
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'lvmraid.7' command

$ man lvmraid.7

LVMRAID(7)                                                          LVMRAID(7)

NAME

       lvmraid ? LVM RAID

DESCRIPTION

       lvm(8) RAID is a way to create a Logical Volume (LV) that uses multiple

       physical devices to improve performance or  tolerate  device  failures.

       In  LVM,  the  physical  devices are Physical Volumes (PVs) in a single

       Volume Group (VG).

       How LV data blocks are placed onto PVs is determined by the RAID level.

       RAID  levels  are  commonly referred to as 'raid' followed by a number,

       e.g.  raid1, raid5 or raid6.  Selecting a RAID  level  involves  making

       tradeoffs  among:  physical  device  requirements, fault tolerance, and

       performance.  A description of the RAID levels can be found at

       www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf

       LVM RAID uses both Device Mapper (DM) and Multiple Device (MD)  drivers

       from the Linux kernel.  DM is used to create and manage visible LVM de?

       vices, and MD is used to place data on physical devices.

       LVM creates hidden LVs (dm devices) layered between the visible LV  and

       physical  devices.   LVs  in the middle layers are called sub LVs.  For

       LVM raid, a sub LV pair to store data and metadata (raid superblock and

       write intent bitmap) is created per raid image/leg (see lvs command ex?

       amples below).

USAGE Page 1/37



       To create a RAID LV, use lvcreate and specify an LV type.  The LV  type

       corresponds  to  a  RAID level.  The basic RAID levels that can be used

       are: raid0, raid1, raid4, raid5, raid6, raid10.

       lvcreate --type RaidLevel [OPTIONS] --name Name --size Size VG [PVs]

       To display the LV type of an existing LV, run:

       lvs -o name,segtype LV

       (The LV type is also referred to as "segment type" or "segtype".)

       LVs can be created with the following types:

   raid0

       Also called striping, raid0 spreads LV data across multiple devices  in

       units  of  stripe size.  This is used to increase performance.  LV data

       will be lost if any of the devices fail.

       lvcreate --type raid0 [--stripes Number --stripesize Size] VG [PVs]

       --stripes Number

              specifies the Number of devices to spread the LV across.

       --stripesize Size

              specifies the Size of each stripe in  kilobytes.   This  is  the

              amount  of  data  that is written to one device before moving to

              the next.

       PVs specifies the devices to use.  If not specified,  lvm  will  choose

       Number  devices,  one for each stripe based on the number of PVs avail?

       able or supplied.

   raid1

       Also called mirroring, raid1 uses  multiple  devices  to  duplicate  LV

       data.   The  LV  data  remains  available if all but one of the devices

       fail.  The minimum number of devices (i.e. sub LV pairs) required is 2.

       lvcreate --type raid1 [--mirrors Number] VG [PVs]

       --mirrors Number

              specifies the Number of mirror images in addition to the  origi?

              nal LV image, e.g. --mirrors 1 means there are two images of the

              data, the original and one mirror image.

       PVs specifies the devices to use.  If not specified,  lvm  will  choose

       Number devices, one for each image. Page 2/37



   raid4

       raid4  is a form of striping that uses an extra, first device dedicated

       to storing parity blocks.  The LV data remains available if one  device

       fails.  The parity is used to recalculate data that is lost from a sin?

       gle device.  The minimum number of devices required is 3.

       lvcreate --type raid4 [--stripes Number --stripesize Size] VG [PVs]

       --stripes Number

              specifies the Number of devices to use for LV data.   This  does

              not include the extra device lvm adds for storing parity blocks.

              A raid4 LV with Number stripes requires Number+1 devices.   Num?

              ber must be 2 or more.

       --stripesize Size

              specifies  the  Size  of  each stripe in kilobytes.  This is the

              amount of data that is written to one device  before  moving  to

              the next.

       PVs  specifies  the  devices to use.  If not specified, lvm will choose

       Number+1 separate devices.

       raid4 is called non-rotating parity because the parity blocks  are  al?

       ways stored on the same device.

   raid5

       raid5  is a form of striping that uses an extra device for storing par?

       ity blocks.  LV data and parity blocks are stored on each device, typi?

       cally  in  a rotating pattern for performance reasons.  The LV data re?

       mains available if one device fails.  The parity is used to recalculate

       data  that is lost from a single device.  The minimum number of devices

       required is 3 (unless converting from 2 legged raid1 to reshape to more

       stripes; see reshaping).

       lvcreate --type raid5 [--stripes Number --stripesize Size] VG [PVs]

       --stripes Number

              specifies  the  Number of devices to use for LV data.  This does

              not include the extra device lvm adds for storing parity blocks.

              A  raid5 LV with Number stripes requires Number+1 devices.  Num?

              ber must be 2 or more. Page 3/37



       --stripesize Size

              specifies the Size of each stripe in  kilobytes.   This  is  the

              amount  of  data  that is written to one device before moving to

              the next.

       PVs specifies the devices to use.  If not specified,  lvm  will  choose

       Number+1 separate devices.

       raid5 is called rotating parity because the parity blocks are placed on

       different devices in a round-robin sequence.  There are  variations  of

       raid5 with different algorithms for placing the parity blocks.  The de?

       fault variant is raid5_ls (raid5 left symmetric, which  is  a  rotating

       parity 0 with data restart.)  See RAID5 VARIANTS below.

   raid6

       raid6  is a form of striping like raid5, but uses two extra devices for

       parity blocks.  LV data and parity blocks are stored  on  each  device,

       typically  in  a rotating pattern for performance reasons.  The LV data

       remains available if up to two devices fail.  The parity is used to re?

       calculate  data that is lost from one or two devices.  The minimum num?

       ber of devices required is 5.

       lvcreate --type raid6 [--stripes Number --stripesize Size] VG [PVs]

       --stripes Number

              specifies the Number of devices to use for LV data.   This  does

              not  include  the  extra two devices lvm adds for storing parity

              blocks.  A raid6 LV with Number stripes  requires  Number+2  de?

              vices.  Number must be 3 or more.

       --stripesize Size

              specifies  the  Size  of  each stripe in kilobytes.  This is the

              amount of data that is written to one device  before  moving  to

              the next.

       PVs  specifies  the  devices to use.  If not specified, lvm will choose

       Number+2 separate devices.

       Like raid5, there are variations of raid6 with different algorithms for

       placing the parity blocks.  The default variant is raid6_zr (raid6 zero

       restart, aka left symmetric, which is a rotating  parity  0  with  data Page 4/37



       restart.)  See RAID6 VARIANTS below.

   raid10

       raid10  is  a combination of raid1 and raid0, striping data across mir?

       rored devices.  LV data remains available if one or  more  devices  re?

       mains in each mirror set.  The minimum number of devices required is 4.

       lvcreate --type raid10

              [--mirrors NumberMirrors]

              [--stripes NumberStripes --stripesize Size]

              VG [PVs]

       --mirrors NumberMirrors

              specifies  the number of mirror images within each stripe.  e.g.

              --mirrors 1 means there are two images of the data, the original

              and one mirror image.

       --stripes NumberStripes

              specifies the total number of devices to use in all raid1 images

              (not the number of raid1 devices to spread the LV  across,  even

              though  that is the effective result).  The number of devices in

              each raid1 mirror will be NumberStripes/(NumberMirrors+1),  e.g.

              mirrors  1  and stripes 4 will stripe data across two raid1 mir?

              rors, where each mirror is devices.

       --stripesize Size

              specifies the Size of each stripe in  kilobytes.   This  is  the

              amount  of  data  that is written to one device before moving to

              the next.

       PVs specifies the devices to use.  If not specified,  lvm  will  choose

       the necessary devices.  Devices are used to create mirrors in the order

       listed, e.g. for mirrors 1, stripes 2, listing PV1 PV2 PV3 PV4  results

       in mirrors PV1/PV2 and PV3/PV4.

       RAID10 is not mirroring on top of stripes, which would be RAID01, which

       is less tolerant of device failures.

