
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'jarsigner-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1' command

$ man jarsigner-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

jarsigner(1) Security Tools jarsigner(1)

NAME

 jarsigner - Signs and verifies Java Archive (JAR) files.

SYNOPSIS

 jarsigner [options] jar-file alias

 jarsigner -verify [options] jar-file [alias ...]

 options

 The command-line options. See Options.

 -verify

 The -verify option can take zero or more keystore alias names

 after the JAR file name. When the -verify option is specified,

 the jarsigner command checks that the certificate used to verify

 each signed entry in the JAR file matches one of the keystore

 aliases. The aliases are defined in the keystore specified by

 -keystore or the default keystore.

 If you also specified the -strict option, and the jarsigner

 command detected severe warnings, the message, "jar verified,

 with signer errors" is displayed.

 jar-file

 The JAR file to be signed.

 If you also specified the -strict option, and the jarsigner

 command detected severe warnings, the message, "jar signed, with

 signer errors" is displayed. Page 1/23

 alias The aliases are defined in the keystore specified by -keystore

 or the default keystore.

DESCRIPTION

 The jarsigner tool has two purposes:

 ? To sign Java Archive (JAR) files.

 ? To verify the signatures and integrity of signed JAR files.

 The JAR feature enables the packaging of class files, images, sounds,

 and other digital data in a single file for faster and easier

 distribution. A tool named jar enables developers to produce JAR files.

 (Technically, any zip file can also be considered a JAR file, although

 when created by the jar command or processed by the jarsigner command,

 JAR files also contain a META-INF/MANIFEST.MF file.)

 A digital signature is a string of bits that is computed from some data

 (the data being signed) and the private key of an entity (a person,

 company, and so on). Similar to a handwritten signature, a digital

 signature has many useful characteristics:

 ? Its authenticity can be verified by a computation that uses the

 public key corresponding to the private key used to generate the

 signature.

 ? It cannot be forged, assuming the private key is kept secret.

 ? It is a function of the data signed and thus cannot be claimed to be

 the signature for other data as well.

 ? The signed data cannot be changed. If the data is changed, then the

 signature cannot be verified as authentic.

 To generate an entity's signature for a file, the entity must first

 have a public/private key pair associated with it and one or more

 certificates that authenticate its public key. A certificate is a

 digitally signed statement from one entity that says that the public

 key of another entity has a particular value.

 The jarsigner command uses key and certificate information from a

 keystore to generate digital signatures for JAR files. A keystore is a

 database of private keys and their associated X.509 certificate chains

 that authenticate the corresponding public keys. The keytool command is Page 2/23

 used to create and administer keystores.

 The jarsigner command uses an entity's private key to generate a

 signature. The signed JAR file contains, among other things, a copy of

 the certificate from the keystore for the public key corresponding to

 the private key used to sign the file. The jarsigner command can verify

 the digital signature of the signed JAR file using the certificate

 inside it (in its signature block file).

 The jarsigner command can generate signatures that include a time stamp

 that lets a systems or deployer (including Java Plug-in) to check

 whether the JAR file was signed while the signing certificate was still

 valid. In addition, APIs allow applications to obtain the timestamp

 information.

 At this time, the jarsigner command can only sign JAR files created by

 the jar command or zip files. JAR files are the same as zip files,

 except they also have a META-INF/MANIFEST.MF file. A META-

 INF/MANIFEST.MF file is created when the jarsigner command signs a zip

 file.

 The default jarsigner command behavior is to sign a JAR or zip file.

 Use the -verify option to verify a signed JAR file.

 The jarsigner command also attempts to validate the signer's

 certificate after signing or verifying. If there is a validation error

 or any other problem, the command generates warning messages. If you

 specify the -strict option, then the command treats severe warnings as

 errors. See Errors and Warnings.

 KEYSTORE ALIASES

 All keystore entities are accessed with unique aliases.

 When you use the jarsigner command to sign a JAR file, you must specify

 the alias for the keystore entry that contains the private key needed

 to generate the signature. For example, the following command signs the

 JAR file named MyJARFile.jar with the private key associated with the

 alias duke in the keystore named mystore in the working directory.

