
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'jq.1' command

$ man jq.1

JQ(1) JQ(1)

NAME

 jq - Command-line JSON processor

SYNOPSIS

 jq [options...] filter [files...]

 jq can transform JSON in various ways, by selecting, iterating, reduc?

 ing and otherwise mangling JSON documents. For instance, running the

 command jq ?map(.price) | add? will take an array of JSON objects as

 input and return the sum of their "price" fields.

 jq can accept text input as well, but by default, jq reads a stream of

 JSON entities (including numbers and other literals) from stdin. White?

 space is only needed to separate entities such as 1 and 2, and true and

 false. One or more files may be specified, in which case jq will read

 input from those instead.

 The options are described in the INVOKING JQ section; they mostly con?

 cern input and output formatting. The filter is written in the jq lan?

 guage and specifies how to transform the input file or document.

FILTERS

 A jq program is a "filter": it takes an input, and produces an output.

 There are a lot of builtin filters for extracting a particular field of

 an object, or converting a number to a string, or various other stan?

 dard tasks.

 Filters can be combined in various ways - you can pipe the output of Page 1/62

 one filter into another filter, or collect the output of a filter into

 an array.

 Some filters produce multiple results, for instance there?s one that

 produces all the elements of its input array. Piping that filter into a

 second runs the second filter for each element of the array. Generally,

 things that would be done with loops and iteration in other languages

 are just done by gluing filters together in jq.

 It?s important to remember that every filter has an input and an out?

 put. Even literals like "hello" or 42 are filters - they take an input

 but always produce the same literal as output. Operations that combine

 two filters, like addition, generally feed the same input to both and

 combine the results. So, you can implement an averaging filter as add /

 length - feeding the input array both to the add filter and the length

 filter and then performing the division.

 But that?s getting ahead of ourselves. :) Let?s start with something

 simpler:

INVOKING JQ

 jq filters run on a stream of JSON data. The input to jq is parsed as a

 sequence of whitespace-separated JSON values which are passed through

 the provided filter one at a time. The output(s) of the filter are

 written to standard out, again as a sequence of whitespace-separated

 JSON data.

 Note: it is important to mind the shell?s quoting rules. As a general

 rule it?s best to always quote (with single-quote characters) the jq

 program, as too many characters with special meaning to jq are also

 shell meta-characters. For example, jq "foo" will fail on most Unix

 shells because that will be the same as jq foo, which will generally

 fail because foo is not defined. When using the Windows command shell

 (cmd.exe) it?s best to use double quotes around your jq program when

 given on the command-line (instead of the -f program-file option), but

 then double-quotes in the jq program need backslash escaping.

 You can affect how jq reads and writes its input and output using some

 command-line options: Page 2/62

 ? --version:

 Output the jq version and exit with zero.

 ? --seq:

 Use the application/json-seq MIME type scheme for separating JSON

 texts in jq?s input and output. This means that an ASCII RS (record

 separator) character is printed before each value on output and an

 ASCII LF (line feed) is printed after every output. Input JSON

 texts that fail to parse are ignored (but warned about), discarding

 all subsequent input until the next RS. This mode also parses the

 output of jq without the --seq option.

 ? --stream:

 Parse the input in streaming fashion, outputing arrays of path and

 leaf values (scalars and empty arrays or empty objects). For exam?

 ple, "a" becomes [[],"a"], and [[],"a",["b"]] becomes [[0],[]],

 [[1],"a"], and [[1,0],"b"].

 This is useful for processing very large inputs. Use this in con?

 junction with filtering and the reduce and foreach syntax to reduce

 large inputs incrementally.

 ? --slurp/-s:

 Instead of running the filter for each JSON object in the input,

 read the entire input stream into a large array and run the filter

 just once.

 ? --raw-input/-R:

 Don?t parse the input as JSON. Instead, each line of text is passed

 to the filter as a string. If combined with --slurp, then the en?

 tire input is passed to the filter as a single long string.

 ? --null-input/-n:

 Don?t read any input at all! Instead, the filter is run once using

 null as the input. This is useful when using jq as a simple calcu?

 lator or to construct JSON data from scratch.

 ? --compact-output / -c:

 By default, jq pretty-prints JSON output. Using this option will

 result in more compact output by instead putting each JSON object Page 3/62

 on a single line.

 ? --tab:

 Use a tab for each indentation level instead of two spaces.

 ? --indent n:

 Use the given number of spaces (no more than 8) for indentation.

 ? --color-output / -C and --monochrome-output / -M:

 By default, jq outputs colored JSON if writing to a terminal. You

 can force it to produce color even if writing to a pipe or a file

 using -C, and disable color with -M.

 Colors can be configured with the JQ_COLORS environment variable

 (see below).

 ? --ascii-output / -a:

 jq usually outputs non-ASCII Unicode codepoints as UTF-8, even if

 the input specified them as escape sequences (like "\u03bc"). Using

 this option, you can force jq to produce pure ASCII output with ev?

 ery non-ASCII character replaced with the equivalent escape se?

 quence.

 ? --unbuffered

 Flush the output after each JSON object is printed (useful if

 you?re piping a slow data source into jq and piping jq?s output

 elsewhere).

 ? --sort-keys / -S:

 Output the fields of each object with the keys in sorted order.

 ? --raw-output / -r:

 With this option, if the filter?s result is a string then it will

 be written directly to standard output rather than being formatted

 as a JSON string with quotes. This can be useful for making jq fil?

 ters talk to non-JSON-based systems.

 ? --join-output / -j:

 Like -r but jq won?t print a newline after each output.

 ? -f filename / --from-file filename:

 Read filter from the file rather than from a command line, like

 awk?s -f option. You can also use ?#? to make comments. Page 4/62

 ? -Ldirectory / -L directory:

 Prepend directory to the search list for modules. If this option is

 used then no builtin search list is used. See the section on mod?

 ules below.

 ? -e / --exit-status:

 Sets the exit status of jq to 0 if the last output values was nei?

 ther false nor null, 1 if the last output value was either false or

 null, or 4 if no valid result was ever produced. Normally jq exits

 with 2 if there was any usage problem or system error, 3 if there

 was a jq program compile error, or 0 if the jq program ran.

 Another way to set the exit status is with the halt_error builtin

 function.

 ? --arg name value:

 This option passes a value to the jq program as a predefined vari?

 able. If you run jq with --arg foo bar, then $foo is available in

 the program and has the value "bar". Note that value will be

 treated as a string, so --arg foo 123 will bind $foo to "123".

 Named arguments are also available to the jq program as

 $ARGS.named.

 ? --argjson name JSON-text:

 This option passes a JSON-encoded value to the jq program as a pre?

 defined variable. If you run jq with --argjson foo 123, then $foo

 is available in the program and has the value 123.

 ? --slurpfile variable-name filename:

 This option reads all the JSON texts in the named file and binds an

 array of the parsed JSON values to the given global variable. If

 you run jq with --argfile foo bar, then $foo is available in the

 program and has an array whose elements correspond to the texts in

 the file named bar.

 ? --argfile variable-name filename:

 Do not use. Use --slurpfile instead.

 (This option is like --slurpfile, but when the file has just one

 text, then that is used, else an array of texts is used as in Page 5/62

 --slurpfile.)

 ? --args:

 Remaining arguments are positional string arguments. These are

 available to the jq program as $ARGS.positional[].

 ? --jsonargs:

 Remaining arguments are positional JSON text arguments. These are

 available to the jq program as $ARGS.positional[].

 ? --run-tests [filename]:

 Runs the tests in the given file or standard input. This must be

 the last option given and does not honor all preceding options. The

 input consists of comment lines, empty lines, and program lines

 followed by one input line, as many lines of output as are expected

 (one per output), and a terminating empty line. Compilation failure

 tests start with a line containing only "%%FAIL", then a line con?

 taining the program to compile, then a line containing an error

 message to compare to the actual.

 Be warned that this option can change backwards-incompatibly.

BASIC FILTERS

 Identity: .

 The absolute simplest filter is . . This is a filter that takes its in?

 put and produces it unchanged as output. That is, this is the identity

 operator.

 Since jq by default pretty-prints all output, this trivial program can

 be a useful way of formatting JSON output from, say, curl.

 jq ?.?

 "Hello, world!"

 => "Hello, world!"

 Object Identifier-Index: .foo, .foo.bar

 The simplest useful filter is .foo. When given a JSON object (aka dic?

 tionary or hash) as input, it produces the value at the key "foo", or

 null if there?s none present.

 A filter of the form .foo.bar is equivalent to .foo|.bar.

 This syntax only works for simple, identifier-like keys, that is, keys Page 6/62

 that are all made of alphanumeric characters and underscore, and which

 do not start with a digit.

 If the key contains special characters, you need to surround it with

 double quotes like this: ."foo$", or else .["foo$"].

 For example .["foo::bar"] and .["foo.bar"] work while .foo::bar does

 not, and .foo.bar means .["foo"].["bar"].

 jq ?.foo?

 {"foo": 42, "bar": "less interesting data"}

 => 42

 jq ?.foo?

 {"notfoo": true, "alsonotfoo": false}

 => null

 jq ?.["foo"]?

 {"foo": 42}

 => 42

 Optional Object Identifier-Index: .foo?

 Just like .foo, but does not output even an error when . is not an ar?

 ray or an object.

 jq ?.foo??

 {"foo": 42, "bar": "less interesting data"}

 => 42

 jq ?.foo??

 {"notfoo": true, "alsonotfoo": false}

 => null

 jq ?.["foo"]??

 {"foo": 42}

 => 42

 jq ?[.foo?]?

 [1,2]

 => []

 Generic Object Index: .[<string>]

 You can also look up fields of an object using syntax like .["foo"]

 (.foo above is a shorthand version of this, but only for identi? Page 7/62

 fier-like strings).

 Array Index: .[2]

 When the index value is an integer, .[<value>] can index arrays. Arrays

 are zero-based, so .[2] returns the third element.

 Negative indices are allowed, with -1 referring to the last element, -2

 referring to the next to last element, and so on.

 jq ?.[0]?

 [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]

 => {"name":"JSON", "good":true}

 jq ?.[2]?

 [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]

 => null

 jq ?.[-2]?

 [1,2,3]

 => 2

 Array/String Slice: .[10:15]

 The .[10:15] syntax can be used to return a subarray of an array or

 substring of a string. The array returned by .[10:15] will be of length

 5, containing the elements from index 10 (inclusive) to index 15 (ex?

 clusive). Either index may be negative (in which case it counts back?

 wards from the end of the array), or omitted (in which case it refers

 to the start or end of the array).

 jq ?.[2:4]?

 ["a","b","c","d","e"]

 => ["c", "d"]

 jq ?.[2:4]?

 "abcdefghi"

 => "cd"

 jq ?.[:3]?

 ["a","b","c","d","e"]

 => ["a", "b", "c"]

 jq ?.[-2:]?

