
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'jdb-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1' command

$ man jdb-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

jdb(1) Basic Tools jdb(1)

NAME

 jdb - Finds and fixes bugs in Java platform programs.

SYNOPSIS

 jdb [options] [classname] [arguments]

 options

 Command-line options. See Options.

 classname

 Name of the main class to debug.

 arguments

 Arguments passed to the main() method of the class.

DESCRIPTION

 The Java Debugger (JDB) is a simple command-line debugger for Java

 classes. The jdb command and its options call the JDB. The jdb command

 demonstrates the Java Platform Debugger Architecture (JDBA) and

 provides inspection and debugging of a local or remote Java Virtual

 Machine (JVM). See Java Platform Debugger Architecture (JDBA) at

 http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html

 START A JDB SESSION

 There are many ways to start a JDB session. The most frequently used

 way is to have JDB launch a new JVM with the main class of the

 application to be debugged. Do this by substituting the jdb command for

 the java command in the command line. For example, if your Page 1/6

 application's main class is MyClass, then use the following command to

 debug it under JDB:

 jdb MyClass

 When started this way, the jdb command calls a second JVM with the

 specified parameters, loads the specified class, and stops the JVM

 before executing that class's first instruction.

 Another way to use the jdb command is by attaching it to a JVM that is

 already running. Syntax for starting a JVM to which the jdb command

 attaches when the JVM is running is as follows. This loads in-process

 debugging libraries and specifies the kind of connection to be made.

 java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n MyClass

 You can then attach the jdb command to the JVM with the following

 command:

 jdb -attach 8000

 The MyClass argument is not specified in the jdb command line in this

 case because the jdb command is connecting to an existing JVM instead

 of launching a new JVM.

 There are many other ways to connect the debugger to a JVM, and all of

 them are supported by the jdb command. The Java Platform Debugger

 Architecture has additional documentation on these connection options.

 BASIC JDB COMMANDS

 The following is a list of the basic jdb commands. The JDB supports

 other commands that you can list with the -help option.

 help or ?

 The help or ? commands display the list of recognized commands

 with a brief description.

 run After you start JDB and set breakpoints, you can use the run

 command to execute the debugged application. The run command is

 available only when the jdb command starts the debugged

 application as opposed to attaching to an existing JVM.

 cont Continues execution of the debugged application after a

 breakpoint, exception, or step.

 print Displays Java objects and primitive values. For variables or Page 2/6

 fields of primitive types, the actual value is printed. For

 objects, a short description is printed. See the dump command to

 find out how to get more information about an object.

 Note: To display local variables, the containing class must have

 been compiled with the javac -g option.

 The print command supports many simple Java expressions

 including those with method invocations, for example:

 print MyClass.myStaticField

 print myObj.myInstanceField

 print i + j + k (i, j, k are primities and either fields or local variables)

 print myObj.myMethod() (if myMethod returns a non-null)

 print new java.lang.String("Hello").length()

 dump For primitive values, the dump command is identical to the print

 command. For objects, the dump command prints the current value

 of each field defined in the object. Static and instance fields

 are included. The dump command supports the same set of

 expressions as the print command.

 threads

 List the threads that are currently running. For each thread,

 its name and current status are printed and an index that can be

 used in other commands. In this example, the thread index is 4,

 the thread is an instance of java.lang.Thread, the thread name

 is main, and it is currently running.

 4. (java.lang.Thread)0x1 main running

 thread Select a thread to be the current thread. Many jdb commands are

 based on the setting of the current thread. The thread is

 specified with the thread index described in the threads

 command.

 where The where command with no arguments dumps the stack of the

 current thread. The whereall command dumps the stack of all

 threads in the current thread group. The wherethreadindex

 command dumps the stack of the specified thread.

 If the current thread is suspended either through an event such Page 3/6

 as a breakpoint or through the suspend command, then local

 variables and fields can be displayed with the print and dump

 commands. The up and down commands select which stack frame is

 the current stack frame.