 Because no output file is specified, it overwrites MyJARFile.jar with

 the signed JAR file. Page 3/23

 jarsigner -keystore /working/mystore -storepass <keystore password>

 -keypass <private key password> MyJARFile.jar duke

 Keystores are protected with a password, so the store password must be

 specified. You are prompted for it when you do not specify it on the

 command line. Similarly, private keys are protected in a keystore with

 a password, so the private key's password must be specified, and you

 are prompted for the password when you do not specify it on the command

 line and it is not the same as the store password.

 KEYSTORE LOCATION

 The jarsigner command has a -keystore option for specifying the URL of

 the keystore to be used. The keystore is by default stored in a file

 named .keystore in the user's home directory, as determined by the

 user.home system property.

 On Oracle Solaris systems, user.home defaults to the user's home

 directory.

 The input stream from the -keystore option is passed to the

 KeyStore.load method. If NONE is specified as the URL, then a null

 stream is passed to the KeyStore.load method. NONE should be specified

 when the KeyStore class is not file based, for example, when it resides

 on a hardware token device.

 KEYSTORE IMPLEMENTATION

 The KeyStore class provided in the java.security package supplies a

 number of well-defined interfaces to access and modify the information

 in a keystore. You can have multiple different concrete

 implementations, where each implementation is for a particular type of

 keystore.

 Currently, there are two command-line tools that use keystore

 implementations (keytool and jarsigner), and a GUI-based tool named

 Policy Tool. Because the KeyStore class is publicly available, JDK

 users can write additional security applications that use it.

 There is a built-in default implementation provided by Oracle that

 implements the keystore as a file, that uses a proprietary keystore

 type (format) named JKS. The built-in implementation protects each Page 4/23

 private key with its individual password and protects the integrity of

 the entire keystore with a (possibly different) password.

 Keystore implementations are provider-based, which means the

 application interfaces supplied by the KeyStore class are implemented

 in terms of a Service Provider Interface (SPI). There is a

 corresponding abstract KeystoreSpi class, also in the java.security

 package, that defines the Service Provider Interface methods that

 providers must implement. The term provider refers to a package or a

 set of packages that supply a concrete implementation of a subset of

 services that can be accessed by the Java Security API. To provide a

 keystore implementation, clients must implement a provider and supply a

 KeystoreSpi subclass implementation, as described in How to Implement a

 Provider in the Java Cryptography Architecture at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html

 Applications can choose different types of keystore implementations

 from different providers, with the getInstance factory method in the

 KeyStore class. A keystore type defines the storage and data format of

 the keystore information and the algorithms used to protect private

 keys in the keystore and the integrity of the keystore itself. Keystore

 implementations of different types are not compatible.

 The jarsigner command can read file-based keystores from any location

 that can be specified using a URL. In addition, the command can read

 non-file-based keystores such as those provided by MSCAPI on Windows

 and PKCS11 on all platforms.

 For the jarsigner and keytool commands, you can specify a keystore type

 at the command line with the -storetype option. For Policy Tool, you

 can specify a keystore type with the Edit command in the KeyStore menu.

 If you do not explicitly specify a keystore type, then the tools choose

 a keystore implementation based on the value of the keystore.type

 property specified in the security properties file. The security

 properties file is called java.security, and it resides in the JDK

 security properties directory, java.home/lib/security, where java.home

 is the runtime environment's directory. The jre directory in the JDK or Page 5/23

 the top-level directory of the Java Runtime Environment (JRE).

 Each tool gets the keystore.type value and then examines all the

 installed providers until it finds one that implements keystores of

 that type. It then uses the keystore implementation from that provider.

 The KeyStore class defines a static method named getDefaultType that

 lets applications and applets retrieve the value of the keystore.type

 property. The following line of code creates an instance of the default

 keystore type as specified in the keystore.type property:

 KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());

 The default keystore type is jks (the proprietary type of the keystore

 implementation provided by Oracle). This is specified by the following

 line in the security properties file:

 keystore.type=jks

 Case does not matter in keystore type designations. For example, JKS is

 the same as jks.