 ["a","b","c","d","e"] Page 8/62

 => ["d", "e"]

 Array/Object Value Iterator: .[]

 If you use the .[index] syntax, but omit the index entirely, it will

 return all of the elements of an array. Running .[] with the input

 [1,2,3] will produce the numbers as three separate results, rather than

 as a single array.

 You can also use this on an object, and it will return all the values

 of the object.

 jq ?.[]?

 [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]

 => {"name":"JSON", "good":true}, {"name":"XML", "good":false}

 jq ?.[]?

 []

 =>

 jq ?.[]?

 {"a": 1, "b": 1}

 => 1, 1

 .[]?

 Like .[], but no errors will be output if . is not an array or object.

 Comma: ,

 If two filters are separated by a comma, then the same input will be

 fed into both and the two filters? output value streams will be con?

 catenated in order: first, all of the outputs produced by the left ex?

 pression, and then all of the outputs produced by the right. For in?

 stance, filter .foo, .bar, produces both the "foo" fields and "bar"

 fields as separate outputs.

 jq ?.foo, .bar?

 {"foo": 42, "bar": "something else", "baz": true}

 => 42, "something else"

 jq ?.user, .projects[]?

 {"user":"stedolan", "projects": ["jq", "wikiflow"]}

 => "stedolan", "jq", "wikiflow"

 jq ?.[4,2]? Page 9/62

 ["a","b","c","d","e"]

 => "e", "c"

 Pipe: |

 The | operator combines two filters by feeding the output(s) of the one

 on the left into the input of the one on the right. It?s pretty much

 the same as the Unix shell?s pipe, if you?re used to that.

 If the one on the left produces multiple results, the one on the right

 will be run for each of those results. So, the expression .[] | .foo

 retrieves the "foo" field of each element of the input array.

 Note that .a.b.c is the same as .a | .b | .c.

 Note too that . is the input value at the particular stage in a "pipe?

 line", specifically: where the . expression appears. Thus .a | . | .b

 is the same as .a.b, as the . in the middle refers to whatever value .a

 produced.

 jq ?.[] | .name?

 [{"name":"JSON", "good":true}, {"name":"XML", "good":false}]

 => "JSON", "XML"

 Parenthesis

 Parenthesis work as a grouping operator just as in any typical program?

 ming language.

 jq ?(. + 2) * 5?

 1

 => 15

TYPES AND VALUES

 jq supports the same set of datatypes as JSON - numbers, strings, bool?

 eans, arrays, objects (which in JSON-speak are hashes with only string

 keys), and "null".

 Booleans, null, strings and numbers are written the same way as in

 javascript. Just like everything else in jq, these simple values take

 an input and produce an output - 42 is a valid jq expression that takes

 an input, ignores it, and returns 42 instead.

 Array construction: []

 As in JSON, [] is used to construct arrays, as in [1,2,3]. The elements Page 10/62

 of the arrays can be any jq expression, including a pipeline. All of

 the results produced by all of the expressions are collected into one

 big array. You can use it to construct an array out of a known quantity

 of values (as in [.foo, .bar, .baz]) or to "collect" all the results of

 a filter into an array (as in [.items[].name])

 Once you understand the "," operator, you can look at jq?s array syntax

 in a different light: the expression [1,2,3] is not using a built-in

 syntax for comma-separated arrays, but is instead applying the [] oper?

 ator (collect results) to the expression 1,2,3 (which produces three

 different results).

 If you have a filter X that produces four results, then the expression

 [X] will produce a single result, an array of four elements.

 jq ?[.user, .projects[]]?

 {"user":"stedolan", "projects": ["jq", "wikiflow"]}

 => ["stedolan", "jq", "wikiflow"]

 jq ?[.[] | . * 2]?

 [1, 2, 3]

 => [2, 4, 6]

 Object Construction: {}

 Like JSON, {} is for constructing objects (aka dictionaries or hashes),

 as in: {"a": 42, "b": 17}.

 If the keys are "identifier-like", then the quotes can be left off, as

 in {a:42, b:17}. Keys generated by expressions need to be parenthe?

 sized, e.g., {("a"+"b"):59}.

 The value can be any expression (although you may need to wrap it in

 parentheses if it?s a complicated one), which gets applied to the {}

 expression?s input (remember, all filters have an input and an output).

 {foo: .bar}

 will produce the JSON object {"foo": 42} if given the JSON object

 {"bar":42, "baz":43} as its input. You can use this to select particu?

 lar fields of an object: if the input is an object with "user", "ti?

 tle", "id", and "content" fields and you just want "user" and "title",

 you can write Page 11/62

 {user: .user, title: .title}

 Because that is so common, there?s a shortcut syntax for it: {user, ti?

 tle}.

 If one of the expressions produces multiple results, multiple dictio?

 naries will be produced. If the input?s

 {"user":"stedolan","titles":["JQ Primer", "More JQ"]}

 then the expression

 {user, title: .titles[]}

 will produce two outputs:

 {"user":"stedolan", "title": "JQ Primer"}

 {"user":"stedolan", "title": "More JQ"}

 Putting parentheses around the key means it will be evaluated as an ex?

 pression. With the same input as above,

 {(.user): .titles}

 produces

 {"stedolan": ["JQ Primer", "More JQ"]}

 jq ?{user, title: .titles[]}?

 {"user":"stedolan","titles":["JQ Primer", "More JQ"]}

 => {"user":"stedolan", "title": "JQ Primer"}, {"user":"stedolan", "title": "More JQ"}

 jq ?{(.user): .titles}?

 {"user":"stedolan","titles":["JQ Primer", "More JQ"]}

 => {"stedolan": ["JQ Primer", "More JQ"]}

 Recursive Descent: ..

 Recursively descends ., producing every value. This is the same as the

 zero-argument recurse builtin (see below). This is intended to resemble

 the XPath // operator. Note that ..a does not work; use ..|.a instead.

 In the example below we use ..|.a? to find all the values of object

 keys "a" in any object found "below" ..

 This is particularly useful in conjunction with path(EXP) (also see be?

 low) and the ? operator.

 jq ?..|.a??

 [[{"a":1}]]

 => 1 Page 12/62

BUILTIN OPERATORS AND FUNCTIONS

 Some jq operator (for instance, +) do different things depending on the

 type of their arguments (arrays, numbers, etc.). However, jq never does

 implicit type conversions. If you try to add a string to an object

 you?ll get an error message and no result.

 Addition: +

 The operator + takes two filters, applies them both to the same input,

 and adds the results together. What "adding" means depends on the types

 involved:

 ? Numbers are added by normal arithmetic.

 ? Arrays are added by being concatenated into a larger array.

 ? Strings are added by being joined into a larger string.

 ? Objects are added by merging, that is, inserting all the key-value

 pairs from both objects into a single combined object. If both ob?

 jects contain a value for the same key, the object on the right of

 the + wins. (For recursive merge use the * operator.)

 null can be added to any value, and returns the other value unchanged.

 jq ?.a + 1?

 {"a": 7}

 => 8

 jq ?.a + .b?

 {"a": [1,2], "b": [3,4]}

 => [1,2,3,4]

 jq ?.a + null?

 {"a": 1}

 => 1

 jq ?.a + 1?

 {}

 => 1

 jq ?{a: 1} + {b: 2} + {c: 3} + {a: 42}?

 null

 => {"a": 42, "b": 2, "c": 3}

 Subtraction: - Page 13/62

 As well as normal arithmetic subtraction on numbers, the - operator can

 be used on arrays to remove all occurrences of the second array?s ele?

 ments from the first array.

 jq ?4 - .a?

 {"a":3}

 => 1

 jq ?. - ["xml", "yaml"]?

 ["xml", "yaml", "json"]

 => ["json"]

 Multiplication, division, modulo: *, /, and %

 These infix operators behave as expected when given two numbers. Divi?

 sion by zero raises an error. x % y computes x modulo y.

 Multiplying a string by a number produces the concatenation of that

 string that many times. "x" * 0 produces null.

 Dividing a string by another splits the first using the second as sepa?

 rators.

 Multiplying two objects will merge them recursively: this works like

 addition but if both objects contain a value for the same key, and the

 values are objects, the two are merged with the same strategy.

 jq ?10 / . * 3?

 5

 => 6

 jq ?. / ", "?

 "a, b,c,d, e"

 => ["a","b,c,d","e"]

 jq ?{"k": {"a": 1, "b": 2}} * {"k": {"a": 0,"c": 3}}?

 null

 => {"k": {"a": 0, "b": 2, "c": 3}}

 jq ?.[] | (1 / .)??

 [1,0,-1]

 => 1, -1

 length

 The builtin function length gets the length of various different types Page 14/62

 of value:

 ? The length of a string is the number of Unicode codepoints it con?

 tains (which will be the same as its JSON-encoded length in bytes

 if it?s pure ASCII).

 ? The length of an array is the number of elements.

 ? The length of an object is the number of key-value pairs.

 ? The length of null is zero.

 jq ?.[] | length? [[1,2], "string", {"a":2}, null] => 2, 6, 1, 0

 utf8bytelength

 The builtin function utf8bytelength outputs the number of bytes used to

 encode a string in UTF-8.

 jq ?utf8bytelength?

 "\u03bc"

 => 2

 keys, keys_unsorted

 The builtin function keys, when given an object, returns its keys in an

 array.

 The keys are sorted "alphabetically", by unicode codepoint order. This

 is not an order that makes particular sense in any particular language,

 but you can count on it being the same for any two objects with the

 same set of keys, regardless of locale settings.

 When keys is given an array, it returns the valid indices for that ar?

 ray: the integers from 0 to length-1.

 The keys_unsorted function is just like keys, but if the input is an

 object then the keys will not be sorted, instead the keys will roughly

 be in insertion order.

 jq ?keys?

 {"abc": 1, "abcd": 2, "Foo": 3}

 => ["Foo", "abc", "abcd"]

 jq ?keys?

 [42,3,35]

 => [0,1,2]

 has(key) Page 15/62

 The builtin function has returns whether the input object has the given

 key, or the input array has an element at the given index.

 has($key) has the same effect as checking whether $key is a member of

 the array returned by keys, although has will be faster.

 jq ?map(has("foo"))?

 [{"foo": 42}, {}]

 => [true, false]

 jq ?map(has(2))?

 [[0,1], ["a","b","c"]]

 => [false, true]

 in

 The builtin function in returns whether or not the input key is in the

 given object, or the input index corresponds to an element in the given

 array. It is, essentially, an inversed version of has.

 jq ?.[] | in({"foo": 42})?

 ["foo", "bar"]

 => true, false

 jq ?map(in([0,1]))?

 [2, 0]

 => [false, true]

 map(x), map_values(x)

 For any filter x, map(x) will run that filter for each element of the

 input array, and return the outputs in a new array. map(.+1) will in?

 crement each element of an array of numbers.

 Similarly, map_values(x) will run that filter for each element, but it

 will return an object when an object is passed.

 map(x) is equivalent to [.[] | x]. In fact, this is how it?s defined.

 Similarly, map_values(x) is defined as .[] |= x.

 jq ?map(.+1)?

