
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'init.1' command

$ man init.1

SYSTEMD(1) systemd SYSTEMD(1)

NAME

 systemd, init - systemd system and service manager

SYNOPSIS

 /usr/lib/systemd/systemd [OPTIONS...]

 init [OPTIONS...] {COMMAND}

DESCRIPTION

 systemd is a system and service manager for Linux operating systems.

 When run as first process on boot (as PID 1), it acts as init system

 that brings up and maintains userspace services. Separate instances are

 started for logged-in users to start their services.

 systemd is usually not invoked directly by the user, but is installed

 as the /sbin/init symlink and started during early boot. The user

 manager instances are started automatically through the

 user@.service(5) service.

 For compatibility with SysV, if the binary is called as init and is not

 the first process on the machine (PID is not 1), it will execute

 telinit and pass all command line arguments unmodified. That means init

 and telinit are mostly equivalent when invoked from normal login

 sessions. See telinit(8) for more information.

 When run as a system instance, systemd interprets the configuration

 file system.conf and the files in system.conf.d directories; when run

 as a user instance, systemd interprets the configuration file user.conf Page 1/23

 and the files in user.conf.d directories. See systemd-system.conf(5)

 for more information.

CONCEPTS

 systemd provides a dependency system between various entities called

 "units" of 11 different types. Units encapsulate various objects that

 are relevant for system boot-up and maintenance. The majority of units

 are configured in unit configuration files, whose syntax and basic set

 of options is described in systemd.unit(5), however some are created

 automatically from other configuration files, dynamically from system

 state or programmatically at runtime. Units may be "active" (meaning

 started, bound, plugged in, ..., depending on the unit type, see

 below), or "inactive" (meaning stopped, unbound, unplugged, ...), as

 well as in the process of being activated or deactivated, i.e. between

 the two states (these states are called "activating", "deactivating").

 A special "failed" state is available as well, which is very similar to

 "inactive" and is entered when the service failed in some way (process

 returned error code on exit, or crashed, an operation timed out, or

 after too many restarts). If this state is entered, the cause will be

 logged, for later reference. Note that the various unit types may have

 a number of additional substates, which are mapped to the five

 generalized unit states described here.

 The following unit types are available:

 1. Service units, which start and control daemons and the processes

 they consist of. For details, see systemd.service(5).

 2. Socket units, which encapsulate local IPC or network sockets in the

 system, useful for socket-based activation. For details about

 socket units, see systemd.socket(5), for details on socket-based

 activation and other forms of activation, see daemon(7).

 3. Target units are useful to group units, or provide well-known

 synchronization points during boot-up, see systemd.target(5).

 4. Device units expose kernel devices in systemd and may be used to

 implement device-based activation. For details, see

 systemd.device(5). Page 2/23

 5. Mount units control mount points in the file system, for details

 see systemd.mount(5).

 6. Automount units provide automount capabilities, for on-demand

 mounting of file systems as well as parallelized boot-up. See

 systemd.automount(5).

 7. Timer units are useful for triggering activation of other units

 based on timers. You may find details in systemd.timer(5).

 8. Swap units are very similar to mount units and encapsulate memory

 swap partitions or files of the operating system. They are

 described in systemd.swap(5).

 9. Path units may be used to activate other services when file system

 objects change or are modified. See systemd.path(5).

 10. Slice units may be used to group units which manage system

 processes (such as service and scope units) in a hierarchical tree

 for resource management purposes. See systemd.slice(5).

 11. Scope units are similar to service units, but manage foreign

 processes instead of starting them as well. See systemd.scope(5).

 Units are named as their configuration files. Some units have special

 semantics. A detailed list is available in systemd.special(7).

 systemd knows various kinds of dependencies, including positive and

 negative requirement dependencies (i.e. Requires= and Conflicts=) as

 well as ordering dependencies (After= and Before=). NB: ordering and

 requirement dependencies are orthogonal. If only a requirement

 dependency exists between two units (e.g. foo.service requires

 bar.service), but no ordering dependency (e.g. foo.service after

 bar.service) and both are requested to start, they will be started in

 parallel. It is a common pattern that both requirement and ordering

 dependencies are placed between two units. Also note that the majority

 of dependencies are implicitly created and maintained by systemd. In

 most cases, it should be unnecessary to declare additional dependencies

 manually, however it is possible to do this.

 Application programs and units (via dependencies) may request state

 changes of units. In systemd, these requests are encapsulated as 'jobs' Page 3/23

 and maintained in a job queue. Jobs may succeed or can fail, their

 execution is ordered based on the ordering dependencies of the units

 they have been scheduled for.

 On boot systemd activates the target unit default.target whose job is

 to activate on-boot services and other on-boot units by pulling them in

 via dependencies. Usually, the unit name is just an alias (symlink) for

 either graphical.target (for fully-featured boots into the UI) or

 multi-user.target (for limited console-only boots for use in embedded

 or server environments, or similar; a subset of graphical.target).

 However, it is at the discretion of the administrator to configure it

 as an alias to any other target unit. See systemd.special(7) for

 details about these target units.

 On first boot, systemd will enable or disable units according to preset

 policy. See systemd.preset(5) and "First Boot Semantics" in machine-

 id(5).

 systemd only keeps a minimal set of units loaded into memory.