 To have the tools use a keystore implementation other than the default,

 change that line to specify a different keystore type. For example, if

 you have a provider package that supplies a keystore implementation for

 a keystore type called pkcs12, then change the line to the following:

 keystore.type=pkcs12

 Note: If you use the PKCS 11 provider package, then see "KeyTool" and

 "JarSigner" in Java PKCS #11 Reference Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html

 SUPPORTED ALGORITHMS

 By default, the jarsigner command signs a JAR file using one of the

 following algorithms:

 ? Digital Signature Algorithm (DSA) with the SHA1 digest algorithm

 ? RSA algorithm with the SHA256 digest algorithm

 ? Elliptic Curve (EC) cryptography algorithm with the SHA256 with

 Elliptic Curve Digital Signature Algorithm (ECDSA).

 If the signer's public and private keys are DSA keys, then jarsigner

 signs the JAR file with the SHA1withDSA algorithm. If the signer's keys

 are RSA keys, then jarsigner attempts to sign the JAR file with the Page 6/23

 SHA256withRSA algorithm. If the signer's keys are EC keys, then

 jarsigner signs the JAR file with the SHA256withECDSA algorithm.

 These default signature algorithms can be overridden using the -sigalg

 option.

 THE SIGNED JAR FILE

 When the jarsigner command is used to sign a JAR file, the output

 signed JAR file is exactly the same as the input JAR file, except that

 it has two additional files placed in the META-INF directory:

 ? A signature file with an .SF extension

 ? A signature block file with a .DSA, .RSA, or .EC extension

 The base file names for these two files come from the value of the

 -sigFile option. For example, when the option is -sigFile MKSIGN, the

 files are named MKSIGN.SF and MKSIGN.DSA

 If no -sigfile option appears on the command line, then the base file

 name for the .SF and .DSA files is the first 8 characters of the alias

 name specified on the command line, all converted to uppercase. If the

 alias name has fewer than 8 characters, then the full alias name is

 used. If the alias name contains any characters that are not allowed in

 a signature file name, then each such character is converted to an

 underscore (_) character in forming the file name. Valid characters

 include letters, digits, underscores, and hyphens.

 Signature File

 A signature file (.SF file) looks similar to the manifest file that is

 always included in a JAR file when the jarsigner command is used to

 sign the file. For each source file included in the JAR file, the .SF

 file has three lines, such as in the manifest file, that list the

 following:

 ? File name

 ? Name of the digest algorithm (SHA)

 ? SHA digest value

 In the manifest file, the SHA digest value for each source file is the

 digest (hash) of the binary data in the source file. In the .SF file,

 the digest value for a specified source file is the hash of the three Page 7/23

 lines in the manifest file for the source file.

 The signature file, by default, includes a header with a hash of the

 whole manifest file. The header also contains a hash of the manifest

 header. The presence of the header enables verification optimization.

 See JAR File Verification.

 Signature Block File

 The .SF file is signed and the signature is placed in the signature

 block file. This file also contains, encoded inside it, the certificate

 or certificate chain from the keystore that authenticates the public

 key corresponding to the private key used for signing. The file has the

 extension .DSA, .RSA, or .EC, depending on the digest algorithm used.

 SIGNATURE TIME STAMP

 The jarsigner command can generate and store a signature time stamp

 when signing a JAR file. In addition, jarsigner supports alternative

 signing mechanisms. This behavior is optional and is controlled by the

 user at the time of signing through these options. See Options.

 -tsa url

 -tsacert alias

 -altsigner class

 -altsignerpath classpathlist

 -tsapolicyid policyid

 JAR FILE VERIFICATION

 A successful JAR file verification occurs when the signatures are

 valid, and none of the files that were in the JAR file when the

 signatures were generated have changed since then. JAR file

 verification involves the following steps:

 1. Verify the signature of the .SF file.

 The verification ensures that the signature stored in each

 signature block (.DSA) file was generated using the private key

 corresponding to the public key whose certificate (or certificate

 chain) also appears in the .DSA file. It also ensures that the

 signature is a valid signature of the corresponding signature (.SF)

 file, and thus the .SF file was not tampered with. Page 8/23

 2. Verify the digest listed in each entry in the .SF file with each

 corresponding section in the manifest.

 The .SF file by default includes a header that contains a hash of

 the entire manifest file. When the header is present, the

 verification can check to see whether or not the hash in the header

 matches the hash of the manifest file. If there is a match, then

 verification proceeds to the next step.

 If there is no match, then a less optimized verification is

 required to ensure that the hash in each source file information

 section in the .SF file equals the hash of its corresponding

 section in the manifest file. See Signature File.