 [1,2,3]

 => [2,3,4]

 jq ?map_values(.+1)?

 {"a": 1, "b": 2, "c": 3} Page 16/62

 => {"a": 2, "b": 3, "c": 4}

 path(path_expression)

 Outputs array representations of the given path expression in .. The

 outputs are arrays of strings (object keys) and/or numbers (array in?

 dices).

 Path expressions are jq expressions like .a, but also .[]. There are

 two types of path expressions: ones that can match exactly, and ones

 that cannot. For example, .a.b.c is an exact match path expression,

 while .a[].b is not.

 path(exact_path_expression) will produce the array representation of

 the path expression even if it does not exist in ., if . is null or an

 array or an object.

 path(pattern) will produce array representations of the paths matching

 pattern if the paths exist in ..

 Note that the path expressions are not different from normal expres?

 sions. The expression path(..|select(type=="boolean")) outputs all the

 paths to boolean values in ., and only those paths.

 jq ?path(.a[0].b)?

 null

 => ["a",0,"b"]

 jq ?[path(..)]?

 {"a":[{"b":1}]}

 => [[],["a"],["a",0],["a",0,"b"]]

 del(path_expression)

 The builtin function del removes a key and its corresponding value from

 an object.

 jq ?del(.foo)?

 {"foo": 42, "bar": 9001, "baz": 42}

 => {"bar": 9001, "baz": 42}

 jq ?del(.[1, 2])?

 ["foo", "bar", "baz"]

 => ["foo"]

 getpath(PATHS) Page 17/62

 The builtin function getpath outputs the values in . found at each path

 in PATHS.

 jq ?getpath(["a","b"])?

 null

 => null

 jq ?[getpath(["a","b"], ["a","c"])]?

 {"a":{"b":0, "c":1}}

 => [0, 1]

 setpath(PATHS; VALUE)

 The builtin function setpath sets the PATHS in . to VALUE.

 jq ?setpath(["a","b"]; 1)?

 null

 => {"a": {"b": 1}}

 jq ?setpath(["a","b"]; 1)?

 {"a":{"b":0}}

 => {"a": {"b": 1}}

 jq ?setpath([0,"a"]; 1)?

 null

 => [{"a":1}]

 delpaths(PATHS)

 The builtin function delpaths sets the PATHS in .. PATHS must be an ar?

 ray of paths, where each path is an array of strings and numbers.

 jq ?delpaths([["a","b"]])?

 {"a":{"b":1},"x":{"y":2}}

 => {"a":{},"x":{"y":2}}

 to_entries, from_entries, with_entries

 These functions convert between an object and an array of key-value

 pairs. If to_entries is passed an object, then for each k: v entry in

 the input, the output array includes {"key": k, "value": v}.

 from_entries does the opposite conversion, and with_entries(foo) is a

 shorthand for to_entries | map(foo) | from_entries, useful for doing

 some operation to all keys and values of an object. from_entries ac?

 cepts key, Key, name, Name, value and Value as keys. Page 18/62

 jq ?to_entries?

 {"a": 1, "b": 2}

 => [{"key":"a", "value":1}, {"key":"b", "value":2}]

 jq ?from_entries?

 [{"key":"a", "value":1}, {"key":"b", "value":2}]

 => {"a": 1, "b": 2}

 jq ?with_entries(.key |= "KEY_" + .)?

 {"a": 1, "b": 2}

 => {"KEY_a": 1, "KEY_b": 2}

 select(boolean_expression)

 The function select(foo) produces its input unchanged if foo returns

 true for that input, and produces no output otherwise.

 It?s useful for filtering lists: [1,2,3] | map(select(. >= 2)) will

 give you [2,3].

 jq ?map(select(. >= 2))?

 [1,5,3,0,7]

 => [5,3,7]

 jq ?.[] | select(.id == "second")?

 [{"id": "first", "val": 1}, {"id": "second", "val": 2}]

 => {"id": "second", "val": 2}

 arrays, objects, iterables, booleans, numbers, normals, finites, strings,

 nulls, values, scalars

 These built-ins select only inputs that are arrays, objects, iterables

 (arrays or objects), booleans, numbers, normal numbers, finite numbers,

 strings, null, non-null values, and non-iterables, respectively.

 jq ?.[]|numbers?

 [[],{},1,"foo",null,true,false]

 => 1

 empty

 empty returns no results. None at all. Not even null.

 It?s useful on occasion. You?ll know if you need it :)

 jq ?1, empty, 2?

 null Page 19/62

 => 1, 2

 jq ?[1,2,empty,3]?

 null

 => [1,2,3]

 error(message)

 Produces an error, just like .a applied to values other than null and

 objects would, but with the given message as the error?s value. Errors

 can be caught with try/catch; see below.

 halt

 Stops the jq program with no further outputs. jq will exit with exit

 status 0.

 halt_error, halt_error(exit_code)

 Stops the jq program with no further outputs. The input will be printed

 on stderr as raw output (i.e., strings will not have double quotes)

 with no decoration, not even a newline.

 The given exit_code (defaulting to 5) will be jq?s exit status.

 For example, "Error: somthing went wrong\n"|halt_error(1).

 $__loc__

 Produces an object with a "file" key and a "line" key, with the file?

 name and line number where $__loc__ occurs, as values.

 jq ?try error("\($__loc__)") catch .?

 null

 => "{\"file\":\"<top-level>\",\"line\":1}"

 paths, paths(node_filter), leaf_paths

 paths outputs the paths to all the elements in its input (except it

 does not output the empty list, representing . itself).

 paths(f) outputs the paths to any values for which f is true. That is,

 paths(numbers) outputs the paths to all numeric values.

 leaf_paths is an alias of paths(scalars); leaf_paths is deprecated and

 will be removed in the next major release.

 jq ?[paths]?

 [1,[[],{"a":2}]]

 => [[0],[1],[1,0],[1,1],[1,1,"a"]] Page 20/62

 jq ?[paths(scalars)]?

 [1,[[],{"a":2}]]

 => [[0],[1,1,"a"]]

 add

 The filter add takes as input an array, and produces as output the ele?

 ments of the array added together. This might mean summed, concatenated

 or merged depending on the types of the elements of the input array -

 the rules are the same as those for the + operator (described above).

 If the input is an empty array, add returns null.

 jq ?add?

 ["a","b","c"]

 => "abc"

 jq ?add?

 [1, 2, 3]

 => 6

 jq ?add?

 []

 => null

 any, any(condition), any(generator; condition)

 The filter any takes as input an array of boolean values, and produces

 true as output if any of the elements of the array are true.

 If the input is an empty array, any returns false.

 The any(condition) form applies the given condition to the elements of

 the input array.

 The any(generator; condition) form applies the given condition to all

 the outputs of the given generator.

 jq ?any?

 [true, false]

 => true

 jq ?any?

 [false, false]

 => false

 jq ?any? Page 21/62

 []

 => false

 all, all(condition), all(generator; condition)

 The filter all takes as input an array of boolean values, and produces

 true as output if all of the elements of the array are true.

 The all(condition) form applies the given condition to the elements of

 the input array.

 The all(generator; condition) form applies the given condition to all

 the outputs of the given generator.

 If the input is an empty array, all returns true.

 jq ?all?

 [true, false]

 => false

 jq ?all?

 [true, true]

 => true

 jq ?all?

 []

 => true

 flatten, flatten(depth)

 The filter flatten takes as input an array of nested arrays, and pro?

 duces a flat array in which all arrays inside the original array have

 been recursively replaced by their values. You can pass an argument to

 it to specify how many levels of nesting to flatten.

 flatten(2) is like flatten, but going only up to two levels deep.

 jq ?flatten?

 [1, [2], [[3]]]

 => [1, 2, 3]

 jq ?flatten(1)?

 [1, [2], [[3]]]

 => [1, 2, [3]]

 jq ?flatten?

 [[]] Page 22/62

 => []

 jq ?flatten?

 [{"foo": "bar"}, [{"foo": "baz"}]]

 => [{"foo": "bar"}, {"foo": "baz"}]

 range(upto), range(from;upto) range(from;upto;by)

 The range function produces a range of numbers. range(4;10) produces 6

 numbers, from 4 (inclusive) to 10 (exclusive). The numbers are produced

 as separate outputs. Use [range(4;10)] to get a range as an array.

 The one argument form generates numbers from 0 to the given number,

 with an increment of 1.

 The two argument form generates numbers from from to upto with an in?

 crement of 1.

 The three argument form generates numbers from to upto with an incre?

 ment of by.

 jq ?range(2;4)?

 null

 => 2, 3

 jq ?[range(2;4)]?

 null

 => [2,3]

 jq ?[range(4)]?

 null

 => [0,1,2,3]

 jq ?[range(0;10;3)]?

 null

 => [0,3,6,9]

 jq ?[range(0;10;-1)]?

 null

 => []

 jq ?[range(0;-5;-1)]?

 null

 => [0,-1,-2,-3,-4]

 floor Page 23/62

 The floor function returns the floor of its numeric input.

 jq ?floor?

 3.14159

 => 3

 sqrt

 The sqrt function returns the square root of its numeric input.

 jq ?sqrt?

 9

 => 3

 tonumber

 The tonumber function parses its input as a number. It will convert

 correctly-formatted strings to their numeric equivalent, leave numbers

 alone, and give an error on all other input.

 jq ?.[] | tonumber?

 [1, "1"]

 => 1, 1

 tostring

 The tostring function prints its input as a string. Strings are left

 unchanged, and all other values are JSON-encoded.

 jq ?.[] | tostring?

 [1, "1", [1]]

 => "1", "1", "[1]"

 type

 The type function returns the type of its argument as a string, which

 is one of null, boolean, number, string, array or object.

 jq ?map(type)?

 [0, false, [], {}, null, "hello"]

 => ["number", "boolean", "array", "object", "null", "string"]

 infinite, nan, isinfinite, isnan, isfinite, isnormal

 Some arithmetic operations can yield infinities and "not a number"

 (NaN) values. The isinfinite builtin returns true if its input is infi?

 nite. The isnan builtin returns true if its input is a NaN. The infi?

 nite builtin returns a positive infinite value. The nan builtin returns Page 24/62

 a NaN. The isnormal builtin returns true if its input is a normal num?

 ber.

 Note that division by zero raises an error.

 Currently most arithmetic operations operating on infinities, NaNs, and

 sub-normals do not raise errors.

 jq ?.[] | (infinite * .) < 0?

 [-1, 1]

 => true, false

 jq ?infinite, nan | type?

 null

 => "number", "number"

 sort, sort_by(path_expression)

 The sort functions sorts its input, which must be an array. Values are

 sorted in the following order:

 ? null

 ? false

 ? true

 ? numbers

 ? strings, in alphabetical order (by unicode codepoint value)

 ? arrays, in lexical order

 ? objects

 The ordering for objects is a little complex: first they?re compared by

 comparing their sets of keys (as arrays in sorted order), and if their

 keys are equal then the values are compared key by key.

 sort may be used to sort by a particular field of an object, or by ap?

 plying any jq filter.

 sort_by(foo) compares two elements by comparing the result of foo on

 each element.

 jq ?sort?