   Configuration Options

       There are a number of options in the LVM configuration file that affect

       the behavior of RAID LVs.  The tunable options are listed below.  A de? Page 5/37



       tailed description of each can be found in the LVM  configuration  file

       itself.

              mirror_segtype_default

              raid10_segtype_default

              raid_region_size

              raid_fault_policy

              activation_mode

   Monitoring

       When a RAID LV is activated the dmeventd(8) process is started to moni?

       tor the health of the LV.  Various events detected in  the  kernel  can

       cause  a  notification  to be sent from device-mapper to the monitoring

       process, including device failures and synchronization completion (e.g.

       for initialization or scrubbing).

       The  LVM  configuration file contains options that affect how the moni?

       toring process will respond to failure events (e.g. raid_fault_policy).

       It  is  possible to turn on and off monitoring with lvchange, but it is

       not recommended to turn this off unless you have a  thorough  knowledge

       of the consequences.

   Synchronization

       Synchronization  is the process that makes all the devices in a RAID LV

       consistent with each other.

       In a RAID1 LV, all mirror images should have the same data.  When a new

       mirror  image  is added, or a mirror image is missing data, then images

       need to be synchronized.  Data blocks are copied from an existing image

       to a new or outdated image to make them match.

       In a RAID 4/5/6 LV, parity blocks and data blocks should match based on

       the parity calculation.  When the devices in a RAID LV change, the data

       and  parity blocks can become inconsistent and need to be synchronized.

       Correct blocks are read, parity is calculated, and recalculated  blocks

       are written.

       The  RAID  implementation  keeps  track of which parts of a RAID LV are

       synchronized.  When a RAID LV is first created and activated the  first

       synchronization is called initialization.  A pointer stored in the raid Page 6/37



       metadata keeps track of the initialization process thus allowing it  to

       be restarted after a deactivation of the RaidLV or a crash.  Any writes

       to the RaidLV dirties the respective region of the write intent  bitmap

       which  allow  for  fast recovery of the regions after a crash.  Without

       this, the entire LV would need to be synchronized every time it was ac?

       tivated.

       Automatic  synchronization  happens when a RAID LV is activated, but it

       is usually partial because  the  bitmaps  reduce  the  areas  that  are

       checked.  A full sync becomes necessary when devices in the RAID LV are

       replaced.

       The synchronization status of a RAID LV is reported  by  the  following

       command, where "Cpy%Sync" = "100%" means sync is complete:

       lvs -a -o name,sync_percent

   Scrubbing

       Scrubbing is a full scan of the RAID LV requested by a user.  Scrubbing

       can find problems that are missed by partial synchronization.

       Scrubbing assumes that RAID metadata and bitmaps may be inaccurate,  so

       it  verifies  all RAID metadata, LV data, and parity blocks.  Scrubbing

       can find inconsistencies caused  by  hardware  errors  or  degradation.

       These  kinds of problems may be undetected by automatic synchronization

       which excludes areas outside of the RAID write-intent bitmap.

       The command to scrub a RAID LV can operate in two different modes:

       lvchange --syncaction check|repair LV

       check  Check mode is read-only and only detects inconsistent  areas  in

              the RAID LV, it does not correct them.

       repair Repair  mode  checks  and writes corrected blocks to synchronize

              any inconsistent areas.

       Scrubbing can consume a lot of bandwidth and slow down application  I/O

       on the RAID LV.  To control the I/O rate used for scrubbing, use:

       --maxrecoveryrate Size[k|UNIT]

              Sets the maximum recovery rate for a RAID LV.  Size is specified

              as an amount per second for each device in  the  array.   If  no

              suffix  is  given, then KiB/sec/device is used.  Setting the re? Page 7/37



              covery rate to 0 means it will be unbounded.

       --minrecoveryrate Size[k|UNIT]

              Sets the minimum recovery rate for a RAID LV.  Size is specified

              as  an  amount  per  second for each device in the array.  If no

              suffix is given, then KiB/sec/device is used.  Setting  the  re?

              covery rate to 0 means it will be unbounded.

       To  display  the  current scrubbing in progress on an LV, including the

       syncaction mode and percent complete, run:

       lvs -a -o name,raid_sync_action,sync_percent

       After scrubbing is complete, to  display  the  number  of  inconsistent

       blocks found, run:

       lvs -o name,raid_mismatch_count

       Also,  if  mismatches  were  found, the lvs attr field will display the

       letter "m" (mismatch) in the 9th position, e.g.

       # lvs -o name,vgname,segtype,attr vg/lv

         LV VG   Type  Attr

         lv vg   raid1 Rwi-a-r-m-

   Scrubbing Limitations

       The check mode can only report the number of  inconsistent  blocks,  it

       cannot  report which blocks are inconsistent.  This makes it impossible

       to know which device has errors, or if the errors  affect  file  system

       data, metadata or nothing at all.

       The  repair  mode can make the RAID LV data consistent, but it does not

       know which data is correct.  The result may be consistent but incorrect

       data.   When  two  different blocks of data must be made consistent, it

       chooses the block from the device that would be used during  RAID  ini?

       tialization.   However,  if  the  PV  holding  corrupt  data  is known,

       lvchange --rebuild can be used in place of scrubbing to reconstruct the

       data on the bad device.

       Future developments might include:

       Allowing a user to choose the correct version of data during repair.

       Using a majority of devices to determine the correct version of data to

       use in a 3-way RAID1 or RAID6 LV. Page 8/37



       Using a checksumming device to pin-point when and where  an  error  oc?

       curs, allowing it to be rewritten.

   SubLVs

       An  LV  is  often a combination of other hidden LVs called SubLVs.  The

       SubLVs either use physical devices, or  are  built  from  other  SubLVs

       themselves.   SubLVs  hold LV data blocks, RAID parity blocks, and RAID

       metadata.  SubLVs are generally hidden, so the lvs  -a  option  is  re?

       quired to display them:

       lvs -a -o name,segtype,devices

       SubLV  names begin with the visible LV name, and have an automatic suf?

       fix indicating its role:

            ? SubLVs holding LV data or parity blocks have  the  suffix  _rim?

              age_#.

              These SubLVs are sometimes referred to as DataLVs.

            ? SubLVs  holding  RAID  metadata  have the suffix _rmeta_#.  RAID

              metadata includes superblock information, RAID type, bitmap, and

              device health information.

              These SubLVs are sometimes referred to as MetaLVs.

       SubLVs  are an internal implementation detail of LVM.  The way they are

       used, constructed and named may change.

       The following examples show the SubLV arrangement for each of the basic

       RAID LV types, using the fewest number of devices allowed for each.

       Examples

       raid0

       Each  rimage  SubLV holds a portion of LV data.  No parity is used.  No

       RAID metadata is used.

       # lvcreate --type raid0 --stripes 2 --name lvr0 ...

       # lvs -a -o name,segtype,devices

         lvr0            raid0  lvr0_rimage_0(0),lvr0_rimage_1(0)

         [lvr0_rimage_0] linear /dev/sda(...)

         [lvr0_rimage_1] linear /dev/sdb(...)

       raid1

       Each rimage SubLV holds a complete copy of LV data.  No parity is used. Page 9/37



       Each rmeta SubLV holds RAID metadata.

       # lvcreate --type raid1 --mirrors 1 --name lvr1 ...

       # lvs -a -o name,segtype,devices

         lvr1            raid1  lvr1_rimage_0(0),lvr1_rimage_1(0)

         [lvr1_rimage_0] linear /dev/sda(...)

         [lvr1_rimage_1] linear /dev/sdb(...)

         [lvr1_rmeta_0]  linear /dev/sda(...)

         [lvr1_rmeta_1]  linear /dev/sdb(...)

       raid4

       At  least  three  rimage  SubLVs each hold a portion of LV data and one

       rimage SubLV holds parity.  Each rmeta SubLV holds RAID metadata.

       # lvcreate --type raid4 --stripes 2 --name lvr4 ...

       # lvs -a -o name,segtype,devices

         lvr4            raid4  lvr4_rimage_0(0),\

                                lvr4_rimage_1(0),\

                                lvr4_rimage_2(0)

         [lvr4_rimage_0] linear /dev/sda(...)

         [lvr4_rimage_1] linear /dev/sdb(...)