 One reason the hash of the manifest file that is stored in the .SF

 file header might not equal the hash of the current manifest file

 is that one or more files were added to the JAR file (with the jar

 tool) after the signature and .SF file were generated. When the jar

 tool is used to add files, the manifest file is changed by adding

 sections to it for the new files, but the .SF file is not changed.

 A verification is still considered successful when none of the

 files that were in the JAR file when the signature was generated

 have been changed since then. This happens when the hashes in the

 non-header sections of the .SF file equal the hashes of the

 corresponding sections in the manifest file.

 3. Read each file in the JAR file that has an entry in the .SF file.

 While reading, compute the file's digest and compare the result

 with the digest for this file in the manifest section. The digests

 should be the same or verification fails.

 If any serious verification failures occur during the verification

 process, then the process is stopped and a security exception is

 thrown. The jarsigner command catches and displays the exception.

 Note: You should read any addition warnings (or errors if you specified

 the -strict option), as well as the content of the certificate (by

 specifying the -verbose and -certs options) to determine if the

 signature can be trusted. Page 9/23

 MULTIPLE SIGNATURES FOR A JAR FILE

 A JAR file can be signed by multiple people by running the jarsigner

 command on the file multiple times and specifying the alias for a

 different person each time, as follows:

 jarsigner myBundle.jar susan

 jarsigner myBundle.jar kevin

 When a JAR file is signed multiple times, there are multiple .SF and

 .DSA files in the resulting JAR file, one pair for each signature. In

 the previous example, the output JAR file includes files with the

 following names:

 SUSAN.SF

 SUSAN.DSA

 KEVIN.SF

 KEVIN.DSA

OPTIONS

 The following sections describe the various jarsigner options. Be aware

 of the following standards:

 ? All option names are preceded by a minus sign (-).

 ? The options can be provided in any order.

 ? Items that are in italics or underlined (option values) represent the

 actual values that must be supplied.

 ? The -storepass, -keypass, -sigfile, -sigalg, -digestalg, -signedjar,

 and TSA-related options are only relevant when signing a JAR file;

 they are not relevant when verifying a signed JAR file. The -keystore

 option is relevant for signing and verifying a JAR file. In addition,

 aliases are specified when signing and verifying a JAR file.

 -keystore url

 Specifies the URL that tells the keystore location. This defaults to

 the file .keystore in the user's home directory, as determined by the

 user.home system property.

 A keystore is required when signing. You must explicitly specify a

 keystore when the default keystore does not exist or if you want to

 use one other than the default. Page 10/23

 A keystore is not required when verifying, but if one is specified or

 the default exists and the -verbose option was also specified, then

 additional information is output regarding whether or not any of the

 certificates used to verify the JAR file are contained in that

 keystore.

 The -keystore argument can be a file name and path specification

 rather than a URL, in which case it is treated the same as a file:

 URL, for example, the following are equivalent:

 -keystore filePathAndName

 -keystore file:filePathAndName

 If the Sun PKCS #11 provider was configured in the java.security

 security properties file (located in the JRE's

 $JAVA_HOME/lib/security directory), then the keytool and jarsigner

 tools can operate on the PKCS #11 token by specifying these options:

 -keystore NONE

 -storetype PKCS11

 For example, the following command lists the contents of the

 configured PKCS#11 token:

 keytool -keystore NONE -storetype PKCS11 -list

 -storetype storetype

 Specifies the type of keystore to be instantiated. The default

 keystore type is the one that is specified as the value of the

 keystore.type property in the security properties file, which is

 returned by the static getDefaultType method in

 java.security.KeyStore.

 The PIN for a PCKS #11 token can also be specified with the

 -storepass option. If none is specified, then the keytool and

 jarsigner commands prompt for the token PIN. If the token has a

 protected authentication path (such as a dedicated PIN-pad or a

 biometric reader), then the -protected option must be specified and

 no password options can be specified.

 -storepass[:env | :file] argument

 Specifies the password that is required to access the keystore. This Page 11/23

 is only needed when signing (not verifying) a JAR file. In that case,

 if a -storepass option is not provided at the command line, then the

 user is prompted for the password.

 If the modifier env or file is not specified, then the password has

 the value argument. Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named

 argument.

 ? file: Retrieve the password from the file named argument.

 Note: The password should not be specified on the command line or in a

 script unless it is for testing purposes, or you are on a secure

 system.