 [8,3,null,6]

 => [null,3,6,8]

 jq ?sort_by(.foo)?

 [{"foo":4, "bar":10}, {"foo":3, "bar":100}, {"foo":2, "bar":1}] Page 25/62

 => [{"foo":2, "bar":1}, {"foo":3, "bar":100}, {"foo":4, "bar":10}]

 group_by(path_expression)

 group_by(.foo) takes as input an array, groups the elements having the

 same .foo field into separate arrays, and produces all of these arrays

 as elements of a larger array, sorted by the value of the .foo field.

 Any jq expression, not just a field access, may be used in place of

 .foo. The sorting order is the same as described in the sort function

 above.

 jq ?group_by(.foo)?

 [{"foo":1, "bar":10}, {"foo":3, "bar":100}, {"foo":1, "bar":1}]

 => [[{"foo":1, "bar":10}, {"foo":1, "bar":1}], [{"foo":3, "bar":100}]]

 min, max, min_by(path_exp), max_by(path_exp)

 Find the minimum or maximum element of the input array.

 The min_by(path_exp) and max_by(path_exp) functions allow you to spec?

 ify a particular field or property to examine, e.g. min_by(.foo) finds

 the object with the smallest foo field.

 jq ?min?

 [5,4,2,7]

 => 2

 jq ?max_by(.foo)?

 [{"foo":1, "bar":14}, {"foo":2, "bar":3}]

 => {"foo":2, "bar":3}

 unique, unique_by(path_exp)

 The unique function takes as input an array and produces an array of

 the same elements, in sorted order, with duplicates removed.

 The unique_by(path_exp) function will keep only one element for each

 value obtained by applying the argument. Think of it as making an array

 by taking one element out of every group produced by group.

 jq ?unique?

 [1,2,5,3,5,3,1,3]

 => [1,2,3,5]

 jq ?unique_by(.foo)?

 [{"foo": 1, "bar": 2}, {"foo": 1, "bar": 3}, {"foo": 4, "bar": 5}] Page 26/62

 => [{"foo": 1, "bar": 2}, {"foo": 4, "bar": 5}]

 jq ?unique_by(length)?

 ["chunky", "bacon", "kitten", "cicada", "asparagus"]

 => ["bacon", "chunky", "asparagus"]

 reverse

 This function reverses an array.

 jq ?reverse?

 [1,2,3,4]

 => [4,3,2,1]

 contains(element)

 The filter contains(b) will produce true if b is completely contained

 within the input. A string B is contained in a string A if B is a sub?

 string of A. An array B is contained in an array A if all elements in B

 are contained in any element in A. An object B is contained in object A

 if all of the values in B are contained in the value in A with the same

 key. All other types are assumed to be contained in each other if they

 are equal.

 jq ?contains("bar")?

 "foobar"

 => true

 jq ?contains(["baz", "bar"])?

 ["foobar", "foobaz", "blarp"]

 => true

 jq ?contains(["bazzzzz", "bar"])?

 ["foobar", "foobaz", "blarp"]

 => false

 jq ?contains({foo: 12, bar: [{barp: 12}]})?

 {"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]}

 => true

 jq ?contains({foo: 12, bar: [{barp: 15}]})?

 {"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]}

 => false

 indices(s) Page 27/62

 Outputs an array containing the indices in . where s occurs. The input

 may be an array, in which case if s is an array then the indices output

 will be those where all elements in . match those of s.

 jq ?indices(", ")?

 "a,b, cd, efg, hijk"

 => [3,7,12]

 jq ?indices(1)?

 [0,1,2,1,3,1,4]

 => [1,3,5]

 jq ?indices([1,2])?

 [0,1,2,3,1,4,2,5,1,2,6,7]

 => [1,8]

 index(s), rindex(s)

 Outputs the index of the first (index) or last (rindex) occurrence of s

 in the input.

 jq ?index(", ")?

 "a,b, cd, efg, hijk"

 => 3

 jq ?rindex(", ")?

 "a,b, cd, efg, hijk"

 => 12

 inside

 The filter inside(b) will produce true if the input is completely con?

 tained within b. It is, essentially, an inversed version of contains.

 jq ?inside("foobar")?

 "bar"

 => true

 jq ?inside(["foobar", "foobaz", "blarp"])?

 ["baz", "bar"]

 => true

 jq ?inside(["foobar", "foobaz", "blarp"])?

 ["bazzzzz", "bar"]

 => false Page 28/62

 jq ?inside({"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]})?

 {"foo": 12, "bar": [{"barp": 12}]}

 => true

 jq ?inside({"foo": 12, "bar":[1,2,{"barp":12, "blip":13}]})?

 {"foo": 12, "bar": [{"barp": 15}]}

 => false

 startswith(str)

 Outputs true if . starts with the given string argument.

 jq ?[.[]|startswith("foo")]?

 ["fo", "foo", "barfoo", "foobar", "barfoob"]

 => [false, true, false, true, false]

 endswith(str)

 Outputs true if . ends with the given string argument.

 jq ?[.[]|endswith("foo")]?

 ["foobar", "barfoo"]

 => [false, true]

 combinations, combinations(n)

 Outputs all combinations of the elements of the arrays in the input ar?

 ray. If given an argument n, it outputs all combinations of n repeti?

 tions of the input array.

 jq ?combinations?

 [[1,2], [3, 4]]

 => [1, 3], [1, 4], [2, 3], [2, 4]

 jq ?combinations(2)?

 [0, 1]

 => [0, 0], [0, 1], [1, 0], [1, 1]

 ltrimstr(str)

 Outputs its input with the given prefix string removed, if it starts

 with it.

 jq ?[.[]|ltrimstr("foo")]?

 ["fo", "foo", "barfoo", "foobar", "afoo"]

 => ["fo","","barfoo","bar","afoo"]

 rtrimstr(str) Page 29/62

 Outputs its input with the given suffix string removed, if it ends with

 it.

 jq ?[.[]|rtrimstr("foo")]?

 ["fo", "foo", "barfoo", "foobar", "foob"]

 => ["fo","","bar","foobar","foob"]

 explode

 Converts an input string into an array of the string?s codepoint num?

 bers.

 jq ?explode?

 "foobar"

 => [102,111,111,98,97,114]

 implode

 The inverse of explode.

 jq ?implode?

 [65, 66, 67]

 => "ABC"

 split(str)

 Splits an input string on the separator argument.

 jq ?split(", ")?

 "a, b,c,d, e, "

 => ["a","b,c,d","e",""]

 join(str)

 Joins the array of elements given as input, using the argument as sepa?

 rator. It is the inverse of split: that is, running split("foo") |

 join("foo") over any input string returns said input string.

 Numbers and booleans in the input are converted to strings. Null values

 are treated as empty strings. Arrays and objects in the input are not

 supported.

 jq ?join(", ")?

 ["a","b,c,d","e"]

 => "a, b,c,d, e"

 jq ?join(" ")?

 ["a",1,2.3,true,null,false] Page 30/62

 => "a 1 2.3 true false"

 ascii_downcase, ascii_upcase

 Emit a copy of the input string with its alphabetic characters (a-z and

 A-Z) converted to the specified case.

 while(cond; update)

 The while(cond; update) function allows you to repeatedly apply an up?

 date to . until cond is false.

 Note that while(cond; update) is internally defined as a recursive jq

 function. Recursive calls within while will not consume additional mem?

 ory if update produces at most one output for each input. See advanced

 topics below.

 jq ?[while(.<100; .*2)]?

 1

 => [1,2,4,8,16,32,64]

 until(cond; next)

 The until(cond; next) function allows you to repeatedly apply the ex?

 pression next, initially to . then to its own output, until cond is

 true. For example, this can be used to implement a factorial function

 (see below).

 Note that until(cond; next) is internally defined as a recursive jq

 function. Recursive calls within until() will not consume additional

 memory if next produces at most one output for each input. See advanced

 topics below.

 jq ?[.,1]|until(.[0] < 1; [.[0] - 1, .[1] * .[0]])|.[1]?

 4

 => 24

 recurse(f), recurse, recurse(f; condition), recurse_down

 The recurse(f) function allows you to search through a recursive struc?

 ture, and extract interesting data from all levels. Suppose your input

 represents a filesystem:

 {"name": "/", "children": [

 {"name": "/bin", "children": [

 {"name": "/bin/ls", "children": []}, Page 31/62

 {"name": "/bin/sh", "children": []}]},

 {"name": "/home", "children": [

 {"name": "/home/stephen", "children": [

 {"name": "/home/stephen/jq", "children": []}]}]}]}

 Now suppose you want to extract all of the filenames present. You need

 to retrieve .name, .children[].name, .children[].children[].name, and

 so on. You can do this with:

 recurse(.children[]) | .name

 When called without an argument, recurse is equivalent to re?

 curse(.[]?).

 recurse(f) is identical to recurse(f; . != null) and can be used with?

 out concerns about recursion depth.

 recurse(f; condition) is a generator which begins by emitting . and

 then emits in turn .|f, .|f|f, .|f|f|f, ... so long as the computed

 value satisfies the condition. For example, to generate all the inte?

 gers, at least in principle, one could write recurse(.+1; true).

 For legacy reasons, recurse_down exists as an alias to calling recurse

 without arguments. This alias is considered deprecated and will be re?

 moved in the next major release.

 The recursive calls in recurse will not consume additional memory when?

 ever f produces at most a single output for each input.

 jq ?recurse(.foo[])?

 {"foo":[{"foo": []}, {"foo":[{"foo":[]}]}]}

 => {"foo":[{"foo":[]},{"foo":[{"foo":[]}]}]}, {"foo":[]}, {"foo":[{"foo":[]}]}, {"foo":[]}

 jq ?recurse?

 {"a":0,"b":[1]}

 => {"a":0,"b":[1]}, 0, [1], 1

 jq ?recurse(. * .; . < 20)?

 2

 => 2, 4, 16

 walk(f)

 The walk(f) function applies f recursively to every component of the

 input entity. When an array is encountered, f is first applied to its Page 32/62

 elements and then to the array itself; when an object is encountered, f

 is first applied to all the values and then to the object. In practice,

 f will usually test the type of its input, as illustrated in the fol?

 lowing examples. The first example highlights the usefulness of pro?

 cessing the elements of an array of arrays before processing the array

 itself. The second example shows how all the keys of all the objects

 within the input can be considered for alteration.

 jq ?walk(if type == "array" then sort else . end)?

 [[4, 1, 7], [8, 5, 2], [3, 6, 9]]

 => [[1,4,7],[2,5,8],[3,6,9]]

 jq ?walk(if type == "object" then with_entries(.key |= sub("^_+"; "")) else . end)?

 [{ "_a": { "__b": 2 } }]

 => [{"a":{"b":2}}]

 $ENV, env

 $ENV is an object representing the environment variables as set when

 the jq program started.

 env outputs an object representing jq?s current environment.