         [lvr4_rimage_2] linear /dev/sdc(...)

         [lvr4_rmeta_0]  linear /dev/sda(...)

         [lvr4_rmeta_1]  linear /dev/sdb(...)

         [lvr4_rmeta_2]  linear /dev/sdc(...)

       raid5

       At least three rimage SubLVs each typically hold a portion of  LV  data

       and parity (see section on raid5) Each rmeta SubLV holds RAID metadata.

       # lvcreate --type raid5 --stripes 2 --name lvr5 ...

       # lvs -a -o name,segtype,devices

         lvr5            raid5  lvr5_rimage_0(0),\

                                lvr5_rimage_1(0),\

                                lvr5_rimage_2(0)

         [lvr5_rimage_0] linear /dev/sda(...)

         [lvr5_rimage_1] linear /dev/sdb(...)

         [lvr5_rimage_2] linear /dev/sdc(...) Page 10/37



         [lvr5_rmeta_0]  linear /dev/sda(...)

         [lvr5_rmeta_1]  linear /dev/sdb(...)

         [lvr5_rmeta_2]  linear /dev/sdc(...)

       raid6

       At  least  five  rimage SubLVs each typically hold a portion of LV data

       and parity.  (see section on raid6) Each rmeta SubLV holds  RAID  meta?

       data.

       # lvcreate --type raid6 --stripes 3 --name lvr6

       # lvs -a -o name,segtype,devices

         lvr6            raid6  lvr6_rimage_0(0),\

                                lvr6_rimage_1(0),\

                                lvr6_rimage_2(0),\

                                lvr6_rimage_3(0),\

                                lvr6_rimage_4(0),\

                                lvr6_rimage_5(0)

         [lvr6_rimage_0] linear /dev/sda(...)

         [lvr6_rimage_1] linear /dev/sdb(...)

         [lvr6_rimage_2] linear /dev/sdc(...)

         [lvr6_rimage_3] linear /dev/sdd(...)

         [lvr6_rimage_4] linear /dev/sde(...)

         [lvr6_rimage_5] linear /dev/sdf(...)

         [lvr6_rmeta_0]  linear /dev/sda(...)

         [lvr6_rmeta_1]  linear /dev/sdb(...)

         [lvr6_rmeta_2]  linear /dev/sdc(...)

         [lvr6_rmeta_3]  linear /dev/sdd(...)

         [lvr6_rmeta_4]  linear /dev/sde(...)

         [lvr6_rmeta_5]  linear /dev/sdf(...)

       raid10

       At  least four rimage SubLVs each hold a portion of LV data.  No parity

       is used.  Each rmeta SubLV holds RAID metadata.

       # lvcreate --type raid10 --stripes 2 --mirrors 1 --name lvr10

       # lvs -a -o name,segtype,devices

         lvr10            raid10 lvr10_rimage_0(0),\ Page 11/37



                                 lvr10_rimage_1(0),\

                                 lvr10_rimage_2(0),\

                                 lvr10_rimage_3(0)

         [lvr10_rimage_0] linear /dev/sda(...)

         [lvr10_rimage_1] linear /dev/sdb(...)

         [lvr10_rimage_2] linear /dev/sdc(...)

         [lvr10_rimage_3] linear /dev/sdd(...)

         [lvr10_rmeta_0]  linear /dev/sda(...)

         [lvr10_rmeta_1]  linear /dev/sdb(...)

         [lvr10_rmeta_2]  linear /dev/sdc(...)

         [lvr10_rmeta_3]  linear /dev/sdd(...)

DEVICE FAILURE

       Physical devices in a RAID LV can fail or be lost for multiple reasons.

       A device could be disconnected, permanently failed, or temporarily dis?

       connected.  The purpose of RAID LVs (levels 1 and higher)  is  to  con?

       tinue  operating in a degraded mode, without losing LV data, even after

       a device fails.  The number of devices that can fail without  the  loss

       of LV data depends on the RAID level:

            ? RAID0 (striped) LVs cannot tolerate losing any devices.  LV data

              will be lost if any devices fail.

            ? RAID1 LVs can tolerate losing all but one device without LV data

              loss.

            ? RAID4  and  RAID5  LVs can tolerate losing one device without LV

              data loss.

            ? RAID6 LVs can tolerate losing two devices without LV data loss.

            ? RAID10 is variable, and depends on which devices are  lost.   It

              stripes  across multiple mirror groups with raid1 layout thus it

              can tolerate losing all but one device in each of  these  groups

              without LV data loss.

       If  a RAID LV is missing devices, or has other device-related problems,

       lvs reports this in the health_status (and attr) fields:

       lvs -o name,lv_health_status

       partial Page 12/37



              Devices are missing from the LV.  This is also indicated by  the

              letter "p" (partial) in the 9th position of the lvs attr field.

       refresh needed

              A device was temporarily missing but has returned.  The LV needs

              to be refreshed to use the device again (which will usually  re?

              quire  partial  synchronization).  This is also indicated by the

              letter "r" (refresh needed) in the 9th position of the lvs  attr

              field.   See Refreshing an LV.  This could also indicate a prob?

              lem with the device, in which case it should be be replaced, see

              Replacing Devices.

       mismatches exist

              See Scrubbing.

       Most commands will also print a warning if a device is missing, e.g.

       WARNING: Device for PV uItL3Z-wBME-DQy0-... not found or rejected ...

       This  warning will go away if the device returns or is removed from the

       VG (see vgreduce --removemissing).

   Activating an LV with missing devices

       A RAID LV that is missing devices may be activated or not, depending on

       the "activation mode" used in lvchange:

       lvchange -ay --activationmode complete|degraded|partial LV

       complete

              The LV is only activated if all devices are present.

       degraded

              The  LV  is activated with missing devices if the RAID level can

              tolerate the number of missing devices without LV data loss.

       partial

              The LV is always activated, even if portions of the LV data  are

              missing  because  of the missing device(s).  This should only be

              used to perform extreme recovery or repair operations.

       Default activation mode when not specified by the command:

       lvm.conf(5) activation/activation_mode

       The default value is printed by:

       # lvmconfig --type default activation/activation_mode Page 13/37



   Replacing Devices

       Devices in a RAID LV can be replaced by other devices in the VG.   When

       replacing  devices that are no longer visible on the system, use lvcon?

       vert --repair.  When replacing devices that are still visible, use  lv?

       convert --replace.  The repair command will attempt to restore the same

       number of data LVs that were previously in the LV.  The replace  option

       can  be  repeated  to replace multiple PVs.  Replacement devices can be

       optionally listed with either option.

       lvconvert --repair LV [NewPVs]

       lvconvert --replace OldPV LV [NewPV]

       lvconvert --replace OldPV1 --replace OldPV2 LV [NewPVs]

       New devices require synchronization with existing devices.

       See Synchronization.

   Refreshing an LV

       Refreshing a RAID LV clears any transient device failures  (device  was

       temporarily  disconnected)  and  returns  the LV to its fully redundant

       mode.  Restoring a device will usually require at  least  partial  syn?

       chronization (see Synchronization).  Failure to clear a transient fail?

       ure results in the RAID LV operating in degraded mode until it is reac?

       tivated.  Use the lvchange command to refresh an LV:

       lvchange --refresh LV

       # lvs -o name,vgname,segtype,attr,size vg

         LV VG   Type  Attr       LSize

         lv vg   raid1 Rwi-a-r-r- 100.00g

       # lvchange --refresh vg/lv

       # lvs -o name,vgname,segtype,attr,size vg

         LV VG   Type  Attr       LSize

         lv vg   raid1 Rwi-a-r--- 100.00g

   Automatic repair

       If  a  device  in a RAID LV fails, device-mapper in the kernel notifies

       the dmeventd(8) monitoring process (see Monitoring).  dmeventd  can  be

       configured to automatically respond using:

       lvm.conf(5) activation/raid_fault_policy Page 14/37



       Possible settings are:

       warn   A  warning  is  added to the system log indicating that a device

              has failed in the RAID LV.  It is left to the user to repair the

              LV, e.g.  replace failed devices.

       allocate

              dmeventd automatically attempts to repair the LV using spare de?

              vices in the VG.  Note that even a transient failure is  treated

              as  a permanent failure under this setting.  A new device is al?

              located and full synchronization is started.

