
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ioprio_get.2' command

$ man ioprio_get.2

IOPRIO_SET(2) Linux Programmer's Manual IOPRIO_SET(2)

NAME

 ioprio_get, ioprio_set - get/set I/O scheduling class and priority

SYNOPSIS

 int ioprio_get(int which, int who);

 int ioprio_set(int which, int who, int ioprio);

 Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION

 The ioprio_get() and ioprio_set() system calls get and set the I/O

 scheduling class and priority of one or more threads.

 The which and who arguments identify the thread(s) on which the system

 calls operate. The which argument determines how who is interpreted,

 and has one of the following values:

 IOPRIO_WHO_PROCESS

 who is a process ID or thread ID identifying a single process or

 thread. If who is 0, then operate on the calling thread.

 IOPRIO_WHO_PGRP

 who is a process group ID identifying all the members of a

 process group. If who is 0, then operate on the process group

 of which the caller is a member.

 IOPRIO_WHO_USER

 who is a user ID identifying all of the processes that have a

 matching real UID. Page 1/6

 If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when call?

 ing ioprio_get(), and more than one process matches who, then the re?

 turned priority will be the highest one found among all of the matching

 processes. One priority is said to be higher than another one if it

 belongs to a higher priority class (IOPRIO_CLASS_RT is the highest pri?

 ority class; IOPRIO_CLASS_IDLE is the lowest) or if it belongs to the

 same priority class as the other process but has a higher priority

 level (a lower priority number means a higher priority level).

 The ioprio argument given to ioprio_set() is a bit mask that specifies

 both the scheduling class and the priority to be assigned to the target

 process(es). The following macros are used for assembling and dissect?

 ing ioprio values:

 IOPRIO_PRIO_VALUE(class, data)

 Given a scheduling class and priority (data), this macro com?

 bines the two values to produce an ioprio value, which is re?

 turned as the result of the macro.

 IOPRIO_PRIO_CLASS(mask)

 Given mask (an ioprio value), this macro returns its I/O class

 component, that is, one of the values IOPRIO_CLASS_RT, IO?

 PRIO_CLASS_BE, or IOPRIO_CLASS_IDLE.

 IOPRIO_PRIO_DATA(mask)

 Given mask (an ioprio value), this macro returns its priority

 (data) component.

 See the NOTES section for more information on scheduling classes and

 priorities, as well as the meaning of specifying ioprio as 0.

 I/O priorities are supported for reads and for synchronous (O_DIRECT,

 O_SYNC) writes. I/O priorities are not supported for asynchronous

 writes because they are issued outside the context of the program

 dirtying the memory, and thus program-specific priorities do not apply.

RETURN VALUE

 On success, ioprio_get() returns the ioprio value of the process with

 highest I/O priority of any of the processes that match the criteria

 specified in which and who. On error, -1 is returned, and errno is set Page 2/6

 to indicate the error.

 On success, ioprio_set() returns 0. On error, -1 is returned, and er?

 rno is set to indicate the error.

ERRORS

 EINVAL Invalid value for which or ioprio. Refer to the NOTES section

 for available scheduler classes and priority levels for ioprio.

 EPERM The calling process does not have the privilege needed to assign

 this ioprio to the specified process(es). See the NOTES section

 for more information on required privileges for ioprio_set().

 ESRCH No process(es) could be found that matched the specification in

 which and who.

VERSIONS

 These system calls have been available on Linux since kernel 2.6.13.

CONFORMING TO

 These system calls are Linux-specific.

NOTES

 Glibc does not provide a wrapper for these system calls; call them us?

 ing syscall(2).

 Two or more processes or threads can share an I/O context. This will

 be the case when clone(2) was called with the CLONE_IO flag. However,

 by default, the distinct threads of a process will not share the same

 I/O context. This means that if you want to change the I/O priority of

 all threads in a process, you may need to call ioprio_set() on each of

 the threads. The thread ID that you would need for this operation is

 the one that is returned by gettid(2) or clone(2).