 At the moment there is no builtin for setting environment variables.

 jq ?$ENV.PAGER?

 null

 => "less"

 jq ?env.PAGER?

 null

 => "less"

 transpose

 Transpose a possibly jagged matrix (an array of arrays). Rows are

 padded with nulls so the result is always rectangular.

 jq ?transpose?

 [[1], [2,3]]

 => [[1,2],[null,3]]

 bsearch(x)

 bsearch(x) conducts a binary search for x in the input array. If the

 input is sorted and contains x, then bsearch(x) will return its index Page 33/62

 in the array; otherwise, if the array is sorted, it will return (-1 -

 ix) where ix is an insertion point such that the array would still be

 sorted after the insertion of x at ix. If the array is not sorted,

 bsearch(x) will return an integer that is probably of no interest.

 jq ?bsearch(0)?

 [0,1]

 => 0

 jq ?bsearch(0)?

 [1,2,3]

 => -1

 jq ?bsearch(4) as $ix | if $ix < 0 then .[-(1+$ix)] = 4 else . end?

 [1,2,3]

 => [1,2,3,4]

 String interpolation - \(foo)

 Inside a string, you can put an expression inside parens after a back?

 slash. Whatever the expression returns will be interpolated into the

 string.

 jq ?"The input was \(.), which is one less than \(.+1)"?

 42

 => "The input was 42, which is one less than 43"

 Convert to/from JSON

 The tojson and fromjson builtins dump values as JSON texts or parse

 JSON texts into values, respectively. The tojson builtin differs from

 tostring in that tostring returns strings unmodified, while tojson en?

 codes strings as JSON strings.

 jq ?[.[]|tostring]?

 [1, "foo", ["foo"]]

 => ["1","foo","[\"foo\"]"]

 jq ?[.[]|tojson]?

 [1, "foo", ["foo"]]

 => ["1","\"foo\"","[\"foo\"]"]

 jq ?[.[]|tojson|fromjson]?

 [1, "foo", ["foo"]] Page 34/62

 => [1,"foo",["foo"]]

 Format strings and escaping

 The @foo syntax is used to format and escape strings, which is useful

 for building URLs, documents in a language like HTML or XML, and so

 forth. @foo can be used as a filter on its own, the possible escapings

 are:

 @text:

 Calls tostring, see that function for details.

 @json:

 Serializes the input as JSON.

 @html:

 Applies HTML/XML escaping, by mapping the characters <>&?" to

 their entity equivalents <, >, &, ', ".

 @uri:

 Applies percent-encoding, by mapping all reserved URI characters

 to a %XX sequence.

 @csv:

 The input must be an array, and it is rendered as CSV with dou?

 ble quotes for strings, and quotes escaped by repetition.

 @tsv:

 The input must be an array, and it is rendered as TSV (tab-sepa?

 rated values). Each input array will be printed as a single

 line. Fields are separated by a single tab (ascii 0x09). Input

 characters line-feed (ascii 0x0a), carriage-return (ascii 0x0d),

 tab (ascii 0x09) and backslash (ascii 0x5c) will be output as

 escape sequences \n, \r, \t, \\ respectively.

 @sh:

 The input is escaped suitable for use in a command-line for a

 POSIX shell. If the input is an array, the output will be a se?

 ries of space-separated strings.

 @base64:

 The input is converted to base64 as specified by RFC 4648.

 @base64d: Page 35/62

 The inverse of @base64, input is decoded as specified by RFC

 4648. Note: If the decoded string is not UTF-8, the results are

 undefined.

 This syntax can be combined with string interpolation in a useful way.

 You can follow a @foo token with a string literal. The contents of the

 string literal will not be escaped. However, all interpolations made

 inside that string literal will be escaped. For instance,

 @uri "https://www.google.com/search?q=\(.search)"

 will produce the following output for the input {"search":"what is

 jq?"}:

 "https://www.google.com/search?q=what%20is%20jq%3F"

 Note that the slashes, question mark, etc. in the URL are not escaped,

 as they were part of the string literal.

 jq ?@html?

 "This works if x < y"

 => "This works if x < y"

 jq ?@sh "echo \(.)"?

 "O?Hara?s Ale"

 => "echo ?O?\\??Hara?\\??s Ale?"

 jq ?@base64?

 "This is a message"

 => "VGhpcyBpcyBhIG1lc3NhZ2U="

 jq ?@base64d?

 "VGhpcyBpcyBhIG1lc3NhZ2U="

 => "This is a message"

 Dates

 jq provides some basic date handling functionality, with some

 high-level and low-level builtins. In all cases these builtins deal ex?

 clusively with time in UTC.

 The fromdateiso8601 builtin parses datetimes in the ISO 8601 format to

 a number of seconds since the Unix epoch (1970-01-01T00:00:00Z). The

 todateiso8601 builtin does the inverse.

 The fromdate builtin parses datetime strings. Currently fromdate only Page 36/62

 supports ISO 8601 datetime strings, but in the future it will attempt

 to parse datetime strings in more formats.

 The todate builtin is an alias for todateiso8601.

 The now builtin outputs the current time, in seconds since the Unix

 epoch.

 Low-level jq interfaces to the C-library time functions are also pro?

 vided: strptime, strftime, strflocaltime, mktime, gmtime, and local?

 time. Refer to your host operating system?s documentation for the for?

 mat strings used by strptime and strftime. Note: these are not neces?

 sarily stable interfaces in jq, particularly as to their localization

 functionality.

 The gmtime builtin consumes a number of seconds since the Unix epoch

 and outputs a "broken down time" representation of Greenwhich Meridian

 time as an array of numbers representing (in this order): the year, the

 month (zero-based), the day of the month (one-based), the hour of the

 day, the minute of the hour, the second of the minute, the day of the

 week, and the day of the year -- all one-based unless otherwise stated.

 The day of the week number may be wrong on some systems for dates be?

 fore March 1st 1900, or after December 31 2099.

 The localtime builtin works like the gmtime builtin, but using the lo?

 cal timezone setting.

 The mktime builtin consumes "broken down time" representations of time

 output by gmtime and strptime.

 The strptime(fmt) builtin parses input strings matching the fmt argu?

 ment. The output is in the "broken down time" representation consumed

 by gmtime and output by mktime.

 The strftime(fmt) builtin formats a time (GMT) with the given format.

 The strflocaltime does the same, but using the local timezone setting.

 The format strings for strptime and strftime are described in typical C

 library documentation. The format string for ISO 8601 datetime is

 "%Y-%m-%dT%H:%M:%SZ".

 jq may not support some or all of this date functionality on some sys?

 tems. In particular, the %u and %j specifiers for strptime(fmt) are not Page 37/62

 supported on macOS.

 jq ?fromdate?

 "2015-03-05T23:51:47Z"

 => 1425599507

 jq ?strptime("%Y-%m-%dT%H:%M:%SZ")?

 "2015-03-05T23:51:47Z"

 => [2015,2,5,23,51,47,4,63]

 jq ?strptime("%Y-%m-%dT%H:%M:%SZ")|mktime?

 "2015-03-05T23:51:47Z"

 => 1425599507

 SQL-Style Operators

 jq provides a few SQL-style operators.

 INDEX(stream; index_expression):

 This builtin produces an object whose keys are computed by the

 given index expression applied to each value from the given

 stream.

 JOIN($idx; stream; idx_expr; join_expr):

 This builtin joins the values from the given stream to the given

 index. The index?s keys are computed by applying the given index

 expression to each value from the given stream. An array of the

 value in the stream and the corresponding value from the index

 is fed to the given join expression to produce each result.

 JOIN($idx; stream; idx_expr):

 Same as JOIN($idx; stream; idx_expr; .).

 JOIN($idx; idx_expr):

 This builtin joins the input . to the given index, applying the

 given index expression to . to compute the index key. The join

 operation is as described above.

 IN(s):

 This builtin outputs true if . appears in the given stream, oth?

 erwise it outputs false.

 IN(source; s):

 This builtin outputs true if any value in the source stream ap? Page 38/62

 pears in the second stream, otherwise it outputs false.

 builtins

 Returns a list of all builtin functions in the format name/arity. Since

 functions with the same name but different arities are considered sepa?

 rate functions, all/0, all/1, and all/2 would all be present in the

 list.

CONDITIONALS AND COMPARISONS

 ==, !=

 The expression ?a == b? will produce ?true? if the result of a and b

 are equal (that is, if they represent equivalent JSON documents) and

 ?false? otherwise. In particular, strings are never considered equal to

 numbers. If you?re coming from Javascript, jq?s == is like Javascript?s

 === - considering values equal only when they have the same type as

 well as the same value.

 != is "not equal", and ?a != b? returns the opposite value of ?a == b?

 jq ?.[] == 1?

 [1, 1.0, "1", "banana"]

 => true, true, false, false

 if-then-else

 if A then B else C end will act the same as B if A produces a value

 other than false or null, but act the same as C otherwise.

 Checking for false or null is a simpler notion of "truthiness" than is

 found in Javascript or Python, but it means that you?ll sometimes have

 to be more explicit about the condition you want: you can?t test

 whether, e.g. a string is empty using if .name then A else B end,

 you?ll need something more like if (.name | length) > 0 then A else B

 end instead.

 If the condition A produces multiple results, then B is evaluated once

 for each result that is not false or null, and C is evaluated once for

 each false or null.

 More cases can be added to an if using elif A then B syntax.

 jq ?if . == 0 then

 "zero" elif . == 1 then "one" else "many" end? 2 => "many" Page 39/62

 >, >=, <=, <

 The comparison operators >, >=, <=, < return whether their left argu?

 ment is greater than, greater than or equal to, less than or equal to

 or less than their right argument (respectively).

 The ordering is the same as that described for sort, above.

 jq ?. < 5?

 2

 => true

 and/or/not

 jq supports the normal Boolean operators and/or/not. They have the same

 standard of truth as if expressions - false and null are considered

 "false values", and anything else is a "true value".

 If an operand of one of these operators produces multiple results, the

 operator itself will produce a result for each input.

 not is in fact a builtin function rather than an operator, so it is

 called as a filter to which things can be piped rather than with spe?

 cial syntax, as in .foo and .bar | not.

 These three only produce the values "true" and "false", and so are only

 useful for genuine Boolean operations, rather than the common

 Perl/Python/Ruby idiom of "value_that_may_be_null or default". If you

 want to use this form of "or", picking between two values rather than

 evaluating a condition, see the "//" operator below.

 jq ?42 and "a string"?

 null

 => true

 jq ?(true, false) or false?

 null

 => true, false

 jq ?(true, true) and (true, false)?

 null

 => true, false, true, false

 jq ?[true, false | not]?

 null Page 40/62

 => [false, true]

 Alternative operator: //

 A filter of the form a // b produces the same results as a, if a pro?

 duces results other than false and null. Otherwise, a // b produces the

 same results as b.