       The specific command run by dmeventd(8) to warn or repair is:

       lvconvert --repair --use-policies LV

   Corrupted Data

       Data on a device can be corrupted due to hardware  errors  without  the

       device  ever  being  disconnected or there being any fault in the soft?

       ware.  This should be rare, and can be detected (see Scrubbing).

   Rebuild specific PVs

       If specific PVs in a RAID LV are known to have corrupt data,  the  data

       on those PVs can be reconstructed with:

       lvchange --rebuild PV LV

       The  rebuild  option  can be repeated with different PVs to replace the

       data on multiple PVs.

DATA INTEGRITY

       The device mapper integrity target can be used in combination with RAID

       levels 1,4,5,6,10 to detect and correct data corruption in RAID images.

       A dm-integrity layer is placed above each RAID image, and an extra  sub

       LV is created to hold integrity metadata (data checksums) for each RAID

       image.  When data is read from an image, integrity checksums  are  used

       to  detect corruption. If detected, dm-raid reads the data from another

       (good) image to return to the caller.  dm-raid will also  automatically

       write the good data back to the image with bad data to correct the cor?

       ruption.

       When creating a RAID LV with integrity, or adding integrity,  space  is

       required  for  integrity  metadata.  Every 500MB of LV data requires an Page 15/37



       additional 4MB to be allocated for integrity metadata,  for  each  RAID

       image.

       Create a RAID LV with integrity:

       lvcreate --type raidN --raidintegrity y

       Add integrity to an existing RAID LV:

       lvconvert --raidintegrity y LV

       Remove integrity from a RAID LV:

       lvconvert --raidintegrity n LV

   Integrity options

       --raidintegritymode journal|bitmap

              Use  a  journal (default) or bitmap for keeping integrity check?

              sums consistent in case of a crash. The bitmap areas are  recal?

              culated after a crash, so corruption in those areas would not be

              detected. A journal does not have  this  problem.   The  journal

              mode  doubles writes to storage, but can improve performance for

              scattered writes packed into a  single  journal  write.   bitmap

              mode  can in theory achieve full write throughput of the device,

              but would not benefit from the potential scattered  write  opti?

              mization.

       --raidintegrityblocksize 512|1024|2048|4096

              The  block size to use for dm-integrity on raid images.  The in?

              tegrity block size should usually match the device logical block

              size,  or  the  file  system sector/block sizes.  It may be less

              than the file system sector/block size, but not  less  than  the

              device  logical  block  size.  Possible values: 512, 1024, 2048,

              4096.

   Integrity initialization

       When integrity is added to an LV, the kernel needs  to  initialize  the

       integrity metadata (checksums) for all blocks in the LV.  The data cor?

       ruption checking performed by dm-integrity will only operate  on  areas

       of the LV that are already initialized.  The progress of integrity ini?

       tialization is reported by the "syncpercent" LV  reporting  field  (and

       under the Cpy%Sync lvs column.) Page 16/37



   Integrity limitations

       To  work  around  some  limitations, it is possible to remove integrity

       from the LV, make the change, then  add  integrity  again.   (Integrity

       metadata would need to initialized when added again.)

       LVM  must be able to allocate the integrity metadata sub LV on a single

       PV that is already in use by the associated RAID image. This can poten?

       tially  cause  a problem during lvextend if the original PV holding the

       image and integrity metadata is full.  To work around this  limitation,

       remove integrity, extend the LV, and add integrity again.

       Additional RAID images can be added to raid1 LVs, but not to other raid

       levels.

       A raid1 LV with integrity cannot be converted to linear (remove  integ?

       rity to do this.)

       RAID  LVs  with  integrity  cannot yet be used as sub LVs with other LV

       types.

       The following are not yet permitted on RAID LVs with  integrity:  lvre?

       duce,  pvmove,  snapshots,  splitmirror, raid syncaction commands, raid

       rebuild.

RAID1 TUNING

       A RAID1 LV can be tuned so that certain devices are avoided for reading

       while all devices are still written to.

       lvchange --[raid]writemostly PV[:y|n|t] LV

       The specified device will be marked as "write mostly", which means that

       reading from this device will be avoided, and  other  devices  will  be

       preferred  for  reading  (unless no other devices are available.)  This

       minimizes the I/O to the specified device.

       If the PV name has no suffix, the write mostly attribute  is  set.   If

       the  PV  name has the suffix :n, the write mostly attribute is cleared,

       and the suffix :t toggles the current setting.

       The write mostly option can be repeated on the command line  to  change

       multiple devices at once.

       To  report  the  current  write mostly setting, the lvs attr field will

       show the letter "w" in the 9th position when write mostly is set: Page 17/37



       lvs -a -o name,attr

       When a device is marked write mostly, the maximum number of outstanding

       writes  to that device can be configured.  Once the maximum is reached,

       further writes become synchronous.  When synchronous, a write to the LV

       will not complete until writes to all the mirror images are complete.

       lvchange --[raid]writebehind Number LV

       To report the current write behind setting, run:

       lvs -o name,raid_write_behind

       When  write  behind  is  not configured, or set to 0, all LV writes are

       synchronous.

RAID TAKEOVER

       RAID takeover is converting a RAID LV from one RAID level  to  another,

       e.g.   raid5  to raid6.  Changing the RAID level is usually done to in?

       crease or decrease resilience to device failures or  to  restripe  LVs.

       This  is  done using lvconvert and specifying the new RAID level as the

       LV type:

       lvconvert --type RaidLevel LV [PVs]

       The most common and recommended RAID takeover conversions are:

       linear to raid1

              Linear is a single image of LV data, and converting it to  raid1

              adds  a mirror image which is a direct copy of the original lin?

              ear image.

       striped/raid0 to raid4/5/6

              Adding parity devices to a striped volume results in raid4/5/6.

       Unnatural conversions that are not recommended include  converting  be?

       tween  striped and non-striped types.  This is because file systems of?

       ten optimize I/O patterns based on device striping  values.   If  those

       values change, it can decrease performance.

       Converting  to  a  higher  RAID level requires allocating new SubLVs to

       hold RAID metadata, and new SubLVs to hold parity blocks for  LV  data.

       Converting  to a lower RAID level removes the SubLVs that are no longer

       needed.

       Conversion often requires full synchronization of the RAID LV (see Syn? Page 18/37



       chronization).  Converting to RAID1 requires copying all LV data blocks

       to N new images on new devices.  Converting to a parity RAID level  re?

       quires  reading all LV data blocks, calculating parity, and writing the

       new parity blocks.  Synchronization can take a long time  depending  on

       the throughpout of the devices used and the size of the RaidLV.  It can

       degrade performance. Rate controls also apply to conversion; see --min?

       recoveryrate and --maxrecoveryrate.

       Warning:  though  it  is possible to create striped LVs  with up to 128

       stripes, a maximum of 64 stripes can  be  converted  to  raid0,  63  to

       raid4/5  and 62 to raid6 because of the added parity SubLVs.  A striped

       LV with a maximum of 32 stripes can be converted to raid10.

       The following takeover conversions are currently possible:

            ? between striped and raid0.

            ? between linear and raid1.

            ? between mirror and raid1.

            ? between raid1 with two images and raid4/5.

            ? between striped/raid0 and raid4.

            ? between striped/raid0 and raid5.

            ? between striped/raid0 and raid6.

            ? between raid4 and raid5.

            ? between raid4/raid5 and raid6.

            ? between striped/raid0 and raid10.

            ? between striped and raid4.

