
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'lirc.4' command

$ man lirc.4

LIRC(4) Linux Programmer's Manual LIRC(4)

NAME

 lirc - lirc devices

DESCRIPTION

 The /dev/lirc* character devices provide a low-level bidirectional in?

 terface to infra-red (IR) remotes. Most of these devices can receive,

 and some can send. When receiving or sending data, the driver works in

 two different modes depending on the underlying hardware.

 Some hardware (typically TV-cards) decodes the IR signal internally and

 provides decoded button presses as scancode values. Drivers for this

 kind of hardware work in LIRC_MODE_SCANCODE mode. Such hardware usu?

 ally does not support sending IR signals. Furthermore, such hardware

 can only decode a limited set of IR protocols, usually only the proto?

 col of the specific remote which is bundled with, for example, a TV-

 card.

 Other hardware provides a stream of pulse/space durations. Such driv?

 ers work in LIRC_MODE_MODE2 mode. Sometimes, this kind of hardware

 also supports sending IR data. Such hardware can be used with (almost)

 any kind of remote. This type of hardware can also be used in

 LIRC_MODE_SCANCODE mode, in which case the kernel IR decoders will de?

 code the IR. These decoders can be written in extended BPF (see

 bpf(2)) and attached to the lirc device.

 The LIRC_GET_FEATURES ioctl (see below) allows probing for whether re? Page 1/8

 ceiving and sending is supported, and in which modes, amongst other

 features.

 Reading input with the LIRC_MODE_MODE2 mode

 In the LIRC_MODE_MODE2 mode, the data returned by read(2) provides

 32-bit values representing a space or a pulse duration. The time of

 the duration (microseconds) is encoded in the lower 24 bits. The upper

 8 bits indicate the type of package:

 LIRC_MODE2_SPACE

 Value reflects a space duration (microseconds).

 LIRC_MODE2_PULSE

 Value reflects a pulse duration (microseconds).

 LIRC_MODE2_FREQUENCY

 Value reflects a frequency (Hz); see the LIRC_SET_MEASURE_CAR?

 RIER_MODE ioctl.

 LIRC_MODE2_TIMEOUT

 Value reflects a space duration (microseconds). The package re?

 flects a timeout; see the LIRC_SET_REC_TIMEOUT_REPORTS ioctl.

 Reading input with the LIRC_MODE_SCANCODE mode

 In the LIRC_MODE_SCANCODE mode, the data returned by read(2) reflects

 decoded button presses, in the struct lirc_scancode. The scancode is

 stored in the scancode field, and the IR protocol is stored in

 rc_proto. This field has one the values of the enum rc_proto.

 Writing output with the LIRC_MODE_PULSE mode

 The data written to the character device using write(2) is a

 pulse/space sequence of integer values. Pulses and spaces are only

 marked implicitly by their position. The data must start and end with

 a pulse, thus it must always include an odd number of samples. The

 write(2) function blocks until the data has been transmitted by the

 hardware. If more data is provided than the hardware can send, the

 write(2) call fails with the error EINVAL.

 Writing output with the LIRC_MODE_SCANCODE mode

 The data written to the character devices must be a single struct

 lirc_scancode. The scancode and rc_proto fields must filled in, all Page 2/8

 other fields must be 0. The kernel IR encoders will convert the scan?

 code to pulses and spaces. The protocol or scancode is invalid, or the

 lirc device cannot transmit.

IOCTL COMMANDS

 The LIRC device's ioctl definition is bound by the ioctl function defi?

 nition of struct file_operations, leaving us with an unsigned int for

 the ioctl command and an unsigned long for the argument. For the pur?

 poses of ioctl portability across 32-bit and 64-bit architectures,

 these values are capped to their 32-bit sizes.

 #include <linux/lirc.h> /* But see BUGS */

 int ioctl(int fd, int cmd, ...);

 The following ioctls can be used to probe or change specific lirc hard?

 ware settings. Many require a third argument, usually an int. re?

 ferred to below as val.

 Always Supported Commands

 /dev/lirc* devices always support the following commands:

 LIRC_GET_FEATURES (void)

 Returns a bit mask of combined features bits; see FEATURES.

 If a device returns an error code for LIRC_GET_FEATURES, it is safe to

 assume it is not a lirc device.