 This is useful for providing defaults: .foo // 1 will evaluate to 1 if

 there?s no .foo element in the input. It?s similar to how or is some?

 times used in Python (jq?s or operator is reserved for strictly Boolean

 operations).

 jq ?.foo // 42?

 {"foo": 19}

 => 19

 jq ?.foo // 42?

 {}

 => 42

 try-catch

 Errors can be caught by using try EXP catch EXP. The first expression

 is executed, and if it fails then the second is executed with the error

 message. The output of the handler, if any, is output as if it had been

 the output of the expression to try.

 The try EXP form uses empty as the exception handler.

 jq ?try .a catch ". is not an object"?

 true

 => ". is not an object"

 jq ?[.[]|try .a]?

 [{}, true, {"a":1}]

 => [null, 1]

 jq ?try error("some exception") catch .?

 true

 => "some exception"

 Breaking out of control structures

 A convenient use of try/catch is to break out of control structures

 like reduce, foreach, while, and so on. Page 41/62

 For example:

 # Repeat an expression until it raises "break" as an

 # error, then stop repeating without re-raising the error.

 # But if the error caught is not "break" then re-raise it.

 try repeat(exp) catch .=="break" then empty else error;

 jq has a syntax for named lexical labels to "break" or "go (back) to":

 label $out | ... break $out ...

 The break $label_name expression will cause the program to to act as

 though the nearest (to the left) label $label_name produced empty.

 The relationship between the break and corresponding label is lexical:

 the label has to be "visible" from the break.

 To break out of a reduce, for example:

 label $out | reduce .[] as $item (null; if .==false then break $out else ... end)

 The following jq program produces a syntax error:

 break $out

 because no label $out is visible.

 Error Suppression / Optional Operator: ?

 The ? operator, used as EXP?, is shorthand for try EXP.

 jq ?[.[]|(.a)?]?

 [{}, true, {"a":1}]

 => [null, 1]

REGULAR EXPRESSIONS (PCRE)

 jq uses the Oniguruma regular expression library, as do php, ruby,

 TextMate, Sublime Text, etc, so the description here will focus on jq

 specifics.

 The jq regex filters are defined so that they can be used using one of

 these patterns:

 STRING | FILTER(REGEX)

 STRING | FILTER(REGEX; FLAGS)

 STRING | FILTER([REGEX])

 STRING | FILTER([REGEX, FLAGS])

 where: * STRING, REGEX and FLAGS are jq strings and subject to jq

 string interpolation; * REGEX, after string interpolation, should be a Page 42/62

 valid PCRE regex; * FILTER is one of test, match, or capture, as de?

 scribed below.

 FLAGS is a string consisting of one of more of the supported flags:

 ? g - Global search (find all matches, not just the first)

 ? i - Case insensitive search

 ? m - Multi line mode (?.? will match newlines)

 ? n - Ignore empty matches

 ? p - Both s and m modes are enabled

 ? s - Single line mode (?^? -> ?\A?, ?$? -> ?\Z?)

 ? l - Find longest possible matches

 ? x - Extended regex format (ignore whitespace and comments)

 To match whitespace in an x pattern use an escape such as \s, e.g.

 ? test("a\sb", "x").

 Note that certain flags may also be specified within REGEX, e.g.

 ? jq -n ?("test", "TEst", "teST", "TEST") | test("(?i)te(?-i)st")?

 evaluates to: true, true, false, false.

 test(val), test(regex; flags)

 Like match, but does not return match objects, only true or false for

 whether or not the regex matches the input.

 jq ?test("foo")?

 "foo"

 => true

 jq ?.[] | test("a b c # spaces are ignored"; "ix")?

 ["xabcd", "ABC"]

 => true, true

 match(val), match(regex; flags)

 match outputs an object for each match it finds. Matches have the fol?

 lowing fields:

 ? offset - offset in UTF-8 codepoints from the beginning of the input

 ? length - length in UTF-8 codepoints of the match

 ? string - the string that it matched

 ? captures - an array of objects representing capturing groups.

 Capturing group objects have the following fields: Page 43/62

 ? offset - offset in UTF-8 codepoints from the beginning of the input

 ? length - length in UTF-8 codepoints of this capturing group

 ? string - the string that was captured

 ? name - the name of the capturing group (or null if it was unnamed)

 Capturing groups that did not match anything return an offset of -1

 jq ?match("(abc)+"; "g")?

 "abc abc"

 => {"offset": 0, "length": 3, "string": "abc", "captures": [{"offset": 0, "length": 3, "string": "abc", "name": null}]}, {"offset":

4, "length": 3, "string": "abc", "captures": [{"offset": 4, "length": 3, "string": "abc", "name": null}]}

 jq ?match("foo")?

 "foo bar foo"

 => {"offset": 0, "length": 3, "string": "foo", "captures": []}

 jq ?match(["foo", "ig"])?

 "foo bar FOO"

 => {"offset": 0, "length": 3, "string": "foo", "captures": []}, {"offset": 8, "length": 3, "string": "FOO", "captures": []}

 jq ?match("foo (?<bar123>bar)? foo"; "ig")?

 "foo bar foo foo foo"

 => {"offset": 0, "length": 11, "string": "foo bar foo", "captures": [{"offset": 4, "length": 3, "string": "bar", "name":

"bar123"}]}, {"offset": 12, "length": 8, "string": "foo foo", "captures": [{"offset": -1, "length": 0, "string": null, "name": "bar123"}]}

 jq ?[match("."; "g")] | length?

 "abc"

 => 3

 capture(val), capture(regex; flags)

 Collects the named captures in a JSON object, with the name of each

 capture as the key, and the matched string as the corresponding value.

 jq ?capture("(?<a>[a-z]+)-(?<n>[0-9]+)")?

 "xyzzy-14"

 => { "a": "xyzzy", "n": "14" }

 scan(regex), scan(regex; flags)

 Emit a stream of the non-overlapping substrings of the input that match

 the regex in accordance with the flags, if any have been specified. If

 there is no match, the stream is empty. To capture all the matches for

 each input string, use the idiom [expr], e.g. [scan(regex)]. Page 44/62

 split(regex; flags)

 For backwards compatibility, split splits on a string, not a regex.

 splits(regex), splits(regex; flags)

 These provide the same results as their split counterparts, but as a

 stream instead of an array.

 sub(regex; tostring) sub(regex; string; flags)

 Emit the string obtained by replacing the first match of regex in the

 input string with tostring, after interpolation. tostring should be a

 jq string, and may contain references to named captures. The named cap?

 tures are, in effect, presented as a JSON object (as constructed by

 capture) to tostring, so a reference to a captured variable named "x"

 would take the form: "(.x)".

 gsub(regex; string), gsub(regex; string; flags)

 gsub is like sub but all the non-overlapping occurrences of the regex

 are replaced by the string, after interpolation.

ADVANCED FEATURES

 Variables are an absolute necessity in most programming languages, but

 they?re relegated to an "advanced feature" in jq.

 In most languages, variables are the only means of passing around data.

 If you calculate a value, and you want to use it more than once, you?ll

 need to store it in a variable. To pass a value to another part of the

 program, you?ll need that part of the program to define a variable (as

 a function parameter, object member, or whatever) in which to place the

 data.

 It is also possible to define functions in jq, although this is is a

 feature whose biggest use is defining jq?s standard library (many jq

 functions such as map and find are in fact written in jq).

 jq has reduction operators, which are very powerful but a bit tricky.

 Again, these are mostly used internally, to define some useful bits of

 jq?s standard library.

 It may not be obvious at first, but jq is all about generators (yes, as

 often found in other languages). Some utilities are provided to help

 deal with generators. Page 45/62

 Some minimal I/O support (besides reading JSON from standard input, and

 writing JSON to standard output) is available.

 Finally, there is a module/library system.

 Variable / Symbolic Binding Operator: ... as $identifier | ...

 In jq, all filters have an input and an output, so manual plumbing is

 not necessary to pass a value from one part of a program to the next.

 Many expressions, for instance a + b, pass their input to two distinct

 subexpressions (here a and b are both passed the same input), so vari?

 ables aren?t usually necessary in order to use a value twice.

 For instance, calculating the average value of an array of numbers re?

 quires a few variables in most languages - at least one to hold the ar?

 ray, perhaps one for each element or for a loop counter. In jq, it?s

 simply add / length - the add expression is given the array and pro?

 duces its sum, and the length expression is given the array and pro?

 duces its length.

 So, there?s generally a cleaner way to solve most problems in jq than

 defining variables. Still, sometimes they do make things easier, so jq

 lets you define variables using expression as $variable. All variable

 names start with $. Here?s a slightly uglier version of the array-aver?

 aging example:

 length as $array_length | add / $array_length

 We?ll need a more complicated problem to find a situation where using

 variables actually makes our lives easier.

 Suppose we have an array of blog posts, with "author" and "title"

 fields, and another object which is used to map author usernames to

 real names. Our input looks like:

 {"posts": [{"title": "Frist psot", "author": "anon"},

 {"title": "A well-written article", "author": "person1"}],

 "realnames": {"anon": "Anonymous Coward",

 "person1": "Person McPherson"}}

 We want to produce the posts with the author field containing a real

 name, as in:

 {"title": "Frist psot", "author": "Anonymous Coward"} Page 46/62

 {"title": "A well-written article", "author": "Person McPherson"}

 We use a variable, $names, to store the realnames object, so that we

 can refer to it later when looking up author usernames:

 .realnames as $names | .posts[] | {title, author: $names[.author]}

 The expression exp as $x | ... means: for each value of expression exp,

 run the rest of the pipeline with the entire original input, and with

 $x set to that value. Thus as functions as something of a foreach loop.

 Just as {foo} is a handy way of writing {foo: .foo}, so {$foo} is a

 handy way of writing {foo:$foo}.

 Multiple variables may be declared using a single as expression by pro?

 viding a pattern that matches the structure of the input (this is known

 as "destructuring"):

 . as {realnames: $names, posts: [$first, $second]} | ...

 The variable declarations in array patterns (e.g., . as [$first, $sec?

 ond]) bind to the elements of the array in from the element at index

 zero on up, in order. When there is no value at the index for an array

 pattern element, null is bound to that variable.

 Variables are scoped over the rest of the expression that defines them,

 so

 .realnames as $names | (.posts[] | {title, author: $names[.author]})

 will work, but

 (.realnames as $names | .posts[]) | {title, author: $names[.author]}

 won?t.

 For programming language theorists, it?s more accurate to say that jq

 variables are lexically-scoped bindings. In particular there?s no way

 to change the value of a binding; one can only setup a new binding with

 the same name, but which will not be visible where the old one was.

 jq ?.bar as $x | .foo | . + $x?

 {"foo":10, "bar":200}

 => 210

 jq ?. as $i|[(.*2|. as $i| $i), $i]?

 5

 => [10,5] Page 47/62

 jq ?. as [$a, $b, {c: $c}] | $a + $b + $c?

 [2, 3, {"c": 4, "d": 5}]

 => 9

 jq ?.[] as [$a, $b] | {a: $a, b: $b}?