 BREAKPOINTS

 Breakpoints can be set in JDB at line numbers or at the first

 instruction of a method, for example:

 ? The command stop at MyClass:22 sets a breakpoint at the first

 instruction for line 22 of the source file containing MyClass.

 ? The command stop in java.lang.String.length sets a breakpoint at the

 beginning of the method java.lang.String.length.

 ? The command stop in MyClass.<clinit> uses <clinit> to identify the

 static initialization code for MyClass.

 When a method is overloaded, you must also specify its argument types

 so that the proper method can be selected for a breakpoint. For

 example, MyClass.myMethod(int,java.lang.String) or MyClass.myMethod().

 The clear command removes breakpoints using the following syntax: clear

 MyClass:45. Using the clear or stop command with no argument displays a

 list of all breakpoints currently set. The cont command continues

 execution.

 STEPPING

 The step command advances execution to the next line whether it is in

 the current stack frame or a called method. The next command advances

 execution to the next line in the current stack frame.

 EXCEPTIONS

 When an exception occurs for which there is not a catch statement

 anywhere in the throwing thread's call stack, the JVM typically prints

 an exception trace and exits. When running under JDB, however, control

 returns to JDB at the offending throw. You can then use the jdb command

 to diagnose the cause of the exception.

 Use the catch command to cause the debugged application to stop at

 other thrown exceptions, for example: catch

 java.io.FileNotFoundException or catchmypackage.BigTroubleException. Page 4/6

 Any exception that is an instance of the specified class or subclass

 stops the application at the point where it is thrown.

 The ignore command negates the effect of an earlier catch command. The

 ignore command does not cause the debugged JVM to ignore specific

 exceptions, but only to ignore the debugger.

OPTIONS

 When you use the jdb command instead of the java command on the command

 line, the jdb command accepts many of the same options as the java

 command, including -D, -classpath, and -X options. The following list

 contains additional options that are accepted by the jdb command.

 Other options are supported to provide alternate mechanisms for

 connecting the debugger to the JVM it is to debug. For additional

 documentation about these connection alternatives, see Java Platform

 Debugger Architecture (JPDA) at

 http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html

 -help

 Displays a help message.

 -sourcepath dir1:dir2: . . .

 Uses the specified path to search for source files in the

 specified path. If this option is not specified, then use the

 default path of dot (.).

 -attach address

 Attaches the debugger to a running JVM with the default

 connection mechanism.

 -listen address

 Waits for a running JVM to connect to the specified address with

 a standard connector.

 -launch

 Starts the debugged application immediately upon startup of JDB.

 The -launch option removes the need for the run command. The

 debugged application is launched and then stopped just before

 the initial application class is loaded. At that point, you can

 set any necessary breakpoints and use the cont command to Page 5/6

 continue execution.

 -listconnectors

 List the connectors available in this JVM.

 -connect connector-name:name1=value1

 Connects to the target JVM with the named connector and listed

 argument values.

 -dbgtrace [flags]

 Prints information for debugging the jdb command.

 -tclient

 Runs the application in the Java HotSpot VM client.

 -tserver

 Runs the application in the Java HotSpot VM server.

 -Joption

 Passes option to the JVM, where option is one of the options

 described on the reference page for the Java application

 launcher. For example, -J-Xms48m sets the startup memory to 48

 MB. See java(1).

OPTIONS FORWARDED TO THE DEBUGGER PROCESS

 -v -verbose[:class|gc|jni]

 Turns on verbose mode.

 -Dname=value

 Sets a system property.

 -classpath dir

 Lists directories separated by colons in which to look for

 classes.

 -Xoption

 Nonstandard target JVM option.

SEE ALSO

 ? javac(1)

 ? java(1)

 ? javap(1)

JDK 8 21 November 2013 jdb(1)

Page 6/6