 Optional Commands

 Some lirc devices support the commands listed below. Unless otherwise

 stated, these fail with the error ENOTTY if the operation isn't sup?

 ported, or with the error EINVAL if the operation failed, or invalid

 arguments were provided. If a driver does not announce support of cer?

 tain features, invoking the corresponding ioctls will fail with the er?

 ror ENOTTY.

 LIRC_GET_REC_MODE (void)

 If the lirc device has no receiver, this operation fails with

 the error ENOTTY. Otherwise, it returns the receive mode, which

 will be one of:

 LIRC_MODE_MODE2

 The driver returns a sequence of pulse/space durations. Page 3/8

 LIRC_MODE_SCANCODE

 The driver returns struct lirc_scancode values, each of

 which represents a decoded button press.

 LIRC_SET_REC_MODE (int)

 Set the receive mode. val is either LIRC_MODE_SCANCODE or

 LIRC_MODE_MODE2. If the lirc device has no receiver, this oper?

 ation fails with the error ENOTTY.

 LIRC_GET_SEND_MODE (void)

 Return the send mode. LIRC_MODE_PULSE or LIRC_MODE_SCANCODE is

 supported. If the lirc device cannot send, this operation fails

 with the error ENOTTY.

 LIRC_SET_SEND_MODE (int)

 Set the send mode. val is either LIRC_MODE_SCANCODE or

 LIRC_MODE_PULSE. If the lirc device cannot send, this operation

 fails with the error ENOTTY.

 LIRC_SET_SEND_CARRIER (int)

 Set the modulation frequency. The argument is the frequency

 (Hz).

 LIRC_SET_SEND_DUTY_CYCLE (int)

 Set the carrier duty cycle. val is a number in the range

 [0,100] which describes the pulse width as a percentage of the

 total cycle. Currently, no special meaning is defined for 0 or

 100, but the values are reserved for future use.

 LIRC_GET_MIN_TIMEOUT (void), LIRC_GET_MAX_TIMEOUT (void)

 Some devices have internal timers that can be used to detect

 when there has been no IR activity for a long time. This can

 help lircd(8) in detecting that an IR signal is finished and can

 speed up the decoding process. These operations return integer

 values with the minimum/maximum timeout that can be set (mi?

 croseconds). Some devices have a fixed timeout. For such driv?

 ers, LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT will fail

 with the error ENOTTY.

 LIRC_SET_REC_TIMEOUT (int) Page 4/8

 Set the integer value for IR inactivity timeout (microseconds).

 To be accepted, the value must be within the limits defined by

 LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT. A value of 0 (if

 supported by the hardware) disables all hardware timeouts and

 data should be reported as soon as possible. If the exact value

 cannot be set, then the next possible value greater than the

 given value should be set.

 LIRC_GET_REC_TIMEOUT (void)

 Return the current inactivity timeout (microseconds). Available

 since Linux 4.18.

 LIRC_SET_REC_TIMEOUT_REPORTS (int)

 Enable (val is 1) or disable (val is 0) timeout packages in

 LIRC_MODE_MODE2. The behavior of this operation has varied

 across kernel versions:

 * Since Linux 4.16: each time the lirc device is opened, time?

 out reports are by default enabled for the resulting file de?

 scriptor. The LIRC_SET_REC_TIMEOUT operation can be used to

 disable (and, if desired, to later re-enable) the timeout on

 the file descriptor.

 * In Linux 4.15 and earlier: timeout reports are disabled by

 default, and enabling them (via LIRC_SET_REC_TIMEOUT) on any

 file descriptor associated with the lirc device has the ef?

 fect of enabling timeouts for all file descriptors referring

 to that device (until timeouts are disabled again).

 LIRC_SET_REC_CARRIER (int)

 Set the upper bound of the receive carrier frequency (Hz). See

 LIRC_SET_REC_CARRIER_RANGE.

 LIRC_SET_REC_CARRIER_RANGE (int)

 Sets the lower bound of the receive carrier frequency (Hz). For

 this to take affect, first set the lower bound using the

 LIRC_SET_REC_CARRIER_RANGE ioctl, and then the upper bound using

 the LIRC_SET_REC_CARRIER ioctl.