   Indirect conversions

       Converting from one raid level to another may require  multiple  steps,

       converting first to intermediate raid levels.

       linear to raid6

       To convert an LV from linear to raid6:

       1. convert to raid1 with two images

       2. convert to raid5 (internally raid5_ls) with two images

       3. convert to raid5 with three or more stripes (reshape)

       4. convert to raid6 (internally raid6_ls_6)

       5. convert to raid6 (internally raid6_zr, reshape) Page 19/37



       The commands to perform the steps above are:

       1. lvconvert --type raid1 --mirrors 1 LV

       2. lvconvert --type raid5 LV

       3. lvconvert --stripes 3 LV

       4. lvconvert --type raid6 LV

       5. lvconvert --type raid6 LV

       The  final  conversion from raid6_ls_6 to raid6_zr is done to avoid the

       potential write/recovery performance reduction in raid6_ls_6 because of

       the  dedicated  parity device.  raid6_zr rotates data and parity blocks

       to avoid this.

       linear to striped

       To convert an LV from linear to striped:

       1. convert to raid1 with two images

       2. convert to raid5_n

       3. convert to raid5_n with five 128k stripes (reshape)

       4. convert raid5_n to striped

       The commands to perform the steps above are:

       1. lvconvert --type raid1 --mirrors 1 LV

       2. lvconvert --type raid5_n LV

       3. lvconvert --stripes 5 --stripesize 128k LV

       4. lvconvert --type striped LV

       The raid5_n type in step 2 is used because it has dedicated parity Sub?

       LVs  at  the end, and can be converted to striped directly.  The stripe

       size is increased in step 3 to  add  extra  space  for  the  conversion

       process.   This step grows the LV size by a factor of five.  After con?

       version, this extra space can be reduced (or used to grow the file sys?

       tem using the LV).

       Reversing these steps will convert a striped LV to linear.

       raid6 to striped

       To convert an LV from raid6_nr to striped:

       1. convert to raid6_n_6

       2. convert to striped

       The commands to perform the steps above are: Page 20/37



       1. lvconvert --type raid6_n_6 LV

       2. lvconvert --type striped LV

       Examples

       Converting an LV from linear to raid1.

       # lvs -a -o name,segtype,size vg

         LV   Type   LSize

         lv   linear 300.00g

       # lvconvert --type raid1 --mirrors 1 vg/lv

       # lvs -a -o name,segtype,size vg

         LV            Type   LSize

         lv            raid1  300.00g

         [lv_rimage_0] linear 300.00g

         [lv_rimage_1] linear 300.00g

         [lv_rmeta_0]  linear   3.00m

         [lv_rmeta_1]  linear   3.00m

       Converting an LV from mirror to raid1.

       # lvs -a -o name,segtype,size vg

         LV            Type   LSize

         lv            mirror 100.00g

         [lv_mimage_0] linear 100.00g

         [lv_mimage_1] linear 100.00g

         [lv_mlog]     linear   3.00m

       # lvconvert --type raid1 vg/lv

       # lvs -a -o name,segtype,size vg

         LV            Type   LSize

         lv            raid1  100.00g

         [lv_rimage_0] linear 100.00g

         [lv_rimage_1] linear 100.00g

         [lv_rmeta_0]  linear   3.00m

         [lv_rmeta_1]  linear   3.00m

       Converting an LV from linear to raid1 (with 3 images).

       # lvconvert --type raid1 --mirrors 2 vg/lv

       Converting an LV from striped (with 4 stripes) to raid6_n_6. Page 21/37



       # lvcreate --stripes 4 -L64M -n lv vg

       # lvconvert --type raid6 vg/lv

       # lvs -a -o lv_name,segtype,sync_percent,data_copies

         LV            Type      Cpy%Sync #Cpy

         lv            raid6_n_6 100.00      3

         [lv_rimage_0] linear

         [lv_rimage_1] linear

         [lv_rimage_2] linear

         [lv_rimage_3] linear

         [lv_rimage_4] linear

         [lv_rimage_5] linear

         [lv_rmeta_0]  linear

         [lv_rmeta_1]  linear

         [lv_rmeta_2]  linear

         [lv_rmeta_3]  linear

         [lv_rmeta_4]  linear

         [lv_rmeta_5]  linear

       This convert begins by allocating MetaLVs (rmeta_#) for each of the ex?

       isting stripe devices.  It  then  creates  2  additional  MetaLV/DataLV

       pairs (rmeta_#/rimage_#) for dedicated raid6 parity.

       If  rotating data/parity is required, such as with raid6_nr, it must be

       done by reshaping (see below).

RAID RESHAPING

       RAID reshaping is changing attributes of a RAID LV  while  keeping  the

       same  RAID  level.  This includes changing RAID layout, stripe size, or

       number of stripes.

       When changing the RAID layout or stripe size, no new SubLVs (MetaLVs or

       DataLVs)  need  to  be  allocated,  but DataLVs are extended by a small

       amount (typically 1 extent).  The extra space allows blocks in a stripe

       to  be  updated  safely, and not be corrupted in case of a crash.  If a

       crash occurs, reshaping can just be restarted.

       (If blocks in a stripe were updated in place, a crash could leave  them

       partially  updated  and corrupted.  Instead, an existing stripe is qui? Page 22/37



       esced, read, changed in layout, and the  new  stripe  written  to  free

       space.  Once that is done, the new stripe is unquiesced and used.)

       Examples

       (Command output shown in examples may change.)

       Converting raid6_n_6 to raid6_nr with rotating data/parity.

       This   conversion   naturally   follows   a  previous  conversion  from

       striped/raid0 to raid6_n_6 (shown above).  It completes the  transition

       to a more traditional RAID6.

       # lvs -o lv_name,segtype,sync_percent,data_copies

         LV            Type      Cpy%Sync #Cpy

         lv            raid6_n_6 100.00      3

         [lv_rimage_0] linear

         [lv_rimage_1] linear

         [lv_rimage_2] linear

         [lv_rimage_3] linear

         [lv_rimage_4] linear

         [lv_rimage_5] linear

         [lv_rmeta_0]  linear

         [lv_rmeta_1]  linear

         [lv_rmeta_2]  linear

         [lv_rmeta_3]  linear

         [lv_rmeta_4]  linear

         [lv_rmeta_5]  linear

       # lvconvert --type raid6_nr vg/lv

       # lvs -a -o lv_name,segtype,sync_percent,data_copies

         LV            Type     Cpy%Sync #Cpy

         lv            raid6_nr 100.00      3

         [lv_rimage_0] linear

         [lv_rimage_0] linear

         [lv_rimage_1] linear

         [lv_rimage_1] linear

         [lv_rimage_2] linear

         [lv_rimage_2] linear Page 23/37



         [lv_rimage_3] linear

         [lv_rimage_3] linear

         [lv_rimage_4] linear

         [lv_rimage_5] linear

         [lv_rmeta_0]  linear

         [lv_rmeta_1]  linear

         [lv_rmeta_2]  linear

         [lv_rmeta_3]  linear

         [lv_rmeta_4]  linear

         [lv_rmeta_5]  linear

       The  DataLVs  are  larger  (additional  segment in each) which provides

       space for out-of-place reshaping.  The result is:

       # lvs -a -o lv_name,segtype,seg_pe_ranges,dataoffset

         LV            Type     PE Ranges          DOff

         lv            raid6_nr lv_rimage_0:0-32 \

                                lv_rimage_1:0-32 \

                                lv_rimage_2:0-32 \

                                lv_rimage_3:0-32

         [lv_rimage_0] linear   /dev/sda:0-31      2048

         [lv_rimage_0] linear   /dev/sda:33-33

         [lv_rimage_1] linear   /dev/sdaa:0-31     2048

         [lv_rimage_1] linear   /dev/sdaa:33-33

         [lv_rimage_2] linear   /dev/sdab:1-33     2048

         [lv_rimage_3] linear   /dev/sdac:1-33     2048

         [lv_rmeta_0]  linear   /dev/sda:32-32

         [lv_rmeta_1]  linear   /dev/sdaa:32-32

         [lv_rmeta_2]  linear   /dev/sdab:0-0

         [lv_rmeta_3]  linear   /dev/sdac:0-0

       All segments with PE ranges '33-33' provide  the  out-of-place  reshape

       space.   The  dataoffset column shows that the data was moved from ini?

       tial offset 0 to 2048 sectors on each component DataLV.

       For performance reasons the raid6_nr RaidLV can be restriped.   Convert

       it from 3-way striped to 5-way-striped. Page 24/37



       # lvconvert --stripes 5 vg/lv

         Using default stripesize 64.00 KiB.