 [[0], [0, 1], [2, 1, 0]]

 => {"a":0,"b":null}, {"a":0,"b":1}, {"a":2,"b":1}

 Defining Functions

 You can give a filter a name using "def" syntax:

 def increment: . + 1;

 From then on, increment is usable as a filter just like a builtin func?

 tion (in fact, this is how many of the builtins are defined). A func?

 tion may take arguments:

 def map(f): [.[] | f];

 Arguments are passed as filters (functions with no arguments), not as

 values. The same argument may be referenced multiple times with differ?

 ent inputs (here f is run for each element of the input array). Argu?

 ments to a function work more like callbacks than like value arguments.

 This is important to understand. Consider:

 def foo(f): f|f;

 5|foo(.*2)

 The result will be 20 because f is .*2, and during the first invocation

 of f . will be 5, and the second time it will be 10 (5 * 2), so the re?

 sult will be 20. Function arguments are filters, and filters expect an

 input when invoked.

 If you want the value-argument behaviour for defining simple functions,

 you can just use a variable:

 def addvalue(f): f as $f | map(. + $f);

 Or use the short-hand:

 def addvalue($f): ...;

 With either definition, addvalue(.foo) will add the current input?s

 .foo field to each element of the array. Do note that calling ad?

 dvalue(.[]) will cause the map(. + $f) part to be evaluated once per

 value in the value of . at the call site. Page 48/62

 Multiple definitions using the same function name are allowed. Each

 re-definition replaces the previous one for the same number of function

 arguments, but only for references from functions (or main program)

 subsequent to the re-definition. See also the section below on scoping.

 jq ?def addvalue(f): . + [f]; map(addvalue(.[0]))?

 [[1,2],[10,20]]

 => [[1,2,1], [10,20,10]]

 jq ?def addvalue(f): f as $x | map(. + $x); addvalue(.[0])?

 [[1,2],[10,20]]

 => [[1,2,1,2], [10,20,1,2]]

 Scoping

 There are two types of symbols in jq: value bindings (a.k.a., "vari?

 ables"), and functions. Both are scoped lexically, with expressions be?

 ing able to refer only to symbols that have been defined "to the left"

 of them. The only exception to this rule is that functions can refer to

 themselves so as to be able to create recursive functions.

 For example, in the following expression there is a binding which is

 visible "to the right" of it, ... | .*3 as $times_three | [. +

 $times_three] | ..., but not "to the left". Consider this expression

 now, ... | (.*3 as $times_three | [.+ $times_three]) | ...: here the

 binding $times_three is not visible past the closing parenthesis.

 Reduce

 The reduce syntax in jq allows you to combine all of the results of an

 expression by accumulating them into a single answer. As an example,

 we?ll pass [3,2,1] to this expression:

 reduce .[] as $item (0; . + $item)

 For each result that .[] produces, . + $item is run to accumulate a

 running total, starting from 0. In this example, .[] produces the re?

 sults 3, 2, and 1, so the effect is similar to running something like

 this:

 0 | (3 as $item | . + $item) |

 (2 as $item | . + $item) |

 (1 as $item | . + $item) Page 49/62

 jq ?reduce .[] as $item (0; . + $item)?

 [10,2,5,3]

 => 20

 isempty(exp)

 Returns true if exp produces no outputs, false otherwise.

 jq ?isempty(empty)?

 null

 => true

 limit(n; exp)

 The limit function extracts up to n outputs from exp.

 jq ?[limit(3;.[])]?

 [0,1,2,3,4,5,6,7,8,9]

 => [0,1,2]

 first(expr), last(expr), nth(n; expr)

 The first(expr) and last(expr) functions extract the first and last

 values from expr, respectively.

 The nth(n; expr) function extracts the nth value output by expr. This

 can be defined as def nth(n; expr): last(limit(n + 1; expr));. Note

 that nth(n; expr) doesn?t support negative values of n.

 jq ?[first(range(.)), last(range(.)), nth(./2; range(.))]?

 10

 => [0,9,5]

 first, last, nth(n)

 The first and last functions extract the first and last values from any

 array at ..

 The nth(n) function extracts the nth value of any array at ..

 jq ?[range(.)]|[first, last, nth(5)]?

 10

 => [0,9,5]

 foreach

 The foreach syntax is similar to reduce, but intended to allow the con?

 struction of limit and reducers that produce intermediate results (see

 example). Page 50/62

 The form is foreach EXP as $var (INIT; UPDATE; EXTRACT). Like reduce,

 INIT is evaluated once to produce a state value, then each output of

 EXP is bound to $var, UPDATE is evaluated for each output of EXP with

 the current state and with $var visible. Each value output by UPDATE

 replaces the previous state. Finally, EXTRACT is evaluated for each new

 state to extract an output of foreach.

 This is mostly useful only for constructing reduce- and limit-like

 functions. But it is much more general, as it allows for partial reduc?

 tions (see the example below).

 jq ?[foreach .[] as $item ([[],[]]; if $item == null then [[],.[0]] else [(.[0] + [$item]),[]] end; if $item == null then .[1] else

empty end)]?

 [1,2,3,4,null,"a","b",null]

 => [[1,2,3,4],["a","b"]]

 Recursion

 As described above, recurse uses recursion, and any jq function can be

 recursive. The while builtin is also implemented in terms of recursion.

 Tail calls are optimized whenever the expression to the left of the re?

 cursive call outputs its last value. In practice this means that the

 expression to the left of the recursive call should not produce more

 than one output for each input.

 For example:

 def recurse(f): def r: ., (f | select(. != null) | r); r;

 def while(cond; update):

 def _while:

 if cond then ., (update | _while) else empty end;

 _while;

 def repeat(exp):

 def _repeat:

 exp, _repeat;

 _repeat;

 Generators and iterators

 Some jq operators and functions are actually generators in that they

 can produce zero, one, or more values for each input, just as one might Page 51/62

 expect in other programming languages that have generators. For exam?

 ple, .[] generates all the values in its input (which must be an array

 or an object), range(0; 10) generates the integers between 0 and 10,

 and so on.

 Even the comma operator is a generator, generating first the values

 generated by the expression to the left of the comma, then for each of

 those, the values generate by the expression on the right of the comma.

 The empty builtin is the generator that produces zero outputs. The

 empty builtin backtracks to the preceding generator expression.

 All jq functions can be generators just by using builtin generators. It

 is also possible to define new generators using only recursion and the

 comma operator. If the recursive call(s) is(are) "in tail position"

 then the generator will be efficient. In the example below the recur?

 sive call by _range to itself is in tail position. The example shows

 off three advanced topics: tail recursion, generator construction, and

 sub-functions.

 jq ?def range(init; upto; by): def _range: if (by > 0 and . < upto) or (by < 0 and . > upto) then ., ((.+by)|_range) else .

end; if by == 0 then init else init|_range end | select((by > 0 and . < upto) or (by < 0 and . > upto)); range(0; 10; 3)?

 null

 => 0, 3, 6, 9

 jq ?def while(cond; update): def _while: if cond then ., (update | _while) else empty end; _while; [while(.<100; .*2)]?

 1

 => [1,2,4,8,16,32,64]

MATH

 jq currently only has IEEE754 double-precision (64-bit) floating point

 number support.

 Besides simple arithmetic operators such as +, jq also has most stan?

 dard math functions from the C math library. C math functions that take

 a single input argument (e.g., sin()) are available as zero-argument jq

 functions. C math functions that take two input arguments (e.g., pow())

 are available as two-argument jq functions that ignore .. C math func?

 tions that take three input arguments are available as three-argument

 jq functions that ignore .. Page 52/62

 Availability of standard math functions depends on the availability of

 the corresponding math functions in your operating system and C math

 library. Unavailable math functions will be defined but will raise an

 error.

 One-input C math functions: acos acosh asin asinh atan atanh cbrt ceil

 cos cosh erf erfc exp exp10 exp2 expm1 fabs floor gamma j0 j1 lgamma

 log log10 log1p log2 logb nearbyint pow10 rint round significand sin

 sinh sqrt tan tanh tgamma trunc y0 y1.

 Two-input C math functions: atan2 copysign drem fdim fmax fmin fmod fr?

 exp hypot jn ldexp modf nextafter nexttoward pow remainder scalb scal?

 bln yn.

 Three-input C math functions: fma.

 See your system?s manual for more information on each of these.

I/O

 At this time jq has minimal support for I/O, mostly in the form of con?

 trol over when inputs are read. Two builtins functions are provided for

 this, input and inputs, that read from the same sources (e.g., stdin,

 files named on the command-line) as jq itself. These two builtins, and

 jq?s own reading actions, can be interleaved with each other.

 Two builtins provide minimal output capabilities, debug, and stderr.

 (Recall that a jq program?s output values are always output as JSON

 texts on stdout.) The debug builtin can have application-specific be?

 havior, such as for executables that use the libjq C API but aren?t the

 jq executable itself. The stderr builtin outputs its input in raw mode

 to stder with no additional decoration, not even a newline.

 Most jq builtins are referentially transparent, and yield constant and

 repeatable value streams when applied to constant inputs. This is not

 true of I/O builtins.

 input

 Outputs one new input.

 inputs

 Outputs all remaining inputs, one by one.

 This is primarily useful for reductions over a program?s inputs. Page 53/62

 debug

 Causes a debug message based on the input value to be produced. The jq

 executable wraps the input value with ["DEBUG:", <input-value>] and

 prints that and a newline on stderr, compactly. This may change in the

 future.

 stderr

 Prints its input in raw and compact mode to stderr with no additional

 decoration, not even a newline.

 input_filename

 Returns the name of the file whose input is currently being filtered.

 Note that this will not work well unless jq is running in a UTF-8 lo?

 cale.

 input_line_number

 Returns the line number of the input currently being filtered.

STREAMING

 With the --stream option jq can parse input texts in a streaming fash?

 ion, allowing jq programs to start processing large JSON texts immedi?

 ately rather than after the parse completes. If you have a single JSON

 text that is 1GB in size, streaming it will allow you to process it

 much more quickly.

 However, streaming isn?t easy to deal with as the jq program will have

 [<path>, <leaf-value>] (and a few other forms) as inputs.

 Several builtins are provided to make handling streams easier.

 The examples below use the streamed form of [0,[1]], which is

 [[0],0],[[1,0],1],[[1,0]],[[1]].

 Streaming forms include [<path>, <leaf-value>] (to indicate any scalar

 value, empty array, or empty object), and [<path>] (to indicate the end

 of an array or object). Future versions of jq run with --stream and

 -seq may output additional forms such as ["error message"] when an in?

 put text fails to parse.

 truncate_stream(stream_expression)

 Consumes a number as input and truncates the corresponding number of

 path elements from the left of the outputs of the given streaming ex? Page 54/62

 pression.

 jq ?[1|truncate_stream([[0],1],[[1,0],2],[[1,0]],[[1]])]?