 -keypass [:env | :file] argument

 Specifies the password used to protect the private key of the

 keystore entry addressed by the alias specified on the command line.

 The password is required when using jarsigner to sign a JAR file. If

 no password is provided on the command line, and the required

 password is different from the store password, then the user is

 prompted for it.

 If the modifier env or file is not specified, then the password has

 the value argument. Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named

 argument.

 ? file: Retrieve the password from the file named argument.

 Note: The password should not be specified on the command line or in a

 script unless it is for testing purposes, or you are on a secure

 system.

 -sigfile file

 Specifies the base file name to be used for the generated .SF and

 .DSA files. For example, if file is DUKESIGN, then the generated .SF

 and .DSA files are named DUKESIGN.SF and DUKESIGN.DSA, and placed in

 the META-INF directory of the signed JAR file.

 The characters in the file must come from the set a-zA-Z0-9_-. Only

 letters, numbers, underscore, and hyphen characters are allowed. All Page 12/23

 lowercase characters are converted to uppercase for the .SF and .DSA

 file names.

 If no -sigfile option appears on the command line, then the base file

 name for the .SF and .DSA files is the first 8 characters of the

 alias name specified on the command line, all converted to upper

 case. If the alias name has fewer than 8 characters, then the full

 alias name is used. If the alias name contains any characters that

 are not valid in a signature file name, then each such character is

 converted to an underscore (_) character to form the file name.

 -sigalg algorithm

 Specifies the name of the signature algorithm to use to sign the JAR

 file.

 For a list of standard signature algorithm names, see "Appendix A:

 Standard Names" in the Java Cryptography Architecture (JCA) Reference

 Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA

 This algorithm must be compatible with the private key used to sign

 the JAR file. If this option is not specified, then SHA1withDSA,

 SHA256withRSA, or SHA256withECDSA are used depending on the type of

 private key. There must either be a statically installed provider

 supplying an implementation of the specified algorithm or the user

 must specify one with the -providerClass option; otherwise, the

 command will not succeed.

 -digestalg algorithm

 Specifies the name of the message digest algorithm to use when

 digesting the entries of a JAR file.

 For a list of standard message digest algorithm names, see "Appendix

 A: Standard Names" in the Java Cryptography Architecture (JCA)

 Reference Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA

 If this option is not specified, then SHA256 is used. There must

 either be a statically installed provider supplying an implementation

 of the specified algorithm or the user must specify one with the Page 13/23

 -providerClass option; otherwise, the command will not succeed.

 -certs

 If the -certs option appears on the command line with the -verify and

 -verbose options, then the output includes certificate information

 for each signer of the JAR file. This information includes the name

 of the type of certificate (stored in the .DSA file) that certifies

 the signer's public key, and if the certificate is an X.509

 certificate (an instance of the java.security.cert.X509Certificate),

 then the distinguished name of the signer.

 The keystore is also examined. If no keystore value is specified on

 the command line, then the default keystore file (if any) is checked.

 If the public key certificate for a signer matches an entry in the

 keystore, then the alias name for the keystore entry for that signer

 is displayed in parentheses.

 -certchain file

 Specifies the certificate chain to be used when the certificate chain

 associated with the private key of the keystore entry that is

 addressed by the alias specified on the command line is not complete.

 This can happen when the keystore is located on a hardware token

 where there is not enough capacity to hold a complete certificate

 chain. The file can be a sequence of concatenated X.509 certificates,

 or a single PKCS#7 formatted data block, either in binary encoding

 format or in printable encoding format (also known as Base64

 encoding) as defined by the Internet RFC 1421 standard. See Internet

 RFC 1421 Certificate Encoding Standard and

 http://tools.ietf.org/html/rfc1421.

 -verbose

 When the -verbose option appears on the command line, it indicates

 verbose mode, which causes jarsigner to output extra information

 about the progress of the JAR signing or verification.

 -internalsf

 In the past, the .DSA (signature block) file generated when a JAR

 file was signed included a complete encoded copy of the .SF file Page 14/23

 (signature file) also generated. This behavior has been changed. To

 reduce the overall size of the output JAR file, the .DSA file by

 default does not contain a copy of the .SF file anymore. If

 -internalsf appears on the command line, then the old behavior is

 utilized. This option is useful for testing. In practice, do not use

 the -internalsf option because it incurs higher overhead.