         WARNING: Adding stripes to active logical volume vg/lv will \

         grow it from 99 to 165 extents!

         Run "lvresize -l99 vg/lv" to shrink it or use the additional \

         capacity.

         Logical volume vg/lv successfully converted.

       # lvs vg/lv

         LV   VG     Attr       LSize   Cpy%Sync

         lv   vg     rwi-a-r-s- 652.00m 52.94

       # lvs -a -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV            Attr       Type     PE Ranges          DOff

         lv            rwi-a-r--- raid6_nr lv_rimage_0:0-33 \

                                           lv_rimage_1:0-33 \

                                           lv_rimage_2:0-33 ... \

                                           lv_rimage_5:0-33 \

                                           lv_rimage_6:0-33   0

         [lv_rimage_0] iwi-aor--- linear   /dev/sda:0-32      0

         [lv_rimage_0] iwi-aor--- linear   /dev/sda:34-34

         [lv_rimage_1] iwi-aor--- linear   /dev/sdaa:0-32     0

         [lv_rimage_1] iwi-aor--- linear   /dev/sdaa:34-34

         [lv_rimage_2] iwi-aor--- linear   /dev/sdab:0-32     0

         [lv_rimage_2] iwi-aor--- linear   /dev/sdab:34-34

         [lv_rimage_3] iwi-aor--- linear   /dev/sdac:1-34     0

         [lv_rimage_4] iwi-aor--- linear   /dev/sdad:1-34     0

         [lv_rimage_5] iwi-aor--- linear   /dev/sdae:1-34     0

         [lv_rimage_6] iwi-aor--- linear   /dev/sdaf:1-34     0

         [lv_rmeta_0]  ewi-aor--- linear   /dev/sda:33-33

         [lv_rmeta_1]  ewi-aor--- linear   /dev/sdaa:33-33

         [lv_rmeta_2]  ewi-aor--- linear   /dev/sdab:33-33

         [lv_rmeta_3]  ewi-aor--- linear   /dev/sdac:0-0

         [lv_rmeta_4]  ewi-aor--- linear   /dev/sdad:0-0

         [lv_rmeta_5]  ewi-aor--- linear   /dev/sdae:0-0 Page 25/37



         [lv_rmeta_6]  ewi-aor--- linear   /dev/sdaf:0-0

       Stripes  also  can  be  removed  from  raid5  and 6.  Convert the 5-way

       striped raid6_nr LV to 4-way-striped.  The force  option  needs  to  be

       used,  because  removing stripes (i.e. image SubLVs) from a RaidLV will

       shrink its size.

       # lvconvert --stripes 4 vg/lv

         Using default stripesize 64.00 KiB.

         WARNING: Removing stripes from active logical volume vg/lv will \

         shrink it from 660.00 MiB to 528.00 MiB!

         THIS MAY DESTROY (PARTS OF) YOUR DATA!

         If that leaves the logical volume larger than 206 extents due \

         to stripe rounding,

         you may want to grow the content afterwards (filesystem etc.)

         WARNING: to remove freed stripes after the conversion has finished,\

         you have to run "lvconvert --stripes 4 vg/lv"

         Logical volume vg/lv successfully converted.

       # lvs -a -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV            Attr       Type     PE Ranges          DOff

         lv            rwi-a-r-s- raid6_nr lv_rimage_0:0-33 \

                                           lv_rimage_1:0-33 \

                                           lv_rimage_2:0-33 ... \

                                           lv_rimage_5:0-33 \

                                           lv_rimage_6:0-33   0

         [lv_rimage_0] Iwi-aor--- linear   /dev/sda:0-32      0

         [lv_rimage_0] Iwi-aor--- linear   /dev/sda:34-34

         [lv_rimage_1] Iwi-aor--- linear   /dev/sdaa:0-32     0

         [lv_rimage_1] Iwi-aor--- linear   /dev/sdaa:34-34

         [lv_rimage_2] Iwi-aor--- linear   /dev/sdab:0-32     0

         [lv_rimage_2] Iwi-aor--- linear   /dev/sdab:34-34

         [lv_rimage_3] Iwi-aor--- linear   /dev/sdac:1-34     0

         [lv_rimage_4] Iwi-aor--- linear   /dev/sdad:1-34     0

         [lv_rimage_5] Iwi-aor--- linear   /dev/sdae:1-34     0

         [lv_rimage_6] Iwi-aor-R- linear   /dev/sdaf:1-34     0 Page 26/37



         [lv_rmeta_0]  ewi-aor--- linear   /dev/sda:33-33

         [lv_rmeta_1]  ewi-aor--- linear   /dev/sdaa:33-33

         [lv_rmeta_2]  ewi-aor--- linear   /dev/sdab:33-33

         [lv_rmeta_3]  ewi-aor--- linear   /dev/sdac:0-0

         [lv_rmeta_4]  ewi-aor--- linear   /dev/sdad:0-0

         [lv_rmeta_5]  ewi-aor--- linear   /dev/sdae:0-0

         [lv_rmeta_6]  ewi-aor-R- linear   /dev/sdaf:0-0

       The 's' in column 9 of the attribute field shows the  RaidLV  is  still

       reshaping.  The 'R' in the same column of the attribute field shows the

       freed image Sub LVs which will need removing once  the  reshaping  fin?

       ished.

       # lvs -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV   Attr       Type     PE Ranges          DOff

         lv   rwi-a-r-R- raid6_nr lv_rimage_0:0-33 \

                                  lv_rimage_1:0-33 \

                                  lv_rimage_2:0-33 ... \

                                  lv_rimage_5:0-33 \

                                  lv_rimage_6:0-33   8192

       Now  that the reshape is finished the 'R' attribute on the RaidLV shows

       images can be removed.

       # lvs -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV   Attr       Type     PE Ranges          DOff

         lv   rwi-a-r-R- raid6_nr lv_rimage_0:0-33 \

                                  lv_rimage_1:0-33 \

                                  lv_rimage_2:0-33 ... \

                                  lv_rimage_5:0-33 \

                                  lv_rimage_6:0-33   8192

       This is achieved by  repeating  the  command  ("lvconvert  --stripes  4

       vg/lv" would be sufficient).

       # lvconvert --stripes 4 vg/lv

         Using default stripesize 64.00 KiB.

         Logical volume vg/lv successfully converted.

       # lvs -a -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg Page 27/37



         LV            Attr       Type     PE Ranges          DOff

         lv            rwi-a-r--- raid6_nr lv_rimage_0:0-33 \

                                           lv_rimage_1:0-33 \

                                           lv_rimage_2:0-33 ... \

                                           lv_rimage_5:0-33   8192

         [lv_rimage_0] iwi-aor--- linear   /dev/sda:0-32      8192

         [lv_rimage_0] iwi-aor--- linear   /dev/sda:34-34

         [lv_rimage_1] iwi-aor--- linear   /dev/sdaa:0-32     8192

         [lv_rimage_1] iwi-aor--- linear   /dev/sdaa:34-34

         [lv_rimage_2] iwi-aor--- linear   /dev/sdab:0-32     8192

         [lv_rimage_2] iwi-aor--- linear   /dev/sdab:34-34

         [lv_rimage_3] iwi-aor--- linear   /dev/sdac:1-34     8192

         [lv_rimage_4] iwi-aor--- linear   /dev/sdad:1-34     8192

         [lv_rimage_5] iwi-aor--- linear   /dev/sdae:1-34     8192

         [lv_rmeta_0]  ewi-aor--- linear   /dev/sda:33-33

         [lv_rmeta_1]  ewi-aor--- linear   /dev/sdaa:33-33

         [lv_rmeta_2]  ewi-aor--- linear   /dev/sdab:33-33

         [lv_rmeta_3]  ewi-aor--- linear   /dev/sdac:0-0

         [lv_rmeta_4]  ewi-aor--- linear   /dev/sdad:0-0

         [lv_rmeta_5]  ewi-aor--- linear   /dev/sdae:0-0

       # lvs -a -o lv_name,attr,segtype,reshapelen vg

         LV            Attr       Type     RSize

         lv            rwi-a-r--- raid6_nr 24.00m

         [lv_rimage_0] iwi-aor--- linear    4.00m

         [lv_rimage_0] iwi-aor--- linear

         [lv_rimage_1] iwi-aor--- linear    4.00m

         [lv_rimage_1] iwi-aor--- linear

         [lv_rimage_2] iwi-aor--- linear    4.00m

         [lv_rimage_2] iwi-aor--- linear

         [lv_rimage_3] iwi-aor--- linear    4.00m

         [lv_rimage_4] iwi-aor--- linear    4.00m

         [lv_rimage_5] iwi-aor--- linear    4.00m

         [lv_rmeta_0]  ewi-aor--- linear Page 28/37



         [lv_rmeta_1]  ewi-aor--- linear

         [lv_rmeta_2]  ewi-aor--- linear

         [lv_rmeta_3]  ewi-aor--- linear

         [lv_rmeta_4]  ewi-aor--- linear

         [lv_rmeta_5]  ewi-aor--- linear

       Future  developments  might  include automatic removal of the freed im?

       ages.