 These system calls have an effect only when used in conjunction with an

 I/O scheduler that supports I/O priorities. As at kernel 2.6.17 the

 only such scheduler is the Completely Fair Queuing (CFQ) I/O scheduler.

 If no I/O scheduler has been set for a thread, then by default the I/O

 priority will follow the CPU nice value (setpriority(2)). In Linux

 kernels before version 2.6.24, once an I/O priority had been set using

 ioprio_set(), there was no way to reset the I/O scheduling behavior to

 the default. Since Linux 2.6.24, specifying ioprio as 0 can be used to Page 3/6

 reset to the default I/O scheduling behavior.

 Selecting an I/O scheduler

 I/O schedulers are selected on a per-device basis via the special file

 /sys/block/<device>/queue/scheduler.

 One can view the current I/O scheduler via the /sys filesystem. For

 example, the following command displays a list of all schedulers cur?

 rently loaded in the kernel:

 $ cat /sys/block/sda/queue/scheduler

 noop anticipatory deadline [cfq]

 The scheduler surrounded by brackets is the one actually in use for the

 device (sda in the example). Setting another scheduler is done by

 writing the name of the new scheduler to this file. For example, the

 following command will set the scheduler for the sda device to cfq:

 $ su

 Password:

 # echo cfq > /sys/block/sda/queue/scheduler

 The Completely Fair Queuing (CFQ) I/O scheduler

 Since version 3 (also known as CFQ Time Sliced), CFQ implements I/O

 nice levels similar to those of CPU scheduling. These nice levels are

 grouped into three scheduling classes, each one containing one or more

 priority levels:

 IOPRIO_CLASS_RT (1)

 This is the real-time I/O class. This scheduling class is given

 higher priority than any other class: processes from this class

 are given first access to the disk every time. Thus, this I/O

 class needs to be used with some care: one I/O real-time process

 can starve the entire system. Within the real-time class, there

 are 8 levels of class data (priority) that determine exactly how

 much time this process needs the disk for on each service. The

 highest real-time priority level is 0; the lowest is 7. In the

 future, this might change to be more directly mappable to per?

 formance, by passing in a desired data rate instead.

 IOPRIO_CLASS_BE (2) Page 4/6

 This is the best-effort scheduling class, which is the default

 for any process that hasn't set a specific I/O priority. The

 class data (priority) determines how much I/O bandwidth the

 process will get. Best-effort priority levels are analogous to

 CPU nice values (see getpriority(2)). The priority level deter?

 mines a priority relative to other processes in the best-effort

 scheduling class. Priority levels range from 0 (highest) to 7

 (lowest).

 IOPRIO_CLASS_IDLE (3)

 This is the idle scheduling class. Processes running at this

 level get I/O time only when no one else needs the disk. The

 idle class has no class data. Attention is required when as?

 signing this priority class to a process, since it may become

 starved if higher priority processes are constantly accessing

 the disk.

 Refer to the kernel source file Documentation/block/ioprio.txt for more

 information on the CFQ I/O Scheduler and an example program.

 Required permissions to set I/O priorities

 Permission to change a process's priority is granted or denied based on

 two criteria:

 Process ownership

 An unprivileged process may set the I/O priority only for a

 process whose real UID matches the real or effective UID of the

 calling process. A process which has the CAP_SYS_NICE capabil?

 ity can change the priority of any process.

 What is the desired priority

 Attempts to set very high priorities (IOPRIO_CLASS_RT) require

 the CAP_SYS_ADMIN capability. Kernel versions up to 2.6.24 also

 required CAP_SYS_ADMIN to set a very low priority (IO?

 PRIO_CLASS_IDLE), but since Linux 2.6.25, this is no longer re?

 quired.

 A call to ioprio_set() must follow both rules, or the call will fail

 with the error EPERM. Page 5/6

BUGS

 Glibc does not yet provide a suitable header file defining the function

 prototypes and macros described on this page. Suitable definitions can

 be found in linux/ioprio.h.

SEE ALSO

 ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)

 Documentation/block/ioprio.txt in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 IOPRIO_SET(2)

Page 6/6