 LIRC_SET_MEASURE_CARRIER_MODE (int) Page 5/8

 Enable (val is 1) or disable (val is 0) the measure mode. If

 enabled, from the next key press on, the driver will send

 LIRC_MODE2_FREQUENCY packets. By default, this should be turned

 off.

 LIRC_GET_REC_RESOLUTION (void)

 Return the driver resolution (microseconds).

 LIRC_SET_TRANSMITTER_MASK (int)

 Enable the set of transmitters specified in val, which contains

 a bit mask where each enabled transmitter is a 1. The first

 transmitter is encoded by the least significant bit, and so on.

 When an invalid bit mask is given, for example a bit is set even

 though the device does not have so many transmitters, this oper?

 ation returns the number of available transmitters and does

 nothing otherwise.

 LIRC_SET_WIDEBAND_RECEIVER (int)

 Some devices are equipped with a special wide band receiver

 which is intended to be used to learn the output of an existing

 remote. This ioctl can be used to enable (val equals 1) or dis?

 able (val equals 0) this functionality. This might be useful

 for devices that otherwise have narrow band receivers that pre?

 vent them to be used with certain remotes. Wide band receivers

 may also be more precise. On the other hand, their disadvantage

 usually is reduced range of reception.

 Note: wide band receiver may be implicitly enabled if you enable

 carrier reports. In that case, it will be disabled as soon as

 you disable carrier reports. Trying to disable a wide band re?

 ceiver while carrier reports are active will do nothing.

FEATURES

 the LIRC_GET_FEATURES ioctl returns a bit mask describing features of

 the driver. The following bits may be returned in the mask:

 LIRC_CAN_REC_MODE2

 The driver is capable of receiving using LIRC_MODE_MODE2.

 LIRC_CAN_REC_SCANCODE Page 6/8

 The driver is capable of receiving using LIRC_MODE_SCANCODE.

 LIRC_CAN_SET_SEND_CARRIER

 The driver supports changing the modulation frequency using

 LIRC_SET_SEND_CARRIER.

 LIRC_CAN_SET_SEND_DUTY_CYCLE

 The driver supports changing the duty cycle using

 LIRC_SET_SEND_DUTY_CYCLE.

 LIRC_CAN_SET_TRANSMITTER_MASK

 The driver supports changing the active transmitter(s) using

 LIRC_SET_TRANSMITTER_MASK.

 LIRC_CAN_SET_REC_CARRIER

 The driver supports setting the receive carrier frequency using

 LIRC_SET_REC_CARRIER. Any lirc device since the drivers were

 merged in kernel release 2.6.36 must have LIRC_CAN_SET_REC_CAR?

 RIER_RANGE set if LIRC_CAN_SET_REC_CARRIER feature is set.

 LIRC_CAN_SET_REC_CARRIER_RANGE

 The driver supports LIRC_SET_REC_CARRIER_RANGE. The lower bound

 of the carrier must first be set using the LIRC_SET_REC_CAR?

 RIER_RANGE ioctl, before using the LIRC_SET_REC_CARRIER ioctl to

 set the upper bound.

 LIRC_CAN_GET_REC_RESOLUTION

 The driver supports LIRC_GET_REC_RESOLUTION.

 LIRC_CAN_SET_REC_TIMEOUT

 The driver supports LIRC_SET_REC_TIMEOUT.

 LIRC_CAN_MEASURE_CARRIER

 The driver supports measuring of the modulation frequency using

 LIRC_SET_MEASURE_CARRIER_MODE.

 LIRC_CAN_USE_WIDEBAND_RECEIVER

 The driver supports learning mode using LIRC_SET_WIDEBAND_RE?

 CEIVER.

 LIRC_CAN_SEND_PULSE

 The driver supports sending using LIRC_MODE_PULSE or

 LIRC_MODE_SCANCODE Page 7/8

BUGS

 Using these devices requires the kernel source header file lirc.h.

 This file is not available before kernel release 4.6. Users of older

 kernels could use the file bundled in ?http://www.lirc.org?.

SEE ALSO

 ir-ctl(1), lircd(8), bpf(2)

 https://www.kernel.org/doc/html/latest/media/uapi/rc/lirc-dev.html

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 LIRC(4)

Page 8/8