       If the reshape space shall be removed any lvconvert command not  chang?

       ing the layout can be used:

       # lvconvert --stripes 4 vg/lv

         Using default stripesize 64.00 KiB.

         No change in RAID LV vg/lv layout, freeing reshape space.

         Logical volume vg/lv successfully converted.

       # lvs -a -o lv_name,attr,segtype,reshapelen vg

         LV            Attr       Type     RSize

         lv            rwi-a-r--- raid6_nr    0

         [lv_rimage_0] iwi-aor--- linear      0

         [lv_rimage_0] iwi-aor--- linear

         [lv_rimage_1] iwi-aor--- linear      0

         [lv_rimage_1] iwi-aor--- linear

         [lv_rimage_2] iwi-aor--- linear      0

         [lv_rimage_2] iwi-aor--- linear

         [lv_rimage_3] iwi-aor--- linear      0

         [lv_rimage_4] iwi-aor--- linear      0

         [lv_rimage_5] iwi-aor--- linear      0

         [lv_rmeta_0]  ewi-aor--- linear

         [lv_rmeta_1]  ewi-aor--- linear

         [lv_rmeta_2]  ewi-aor--- linear

         [lv_rmeta_3]  ewi-aor--- linear

         [lv_rmeta_4]  ewi-aor--- linear

         [lv_rmeta_5]  ewi-aor--- linear

       In case the RaidLV should be converted to striped:

       # lvconvert --type striped vg/lv Page 29/37



         Unable to convert LV vg/lv from raid6_nr to striped.

         Converting vg/lv from raid6_nr is directly possible to the \

         following layouts:

           raid6_nc

           raid6_zr

           raid6_la_6

           raid6_ls_6

           raid6_ra_6

           raid6_rs_6

           raid6_n_6

       A  direct conversion isn't possible thus the command informed about the

       possible ones.  raid6_n_6 is suitable to convert to striped so  convert

       to  it first (this is a reshape changing the raid6 layout from raid6_nr

       to raid6_n_6).

       # lvconvert --type raid6_n_6

         Using default stripesize 64.00 KiB.

         Converting raid6_nr LV vg/lv to raid6_n_6.

       Are you sure you want to convert raid6_nr LV vg/lv? [y/n]: y

         Logical volume vg/lv successfully converted.

       Wait for the reshape to finish.

       # lvconvert --type striped vg/lv

         Logical volume vg/lv successfully converted.

       # lvs -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV   Attr       Type    PE Ranges  DOff

         lv   -wi-a----- striped /dev/sda:2-32 \

                                 /dev/sdaa:2-32 \

                                 /dev/sdab:2-32 \

                                 /dev/sdac:3-33

         lv   -wi-a----- striped /dev/sda:34-35 \

                                 /dev/sdaa:34-35 \

                                 /dev/sdab:34-35 \

                                 /dev/sdac:34-35

       From striped we can convert to raid10 Page 30/37



       # lvconvert --type raid10 vg/lv

         Using default stripesize 64.00 KiB.

         Logical volume vg/lv successfully converted.

       # lvs -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         LV   Attr       Type   PE Ranges          DOff

         lv   rwi-a-r--- raid10 lv_rimage_0:0-32 \

                                lv_rimage_4:0-32 \

                                lv_rimage_1:0-32 ... \

                                lv_rimage_3:0-32 \

                                lv_rimage_7:0-32   0

       # lvs -a -o lv_name,attr,segtype,seg_pe_ranges,dataoffset vg

         WARNING: Cannot find matching striped segment for vg/lv_rimage_3.

         LV            Attr       Type   PE Ranges          DOff

         lv            rwi-a-r--- raid10 lv_rimage_0:0-32 \

                                         lv_rimage_4:0-32 \

                                         lv_rimage_1:0-32 ... \

                                         lv_rimage_3:0-32 \

                                         lv_rimage_7:0-32   0

         [lv_rimage_0] iwi-aor--- linear /dev/sda:2-32      0

         [lv_rimage_0] iwi-aor--- linear /dev/sda:34-35

         [lv_rimage_1] iwi-aor--- linear /dev/sdaa:2-32     0

         [lv_rimage_1] iwi-aor--- linear /dev/sdaa:34-35

         [lv_rimage_2] iwi-aor--- linear /dev/sdab:2-32     0

         [lv_rimage_2] iwi-aor--- linear /dev/sdab:34-35

         [lv_rimage_3] iwi-XXr--- linear /dev/sdac:3-35     0

         [lv_rimage_4] iwi-aor--- linear /dev/sdad:1-33     0

         [lv_rimage_5] iwi-aor--- linear /dev/sdae:1-33     0

         [lv_rimage_6] iwi-aor--- linear /dev/sdaf:1-33     0

         [lv_rimage_7] iwi-aor--- linear /dev/sdag:1-33     0

         [lv_rmeta_0]  ewi-aor--- linear /dev/sda:0-0

         [lv_rmeta_1]  ewi-aor--- linear /dev/sdaa:0-0

         [lv_rmeta_2]  ewi-aor--- linear /dev/sdab:0-0

         [lv_rmeta_3]  ewi-aor--- linear /dev/sdac:0-0 Page 31/37



         [lv_rmeta_4]  ewi-aor--- linear /dev/sdad:0-0

         [lv_rmeta_5]  ewi-aor--- linear /dev/sdae:0-0

         [lv_rmeta_6]  ewi-aor--- linear /dev/sdaf:0-0

         [lv_rmeta_7]  ewi-aor--- linear /dev/sdag:0-0

       raid10 allows to add stripes but can't remove them.

       A more elaborate example to convert from linear to striped with interim

       conversions to raid1 then raid5 followed by restripe (4 steps).

       We start with the linear LV.

       # lvs -a -o name,size,segtype,syncpercent,datastripes,\

                   stripesize,reshapelenle,devices vg

         LV   LSize   Type   Cpy%Sync #DStr Stripe RSize Devices

         lv   128.00m linear              1     0        /dev/sda(0)

       Then convert it to a 2-way raid1.

       # lvconvert --mirrors 1 vg/lv

         Logical volume vg/lv successfully converted.

       # lvs -a -o name,size,segtype,datastripes,\

                   stripesize,reshapelenle,devices vg

         LV            LSize   Type   #DStr Stripe RSize Devices

         lv            128.00m raid1      2     0        lv_rimage_0(0),\

                                                         lv_rimage_1(0)

         [lv_rimage_0] 128.00m linear     1     0        /dev/sda(0)

         [lv_rimage_1] 128.00m linear     1     0        /dev/sdhx(1)

         [lv_rmeta_0]    4.00m linear     1     0        /dev/sda(32)

         [lv_rmeta_1]    4.00m linear     1     0        /dev/sdhx(0)

       Once  the raid1 LV is fully synchronized we convert it to raid5_n (only

       2-way raid1 LVs can be converted to raid5).  We select raid5_n here be?

       cause it has dedicated parity SubLVs at the end and can be converted to

       striped directly without any additional conversion.

