed at applications that use large

 mappings of data and access large regions of that memory at a

 time (e.g., virtualization systems such as QEMU). It can very

 easily waste memory (e.g., a 2 MB mapping that only ever ac?

 cesses 1 byte will result in 2 MB of wired memory instead of one

 4 KB page). See the Linux kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst for more details.

 Most common kernels configurations provide MADV_HUGEPAGE-style

 behavior by default, and thus MADV_HUGEPAGE is normally not nec?

 essary. It is mostly intended for embedded systems, where

 MADV_HUGEPAGE-style behavior may not be enabled by default in

 the kernel. On such systems, this flag can be used in order to

 selectively enable THP. Whenever MADV_HUGEPAGE is used, it Page 5/9

 should always be in regions of memory with an access pattern

 that the developer knows in advance won't risk to increase the

 memory footprint of the application when transparent hugepages

 are enabled.

 The MADV_HUGEPAGE and MADV_NOHUGEPAGE operations are available

 only if the kernel was configured with CONFIG_TRANSPAR?

 ENT_HUGEPAGE.

 MADV_NOHUGEPAGE (since Linux 2.6.38)

 Ensures that memory in the address range specified by addr and

 length will not be backed by transparent hugepages.

 MADV_DONTDUMP (since Linux 3.4)

 Exclude from a core dump those pages in the range specified by

 addr and length. This is useful in applications that have large

 areas of memory that are known not to be useful in a core dump.

 The effect of MADV_DONTDUMP takes precedence over the bit mask

 that is set via the /proc/[pid]/coredump_filter file (see

 core(5)).

 MADV_DODUMP (since Linux 3.4)

 Undo the effect of an earlier MADV_DONTDUMP.

 MADV_FREE (since Linux 4.5)

 The application no longer requires the pages in the range speci?

 fied by addr and len. The kernel can thus free these pages, but

 the freeing could be delayed until memory pressure occurs. For

 each of the pages that has been marked to be freed but has not

 yet been freed, the free operation will be canceled if the

 caller writes into the page. After a successful MADV_FREE oper?

 ation, any stale data (i.e., dirty, unwritten pages) will be

 lost when the kernel frees the pages. However, subsequent

 writes to pages in the range will succeed and then kernel cannot

 free those dirtied pages, so that the caller can always see just

 written data. If there is no subsequent write, the kernel can

 free the pages at any time. Once pages in the range have been

 freed, the caller will see zero-fill-on-demand pages upon subse? Page 6/9

 quent page references.

 The MADV_FREE operation can be applied only to private anonymous

 pages (see mmap(2)). In Linux before version 4.12, when freeing

 pages on a swapless system, the pages in the given range are

 freed instantly, regardless of memory pressure.

 MADV_WIPEONFORK (since Linux 4.14)

 Present the child process with zero-filled memory in this range

 after a fork(2). This is useful in forking servers in order to

 ensure that sensitive per-process data (for example, PRNG seeds,

 cryptographic secrets, and so on) is not handed to child pro?

 cesses.

 The MADV_WIPEONFORK operation can be applied only to private

 anonymous pages (see mmap(2)).

 Within the child created by fork(2), the MADV_WIPEONFORK setting

 remains in place on the specified address range. This setting

 is cleared during execve(2).

 MADV_KEEPONFORK (since Linux 4.14)

 Undo the effect of an earlier MADV_WIPEONFORK.

RETURN VALUE

 On success, madvise() returns zero. On error, it returns -1 and errno

 is set appropriately.

ERRORS

 EACCES advice is MADV_REMOVE, but the specified address range is not a

 shared writable mapping.

 EAGAIN A kernel resource was temporarily unavailable.

 EBADF The map exists, but the area maps something that isn't a file.

 EINVAL addr is not page-aligned or length is negative.

 EINVAL advice is not a valid.

 EINVAL advice is MADV_DONTNEED or MADV_REMOVE and the specified address

 range includes locked, Huge TLB pages, or VM_PFNMAP pages.

 EINVAL advice is MADV_MERGEABLE or MADV_UNMERGEABLE, but the kernel was

 not configured with CONFIG_KSM.

 EINVAL advice is MADV_FREE or MADV_WIPEONFORK but the specified address Page 7/9

 range includes file, Huge TLB, MAP_SHARED, or VM_PFNMAP ranges.

 EIO (for MADV_WILLNEED) Paging in this area would exceed the

 process's maximum resident set size.

 ENOMEM (for MADV_WILLNEED) Not enough memory: paging in failed.

 ENOMEM Addresses in the specified range are not currently mapped, or

 are outside the address space of the process.

 EPERM advice is MADV_HWPOISON, but the caller does not have the

 CAP_SYS_ADMIN capability.

VERSIONS

 Since Linux 3.18, support for this system call is optional, depending

 on the setting of the CONFIG_ADVISE_SYSCALLS configuration option.

CONFORMING TO

 madvise() is not specified by any standards. Versions of this system

 call, implementing a wide variety of advice values, exist on many other

 implementations. Other implementations typically implement at least

 the flags listed above under Conventional advice flags, albeit with

 some variation in semantics.

 POSIX.1-2001 describes posix_madvise(3) with constants POSIX_MADV_NOR?

 MAL, POSIX_MADV_RANDOM, POSIX_MADV_SEQUENTIAL, POSIX_MADV_WILLNEED, and

 POSIX_MADV_DONTNEED, and so on, with behavior close to the similarly

 named flags listed above.

NOTES

 Linux notes

 The Linux implementation requires that the address addr be page-

 aligned, and allows length to be zero. If there are some parts of the

 specified address range that are not mapped, the Linux version of mad?

 vise() ignores them and applies the call to the rest (but returns

 ENOMEM from the system call, as it should).

SEE ALSO

 getrlimit(2), mincore(2), mmap(2), mprotect(2), msync(2), munmap(2),

 prctl(2), posix_madvise(3), core(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 8/9

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 MADVISE(2)

Page 9/9