 1

 => [[[0],2],[[0]]]

 fromstream(stream_expression)

 Outputs values corresponding to the stream expression?s outputs.

 jq ?fromstream(1|truncate_stream([[0],1],[[1,0],2],[[1,0]],[[1]]))?

 null

 => [2]

 tostream

 The tostream builtin outputs the streamed form of its input.

 jq ?. as $dot|fromstream($dot|tostream)|.==$dot?

 [0,[1,{"a":1},{"b":2}]]

 => true

ASSIGNMENT

 Assignment works a little differently in jq than in most programming

 languages. jq doesn?t distinguish between references to and copies of

 something - two objects or arrays are either equal or not equal, with?

 out any further notion of being "the same object" or "not the same ob?

 ject".

 If an object has two fields which are arrays, .foo and .bar, and you

 append something to .foo, then .bar will not get bigger, even if you?ve

 previously set .bar = .foo. If you?re used to programming in languages

 like Python, Java, Ruby, Javascript, etc. then you can think of it as

 though jq does a full deep copy of every object before it does the as?

 signment (for performance it doesn?t actually do that, but that?s the

 general idea).

 This means that it?s impossible to build circular values in jq (such as

 an array whose first element is itself). This is quite intentional, and

 ensures that anything a jq program can produce can be represented in

 JSON.

 All the assignment operators in jq have path expressions on the

 left-hand side (LHS). The right-hand side (RHS) procides values to set Page 55/62

 to the paths named by the LHS path expressions.

 Values in jq are always immutable. Internally, assignment works by us?

 ing a reduction to compute new, replacement values for . that have had

 all the desired assignments applied to ., then outputting the modified

 value. This might be made clear by this example: {a:{b:{c:1}}} |

 (.a.b|=3), .. This will output {"a":{"b":3}} and {"a":{"b":{"c":1}}}

 because the last sub-expression, ., sees the original value, not the

 modified value.

 Most users will want to use modification assignment operators, such as

 |= or +=, rather than =.

 Note that the LHS of assignment operators refers to a value in .. Thus

 $var.foo = 1 won?t work as expected ($var.foo is not a valid or useful

 path expression in .); use $var | .foo = 1 instead.

 Note too that .a,.b=0 does not set .a and .b, but (.a,.b)=0 sets both.

 Update-assignment: |=

 This is the "update" operator ?|=?. It takes a filter on the right-hand

 side and works out the new value for the property of . being assigned

 to by running the old value through this expression. For instance,

 (.foo, .bar) |= .+1 will build an object with the "foo" field set to

 the input?s "foo" plus 1, and the "bar" field set to the input?s "bar"

 plus 1.

 The left-hand side can be any general path expression; see path().

 Note that the left-hand side of ?|=? refers to a value in .. Thus

 $var.foo |= . + 1 won?t work as expected ($var.foo is not a valid or

 useful path expression in .); use $var | .foo |= . + 1 instead.

 If the right-hand side outputs no values (i.e., empty), then the

 left-hand side path will be deleted, as with del(path).

 If the right-hand side outputs multiple values, only the first one will

 be used (COMPATIBILITY NOTE: in jq 1.5 and earlier releases, it used to

 be that only the last one was used).

 jq ?(..|select(type=="boolean")) |= if . then 1 else 0 end?

 [true,false,[5,true,[true,[false]],false]]

 => [1,0,[5,1,[1,[0]],0]] Page 56/62

 Arithmetic update-assignment: +=, -=, *=, /=, %=, //=

 jq has a few operators of the form a op= b, which are all equivalent to

 a |= . op b. So, += 1 can be used to increment values, being the same

 as |= . + 1.

 jq ?.foo += 1?

 {"foo": 42}

 => {"foo": 43}

 Plain assignment: =

 This is the plain assignment operator. Unlike the others, the input to

 the right-hand-side (RHS) is the same as the input to the

 left-hand-side (LHS) rather than the value at the LHS path, and all

 values output by the RHS will be used (as shown below).

 If the RHS of ?=? produces multiple values, then for each such value jq

 will set the paths on the left-hand side to the value and then it will

 output the modified .. For example, (.a,.b)=range(2) outputs

 {"a":0,"b":0}, then {"a":1,"b":1}. The "update" assignment forms (see

 above) do not do this.

 This example should show the difference between ?=? and ?|=?:

 Provide input ?{"a": {"b": 10}, "b": 20}? to the programs:

 .a = .b

 .a |= .b

 The former will set the "a" field of the input to the "b" field of the

 input, and produce the output {"a": 20, "b": 20}. The latter will set

 the "a" field of the input to the "a" field?s "b" field, producing

 {"a": 10, "b": 20}.

 Another example of the difference between ?=? and ?|=?:

 null|(.a,.b)=range(3)

 outputs ?{"a":0,"b":0}?, ?{"a":1,"b":1}?, and ?{"a":2,"b":2}?, while

 null|(.a,.b)|=range(3)

 outputs just ?{"a":0,"b":0}?.

 Complex assignments

 Lots more things are allowed on the left-hand side of a jq assignment

 than in most languages. We?ve already seen simple field accesses on the Page 57/62

 left hand side, and it?s no surprise that array accesses work just as

 well:

 .posts[0].title = "JQ Manual"

 What may come as a surprise is that the expression on the left may pro?

 duce multiple results, referring to different points in the input docu?

 ment:

 .posts[].comments |= . + ["this is great"]

 That example appends the string "this is great" to the "comments" array

 of each post in the input (where the input is an object with a field

 "posts" which is an array of posts).

 When jq encounters an assignment like ?a = b?, it records the "path"

 taken to select a part of the input document while executing a. This

 path is then used to find which part of the input to change while exe?

 cuting the assignment. Any filter may be used on the left-hand side of

 an equals - whichever paths it selects from the input will be where the

 assignment is performed.

 This is a very powerful operation. Suppose we wanted to add a comment

 to blog posts, using the same "blog" input above. This time, we only

 want to comment on the posts written by "stedolan". We can find those

 posts using the "select" function described earlier:

 .posts[] | select(.author == "stedolan")

 The paths provided by this operation point to each of the posts that

 "stedolan" wrote, and we can comment on each of them in the same way

 that we did before:

 (.posts[] | select(.author == "stedolan") | .comments) |=

 . + ["terrible."]

MODULES

 jq has a library/module system. Modules are files whose names end in

 .jq.

 Modules imported by a program are searched for in a default search path

 (see below). The import and include directives allow the importer to

 alter this path.

 Paths in the a search path are subject to various substitutions. Page 58/62

 For paths starting with "~/", the user?s home directory is substituted

 for "~".

 For paths starting with "$ORIGIN/", the path of the jq executable is

 substituted for "$ORIGIN".

 For paths starting with "./" or paths that are ".", the path of the in?

 cluding file is substituted for ".". For top-level programs given on

 the command-line, the current directory is used.

 Import directives can optionally specify a search path to which the de?

 fault is appended.

 The default search path is the search path given to the -L command-line

 option, else ["~/.jq", "$ORIGIN/../lib/jq", "$ORIGIN/../lib"].

 Null and empty string path elements terminate search path processing.

 A dependency with relative path "foo/bar" would be searched for in

 "foo/bar.jq" and "foo/bar/bar.jq" in the given search path. This is in?

 tended to allow modules to be placed in a directory along with, for ex?

 ample, version control files, README files, and so on, but also to al?

 low for single-file modules.

 Consecutive components with the same name are not allowed to avoid am?

 biguities (e.g., "foo/foo").

 For example, with -L$HOME/.jq a module foo can be found in

 $HOME/.jq/foo.jq and $HOME/.jq/foo/foo.jq.

 If "$HOME/.jq" is a file, it is sourced into the main program.

 import RelativePathString as NAME [<metadata>];

 Imports a module found at the given path relative to a directory in a

 search path. A ".jq" suffix will be added to the relative path string.

 The module?s symbols are prefixed with "NAME::".

 The optional metadata must be a constant jq expression. It should be an

 object with keys like "homepage" and so on. At this time jq only uses

 the "search" key/value of the metadata. The metadata is also made

 available to users via the modulemeta builtin.

 The "search" key in the metadata, if present, should have a string or

 array value (array of strings); this is the search path to be prefixed

 to the top-level search path. Page 59/62

 include RelativePathString [<metadata>];

 Imports a module found at the given path relative to a directory in a

 search path as if it were included in place. A ".jq" suffix will be

 added to the relative path string. The module?s symbols are imported

 into the caller?s namespace as if the module?s content had been in?

 cluded directly.

 The optional metadata must be a constant jq expression. It should be an

 object with keys like "homepage" and so on. At this time jq only uses

 the "search" key/value of the metadata. The metadata is also made

 available to users via the modulemeta builtin.

 import RelativePathString as $NAME [<metadata>];

 Imports a JSON file found at the given path relative to a directory in

 a search path. A ".json" suffix will be added to the relative path

 string. The file?s data will be available as $NAME::NAME.

 The optional metadata must be a constant jq expression. It should be an

 object with keys like "homepage" and so on. At this time jq only uses

 the "search" key/value of the metadata. The metadata is also made

 available to users via the modulemeta builtin.

 The "search" key in the metadata, if present, should have a string or

 array value (array of strings); this is the search path to be prefixed

 to the top-level search path.

 module <metadata>;

 This directive is entirely optional. It?s not required for proper oper?

 ation. It serves only the purpose of providing metadata that can be

 read with the modulemeta builtin.

 The metadata must be a constant jq expression. It should be an object

 with keys like "homepage". At this time jq doesn?t use this metadata,

 but it is made available to users via the modulemeta builtin.

 modulemeta

 Takes a module name as input and outputs the module?s metadata as an

 object, with the module?s imports (including metadata) as an array

 value for the "deps" key.

 Programs can use this to query a module?s metadata, which they could Page 60/62

 then use to, for example, search for, download, and install missing de?

 pendencies.

COLORS

 To configure alternative colors just set the JQ_COLORS environment

 variable to colon-delimited list of partial terminal escape sequences

 like "1;31", in this order:

 ? color for null

 ? color for false

 ? color for true

 ? color for numbers

 ? color for strings

 ? color for arrays

 ? color for objects

 The default color scheme is the same as setting "JQ_COL?

 ORS=1;30:0;39:0;39:0;39:0;32:1;39:1;39".

 This is not a manual for VT100/ANSI escapes. However, each of these

 color specifications should consist of two numbers separated by a

 semi-colon, where the first number is one of these:

 ? 1 (bright)

 ? 2 (dim)

 ? 4 (underscore)

 ? 5 (blink)

 ? 7 (reverse)

 ? 8 (hidden)

 and the second is one of these:

 ? 30 (black)

 ? 31 (red)

 ? 32 (green)

 ? 33 (yellow)

 ? 34 (blue)

 ? 35 (magenta)

 ? 36 (cyan)

 ? 37 (white) Page 61/62

BUGS

 Presumably. Report them or discuss them at:

 https://github.com/stedolan/jq/issues

AUTHOR

 Stephen Dolan <mu@netsoc.tcd.ie>

 December 2017 JQ(1)

Page 62/62