 -sectionsonly

 If the -sectionsonly option appears on the command line, then the .SF

 file (signature file) generated when a JAR file is signed does not

 include a header that contains a hash of the whole manifest file. It

 contains only the information and hashes related to each individual

 source file included in the JAR file. See Signature File.

 By default, this header is added, as an optimization. When the header

 is present, whenever the JAR file is verified, the verification can

 first check to see whether the hash in the header matches the hash of

 the whole manifest file. When there is a match, verification proceeds

 to the next step. When there is no match, it is necessary to do a

 less optimized verification that the hash in each source file

 information section in the .SF file equals the hash of its

 corresponding section in the manifest file. See JAR File

 Verification.

 The -sectionsonly option is primarily used for testing. It should not

 be used other than for testing because using it incurs higher

 overhead.

 -protected

 Values can be either true or false. Specify true when a password must

 be specified through a protected authentication path such as a

 dedicated PIN reader.

 -providerClass provider-class-name

 Used to specify the name of cryptographic service provider's master

 class file when the service provider is not listed in the

 java.security security properties file.

 Used with the -providerArg ConfigFilePath option, the keytool and Page 15/23

 jarsigner tools install the provider dynamically and use

 ConfigFilePath for the path to the token configuration file. The

 following example shows a command to list a PKCS #11 keystore when

 the Oracle PKCS #11 provider was not configured in the security

 properties file.

 jarsigner -keystore NONE -storetype PKCS11 \

 -providerClass sun.security.pkcs11.SunPKCS11 \

 -providerArg /mydir1/mydir2/token.config \

 -list

 -providerName providerName

 If more than one provider was configured in the java.security

 security properties file, then you can use the -providerName option

 to target a specific provider instance. The argument to this option

 is the name of the provider.

 For the Oracle PKCS #11 provider, providerName is of the form

 SunPKCS11-TokenName, where TokenName is the name suffix that the

 provider instance has been configured with, as detailed in the

 configuration attributes table. For example, the following command

 lists the contents of the PKCS #11 keystore provider instance with

 name suffix SmartCard:

 jarsigner -keystore NONE -storetype PKCS11 \

 -providerName SunPKCS11-SmartCard \

 -list

 -Jjavaoption

 Passes through the specified javaoption string directly to the Java

 interpreter. The jarsigner command is a wrapper around the

 interpreter. This option should not contain any spaces. It is useful

 for adjusting the execution environment or memory usage. For a list

 of possible interpreter options, type java -h or java -X at the

 command line.

 -tsa url

 If -tsa http://example.tsa.url appears on the command line when

 signing a JAR file then a time stamp is generated for the signature. Page 16/23

 The URL, http://example.tsa.url, identifies the location of the Time

 Stamping Authority (TSA) and overrides any URL found with the

 -tsacert option. The -tsa option does not require the TSA public key

 certificate to be present in the keystore.

 To generate the time stamp, jarsigner communicates with the TSA with

 the Time-Stamp Protocol (TSP) defined in RFC 3161. When successful,

 the time stamp token returned by the TSA is stored with the signature

 in the signature block file.

 -tsacert alias

 When -tsacert alias appears on the command line when signing a JAR

 file, a time stamp is generated for the signature. The alias

 identifies the TSA public key certificate in the keystore that is in

 effect. The entry's certificate is examined for a Subject Information

 Access extension that contains a URL identifying the location of the

 TSA.

 The TSA public key certificate must be present in the keystore when

 using the -tsacert option.

 -tsapolicyid policyid

 Specifies the object identifier (OID) that identifies the policy ID

 to be sent to the TSA server. If this option is not specified, no

 policy ID is sent and the TSA server will choose a default policy ID.

 Object identifiers are defined by X.696, which is an ITU

 Telecommunication Standardization Sector (ITU-T) standard. These

 identifiers are typically period-separated sets of non-negative

 digits like 1.2.3.4, for example.

 -altsigner class

 This option specifies an alternative signing mechanism. The fully

 qualified class name identifies a class file that extends the

 com.sun.jarsigner.ContentSigner abstract class. The path to this

 class file is defined by the -altsignerpath option. If the -altsigner

 option is used, then the jarsigner command uses the signing mechanism

 provided by the specified class. Otherwise, the jarsigner command

 uses its default signing mechanism. Page 17/23

 For example, to use the signing mechanism provided by a class named

 com.sun.sun.jarsigner.AuthSigner, use the jarsigner option -altsigner

 com.sun.jarsigner.AuthSigner.