       # lvconvert --type raid5_n vg/lv

         Using default stripesize 64.00 KiB.

         Logical volume vg/lv successfully converted.

       # lvs -a -o name,size,segtype,syncpercent,datastripes,\

                   stripesize,reshapelenle,devices vg Page 32/37



         LV            LSize   Type    #DStr Stripe RSize Devices

         lv            128.00m raid5_n     1 64.00k     0 lv_rimage_0(0),\

                                                          lv_rimage_1(0)

         [lv_rimage_0] 128.00m linear      1     0      0 /dev/sda(0)

         [lv_rimage_1] 128.00m linear      1     0      0 /dev/sdhx(1)

         [lv_rmeta_0]    4.00m linear      1     0        /dev/sda(32)

         [lv_rmeta_1]    4.00m linear      1     0        /dev/sdhx(0)

       Now we'll change the number of data stripes from 1  to  5  and  request

       128K  stripe size in one command.  This will grow the size of the LV by

       a factor of 5 (we add 4 data stripes to the  one  given).   That  addi?

       tional  space  can  be used by e.g. growing any contained filesystem or

       the LV can be reduced in size after the reshaping conversion  has  fin?

       ished.

       # lvconvert --stripesize 128k --stripes 5 vg/lv

         Converting stripesize 64.00 KiB of raid5_n LV vg/lv to 128.00 KiB.

         WARNING: Adding stripes to active logical volume vg/lv will grow \

         it from 32 to 160 extents!

         Run "lvresize -l32 vg/lv" to shrink it or use the additional capacity.

         Logical volume vg/lv successfully converted.

       # lvs -a -o name,size,segtype,datastripes,\

                   stripesize,reshapelenle,devices

         LV            LSize   Type    #DStr Stripe  RSize Devices

         lv            640.00m raid5_n     5 128.00k     6 lv_rimage_0(0),\

                                                           lv_rimage_1(0),\

                                                           lv_rimage_2(0),\

                                                           lv_rimage_3(0),\

                                                           lv_rimage_4(0),\

                                                           lv_rimage_5(0)

         [lv_rimage_0] 132.00m linear      1      0      1 /dev/sda(33)

         [lv_rimage_0] 132.00m linear      1      0        /dev/sda(0)

         [lv_rimage_1] 132.00m linear      1      0      1 /dev/sdhx(33)

         [lv_rimage_1] 132.00m linear      1      0        /dev/sdhx(1)

         [lv_rimage_2] 132.00m linear      1      0      1 /dev/sdhw(33) Page 33/37



         [lv_rimage_2] 132.00m linear      1      0        /dev/sdhw(1)

         [lv_rimage_3] 132.00m linear      1      0      1 /dev/sdhv(33)

         [lv_rimage_3] 132.00m linear      1      0        /dev/sdhv(1)

         [lv_rimage_4] 132.00m linear      1      0      1 /dev/sdhu(33)

         [lv_rimage_4] 132.00m linear      1      0        /dev/sdhu(1)

         [lv_rimage_5] 132.00m linear      1      0      1 /dev/sdht(33)

         [lv_rimage_5] 132.00m linear      1      0        /dev/sdht(1)

         [lv_rmeta_0]    4.00m linear      1      0        /dev/sda(32)

         [lv_rmeta_1]    4.00m linear      1      0        /dev/sdhx(0)

         [lv_rmeta_2]    4.00m linear      1      0        /dev/sdhw(0)

         [lv_rmeta_3]    4.00m linear      1      0        /dev/sdhv(0)

         [lv_rmeta_4]    4.00m linear      1      0        /dev/sdhu(0)

         [lv_rmeta_5]    4.00m linear      1      0        /dev/sdht(0)

       Once the conversion has finished we can can convert to striped.

       # lvconvert --type striped vg/lv

         Logical volume vg/lv successfully converted.

       # lvs -a -o name,size,segtype,datastripes,\

                   stripesize,reshapelenle,devices vg

         LV   LSize   Type    #DStr Stripe  RSize Devices

         lv   640.00m striped     5 128.00k       /dev/sda(33),\

                                                  /dev/sdhx(33),\

                                                  /dev/sdhw(33),\

                                                  /dev/sdhv(33),\

                                                  /dev/sdhu(33)

         lv   640.00m striped     5 128.00k       /dev/sda(0),\

                                                  /dev/sdhx(1),\

                                                  /dev/sdhw(1),\

                                                  /dev/sdhv(1),\

                                                  /dev/sdhu(1)

       Reversing these steps will convert a given striped LV to linear.

       Mind the facts that stripes are removed thus the capacity of the RaidLV

       will shrink and that changing the RaidLV layout will influence its per?

       formance. Page 34/37



       "lvconvert  --stripes  1  vg/lv" for converting to 1 stripe will inform

       upfront about the reduced size to allow for  resizing  the  content  or

       growing the RaidLV before actually converting to 1 stripe.  The --force

       option is needed to allow stripe removing conversions to  prevent  data

       loss.

       Of course any interim step can be the intended last one (e.g. striped ?

       raid1).

RAID5 VARIANTS

       raid5_ls

            ? RAID5 left symmetric

            ? Rotating parity N with data restart

       raid5_la

            ? RAID5 left asymmetric

            ? Rotating parity N with data continuation

       raid5_rs

            ? RAID5 right symmetric

            ? Rotating parity 0 with data restart

       raid5_ra

            ? RAID5 right asymmetric

            ? Rotating parity 0 with data continuation

       raid5_n

            ? RAID5 parity n

            ? Dedicated parity device n used for striped/raid0 conversions

            ? Used for RAID Takeover

RAID6 VARIANTS

       raid6

            ? RAID6 zero restart (aka left symmetric)

            ? Rotating parity 0 with data restart

            ? Same as raid6_zr

       raid6_zr

            ? RAID6 zero restart (aka left symmetric)

            ? Rotating parity 0 with data restart

       raid6_nr Page 35/37



            ? RAID6 N restart (aka right symmetric)

            ? Rotating parity N with data restart

       raid6_nc

            ? RAID6 N continue

            ? Rotating parity N with data continuation

       raid6_n_6

            ? RAID6 last parity devices

            ? Fixed dedicated last devices (P-Syndrome N-1 and  Q-Syndrome  N)

              with striped data used for striped/raid0 conversions

            ? Used for RAID Takeover

       raid6_{ls,rs,la,ra}_6

            ? RAID6 last parity device

            ? Dedicated  last  parity  device  used  for  conversions  from/to

              raid5_{ls,rs,la,ra}

       raid6_ls_6

            ? RAID6 N continue

            ? Same as raid5_ls for N-1 devices with fixed Q-Syndrome N

            ? Used for RAID Takeover

       raid6_la_6

            ? RAID6 N continue

            ? Same as raid5_la for N-1 devices with fixed Q-Syndrome N

            ? Used forRAID Takeover

       raid6_rs_6

            ? RAID6 N continue

            ? Same as raid5_rs for N-1 devices with fixed Q-Syndrome N

            ? Used for RAID Takeover

       raid6_ra_6

            ? RAID6 N continue

            ? Same as raid5_ra for N-1 devices with fixed Q-Syndrome N

            ? Used for RAID Takeover

HISTORY

       The 2.6.38-rc1 version of the Linux kernel introduced  a  device-mapper

       target  to  interface  with the software RAID (MD) personalities.  This Page 36/37



       provided device-mapper with RAID 4/5/6 capabilities and a larger devel?

       opment  community.   Later, support for RAID1, RAID10, and RAID1E (RAID

       10 variants) were added.  Support for these new kernel RAID targets was

       added  to  LVM version 2.02.87.  The capabilities of the LVM raid1 type

       have surpassed the old mirror type.  raid1 is now  recommended  instead

       of  mirror.   raid1  became  the  default  for mirroring in LVM version

       2.02.100.

SEE ALSO

       lvm(8), lvm.conf(5), lvcreate(8), lvconvert(8), lvchange(8),

       lvextend(8), dmeventd(8)

Red Hat, Inc           LVM TOOLS 2.03.17(2) (2022-11-10)            LVMRAID(7)

Page 37/37


