

Full credit is given to the above companies including the OS that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'key_decryptsession.3' command

\$ man key_decryptsession.3

KEY_SETSECRET(3)

Linux Programmer's Manual

KEY_SETSECRET(3)

NAME

key_decryptsession, key_encryptsession, key_setsecret, key_gendes,

key_secretkey_is_set - interfaces to rpc keyserver daemon

SYNOPSIS

#include <rpc/rpc.h>

int key_decryptsession(char *remotename, des_block *deskey);

int key encryptsession(char *remotename, des block *deskey);

int key_gendes(des_block *deskey);

int key_setsecret(char *key);

int key_secretkey_is_set(void);

DESCRIPTION

The functions here are used within the RPC's secure authentication mechanism (AUTH_DES). There should be no need for user programs to use this functions.

The function key_decryptsession() uses the (remote) server netname and takes the DES key for decrypting. It uses the public key of the server and the secret key associated with the effective UID of the calling process.

The function key_encryptsession() is the inverse of key_decryptses? sion(). It encrypts the DES keys with the public key of the server and the secret key associated with the effective UID of the calling process.

Page 1/2

The function key_gendes() is used to ask the keyserver for a secure conversation key.

The function key_setsecret() is used to set the key for the effective UID of the calling process.

The function key_secretkey_is_set() can be used to determine whether a key has been set for the effective UID of the calling process.

RETURN VALUE

These functions return 1 on success and 0 on failure.

ATTRIBUTES

For an explanation of the terms used in this section, see at? tributes(7).

?Interface ? Attribute ? Value ?

?key_decryptsession(), ? Thread safety ? MT-Safe ?

?key_encryptsession(), ? ? ?

?key_gendes(), ? ? ?

?key_setsecret(), ? ? ?

?key secretkey is set()? ? ?

NOTES

Note that we talk about two types of encryption here. One is asymmet? ric using a public and secret key. The other is symmetric, the 64-bit DES.

These routines were part of the Linux/Doors-project, abandoned by now.

SEE ALSO

crypt(3)

COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.