 -altsignerpath classpathlist

 Specifies the path to the class file and any JAR file it depends on.

 The class file name is specified with the -altsigner option. If the

 class file is in a JAR file, then this option specifies the path to

 that JAR file.

 An absolute path or a path relative to the current directory can be

 specified. If classpathlist contains multiple paths or JAR files,

 then they should be separated with a colon (:) on Oracle Solaris and

 a semicolon (;) on Windows. This option is not necessary when the

 class is already in the search path.

 The following example shows how to specify the path to a JAR file

 that contains the class file. The JAR file name is included.

 -altsignerpath /home/user/lib/authsigner.jar

 The following example shows how to specify the path to the JAR file

 that contains the class file. The JAR file name is omitted.

 -altsignerpath /home/user/classes/com/sun/tools/jarsigner/

 -strict

 During the signing or verifying process, the command may issue

 warning messages. If you specify this option, the exit code of the

 tool reflects the severe warning messages that this command found.

 See Errors and Warnings.

 -verbose suboptions

 For the verifying process, the -verbose option takes suboptions to

 determine how much information is shown. If the -certs option is also

 specified, then the default mode (or suboption all) displays each

 entry as it is being processed, and after that, the certificate

 information for each signer of the JAR file. If the -certs and the

 -verbose:grouped suboptions are specified, then entries with the same

 signer info are grouped and displayed together with their certificate

 information. If -certs and the -verbose:summary suboptions are Page 18/23

 specified, then entries with the same signer information are grouped

 and displayed together with their certificate information. Details

 about each entry are summarized and displayed as one entry (and

 more). See Examples.

ERRORS AND WARNINGS

 During the signing or verifying process, the jarsigner command may

 issue various errors or warnings.

 If there is a failure, the jarsigner command exits with code 1. If

 there is no failure, but there are one or more severe warnings, the

 jarsigner command exits with code 0 when the -strict option is not

 specified, or exits with the OR-value of the warning codes when the

 -strict is specified. If there is only informational warnings or no

 warning at all, the command always exits with code 0.

 For example, if a certificate used to sign an entry is expired and has

 a KeyUsage extension that does not allow it to sign a file, the

 jarsigner command exits with code 12 (=4+8) when the -strict option is

 specified.

 Note: Exit codes are reused because only the values from 0 to 255 are

 legal on Unix-based operating systems.

 The following sections describes the names, codes, and descriptions of

 the errors and warnings that the jarsigner command can issue.

 FAILURE

 Reasons why the jarsigner command fails include (but are not limited

 to) a command line parsing error, the inability to find a keypair to

 sign the JAR file, or the verification of a signed JAR fails.

 failure

 Code 1. The signing or verifying fails.

 SEVERE WARNINGS

 Note: Severe warnings are reported as errors if you specify the -strict

 option.

 Reasons why the jarsigner command issues a severe warning include the

 certificate used to sign the JAR file has an error or the signed JAR

 file has other problems. Page 19/23

 hasExpiredCert

 Code 4. This jar contains entries whose signer certificate has

 expired.

 notYetValidCert

 Code 4. This jar contains entries whose signer certificate is

 not yet valid.

 chainNotValidated

 Code 4. This jar contains entries whose certificate chain cannot

 be correctly validated.

 badKeyUsage

 Code 8. This jar contains entries whose signer certificate's

 KeyUsage extension doesn't allow code signing.

 badExtendedKeyUsage

 Code 8. This jar contains entries whose signer certificate's

 ExtendedKeyUsage extension doesn't allow code signing.

 badNetscapeCertType

 Code 8. This jar contains entries whose signer certificate's

 NetscapeCertType extension doesn't allow code signing.

 hasUnsignedEntry

 Code 16. This jar contains unsigned entries which have not been

 integrity-checked.

 notSignedByAlias

 Code 32. This jar contains signed entries which are not signed

 by the specified alias(es).

 aliasNotInStore

 Code 32. This jar contains signed entries that are not signed by

 alias in this keystore.

 INFORMATIONAL WARNINGS

 Informational warnings include those that are not errors but regarded

 as bad practice. They do not have a code.

 hasExpiringCert

 This jar contains entries whose signer certificate will expire

 within six months. Page 20/23

 noTimestamp

 This jar contains signatures that does not include a timestamp.

 Without a timestamp, users may not be able to validate this JAR

 file after the signer certificate's expiration date (YYYY-MM-DD)

 or after any future revocation date.

EXAMPLES

 SIGN A JAR FILE

 Use the following command to sign bundle.jar with the private key of a

 user whose keystore alias is jane in a keystore named mystore in the

 working directory and name the signed JAR file sbundle.jar:

 jarsigner -keystore /working/mystore

 -storepass <keystore password>

 -keypass <private key password>

 -signedjar sbundle.jar bundle.jar jane

 There is no -sigfile specified in the previous command so the generated

 .SF and .DSA files to be placed in the signed JAR file have default

 names based on the alias name. They are named JANE.SF and JANE.DSA.

 If you want to be prompted for the store password and the private key

 password, then you could shorten the previous command to the following:

 jarsigner -keystore /working/mystore

 -signedjar sbundle.jar bundle.jar jane

 If the keystore is the default keystore (.keystore in your home

 directory), then you do not need to specify a keystore, as follows:

 jarsigner -signedjar sbundle.jar bundle.jar jane

 If you want the signed JAR file to overwrite the input JAR file

 (bundle.jar), then you do not need to specify a -signedjar option, as

 follows:

 jarsigner bundle.jar jane

 VERIFY A SIGNED JAR FILE

 To verify a signed JAR file to ensure that the signature is valid and

 the JAR file was not been tampered with, use a command such as the

 following:

 jarsigner -verify sbundle.jar Page 21/23

 When the verification is successful, jar verified is displayed.

 Otherwise, an error message is displayed. You can get more information

 when you use the -verbose option. A sample use of jarsigner with the-

 verbose option follows:

 jarsigner -verify -verbose sbundle.jar

 198 Fri Sep 26 16:14:06 PDT 1997 META-INF/MANIFEST.MF

 199 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.SF

 1013 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.DSA

 smk 2752 Fri Sep 26 16:12:30 PDT 1997 AclEx.class

 smk 849 Fri Sep 26 16:12:46 PDT 1997 test.class

 s = signature was verified

 m = entry is listed in manifest

 k = at least one certificate was found in keystore

 jar verified.

 VERIFICATION WITH CERTIFICATE INFORMATION

 If you specify the -certs option with the -verify and -verbose options,

 then the output includes certificate information for each signer of the

 JAR file. The information includes the certificate type, the signer

 distinguished name information (when it is an X.509 certificate), and

 in parentheses, the keystore alias for the signer when the public key

 certificate in the JAR file matches the one in a keystore entry, for

 example:

 jarsigner -keystore /working/mystore -verify -verbose -certs myTest.jar

 198 Fri Sep 26 16:14:06 PDT 1997 META-INF/MANIFEST.MF

 199 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.SF

 1013 Fri Sep 26 16:22:10 PDT 1997 META-INF/JANE.DSA

 208 Fri Sep 26 16:23:30 PDT 1997 META-INF/JAVATEST.SF

 1087 Fri Sep 26 16:23:30 PDT 1997 META-INF/JAVATEST.DSA

 smk 2752 Fri Sep 26 16:12:30 PDT 1997 Tst.class

 X.509, CN=Test Group, OU=Java Software, O=Oracle, L=CUP, S=CA, C=US (javatest)

 X.509, CN=Jane Smith, OU=Java Software, O=Oracle, L=cup, S=ca, C=us (jane)

 s = signature was verified

 m = entry is listed in manifest Page 22/23

 k = at least one certificate was found in keystore

 jar verified.

 If the certificate for a signer is not an X.509 certificate, then there

 is no distinguished name information. In that case, just the

 certificate type and the alias are shown. For example, if the

 certificate is a PGP certificate, and the alias is bob, then you would

 get: PGP, (bob).

SEE ALSO

 ? jar(1)

 ? keytool(1)

 ? Trail: Security Features in Java SE at

 http://docs.oracle.com/javase/tutorial/security/index.html

JDK 8 21 November 2013 jarsigner(1)

Page 23/23