 Specifically, the only units that are kept loaded into memory are those

 for which at least one of the following conditions is true:

 1. It is in an active, activating, deactivating or failed state (i.e.

 in any unit state except for "inactive")

 2. It has a job queued for it

 3. It is a dependency of at least one other unit that is loaded into

 memory

 4. It has some form of resource still allocated (e.g. a service unit

 that is inactive but for which a process is still lingering that

 ignored the request to be terminated)

 5. It has been pinned into memory programmatically by a D-Bus call

 systemd will automatically and implicitly load units from disk ? if

 they are not loaded yet ? as soon as operations are requested for them.

 Thus, in many respects, the fact whether a unit is loaded or not is

 invisible to clients. Use systemctl list-units --all to comprehensively

 list all units currently loaded. Any unit for which none of the

 conditions above applies is promptly unloaded. Note that when a unit is Page 4/23

 unloaded from memory its accounting data is flushed out too. However,

 this data is generally not lost, as a journal log record is generated

 declaring the consumed resources whenever a unit shuts down.

 Processes systemd spawns are placed in individual Linux control groups

 named after the unit which they belong to in the private systemd

 hierarchy. (see Control Groups v2[1] for more information about control

 groups, or short "cgroups"). systemd uses this to effectively keep

 track of processes. Control group information is maintained in the

 kernel, and is accessible via the file system hierarchy (beneath

 /sys/fs/cgroup/), or in tools such as systemd-cgls(1) or ps(1) (ps xawf

 -eo pid,user,cgroup,args is particularly useful to list all processes

 and the systemd units they belong to.).

 systemd is compatible with the SysV init system to a large degree: SysV

 init scripts are supported and simply read as an alternative (though

 limited) configuration file format. The SysV /dev/initctl interface is

 provided, and compatibility implementations of the various SysV client

 tools are available. In addition to that, various established Unix

 functionality such as /etc/fstab or the utmp database are supported.

 systemd has a minimal transaction system: if a unit is requested to

 start up or shut down it will add it and all its dependencies to a

 temporary transaction. Then, it will verify if the transaction is

 consistent (i.e. whether the ordering of all units is cycle-free). If

 it is not, systemd will try to fix it up, and removes non-essential

 jobs from the transaction that might remove the loop. Also, systemd

 tries to suppress non-essential jobs in the transaction that would stop

 a running service. Finally it is checked whether the jobs of the

 transaction contradict jobs that have already been queued, and

 optionally the transaction is aborted then. If all worked out and the

 transaction is consistent and minimized in its impact it is merged with

 all already outstanding jobs and added to the run queue. Effectively

 this means that before executing a requested operation, systemd will

 verify that it makes sense, fixing it if possible, and only failing if

 it really cannot work. Page 5/23

 Note that transactions are generated independently of a unit's state at

 runtime, hence, for example, if a start job is requested on an already

 started unit, it will still generate a transaction and wake up any

 inactive dependencies (and cause propagation of other jobs as per the

 defined relationships). This is because the enqueued job is at the time

 of execution compared to the target unit's state and is marked

 successful and complete when both satisfy. However, this job also pulls

 in other dependencies due to the defined relationships and thus leads

 to, in our example, start jobs for any of those inactive units getting

 queued as well.

 systemd contains native implementations of various tasks that need to

 be executed as part of the boot process. For example, it sets the

 hostname or configures the loopback network device. It also sets up and

 mounts various API file systems, such as /sys/ or /proc/.

 For more information about the concepts and ideas behind systemd,

 please refer to the Original Design Document[2].

 Note that some but not all interfaces provided by systemd are covered

 by the Interface Portability and Stability Promise[3].

 Units may be generated dynamically at boot and system manager reload

 time, for example based on other configuration files or parameters

 passed on the kernel command line. For details, see

 systemd.generator(7).

 The D-Bus API of systemd is described in org.freedesktop.systemd1(5)

 and org.freedesktop.LogControl1(5).

 Systems which invoke systemd in a container or initrd environment

 should implement the Container Interface[4] or initrd Interface[5]

 specifications, respectively.

DIRECTORIES

 System unit directories

 The systemd system manager reads unit configuration from various

 directories. Packages that want to install unit files shall place

 them in the directory returned by pkg-config systemd

 --variable=systemdsystemunitdir. Other directories checked are Page 6/23

 /usr/local/lib/systemd/system and /usr/lib/systemd/system. User

 configuration always takes precedence. pkg-config systemd

 --variable=systemdsystemconfdir returns the path of the system

 configuration directory. Packages should alter the content of these

 directories only with the enable and disable commands of the

 systemctl(1) tool. Full list of directories is provided in

 systemd.unit(5).

 User unit directories

 Similar rules apply for the user unit directories. However, here

 the XDG Base Directory specification[6] is followed to find units.

 Applications should place their unit files in the directory

 returned by pkg-config systemd --variable=systemduserunitdir.

 Global configuration is done in the directory reported by

 pkg-config systemd --variable=systemduserconfdir. The enable and

 disable commands of the systemctl(1) tool can handle both global

 (i.e. for all users) and private (for one user) enabling/disabling

 of units. Full list of directories is provided in systemd.unit(5).

 SysV init scripts directory

 The location of the SysV init script directory varies between

 distributions. If systemd cannot find a native unit file for a

 requested service, it will look for a SysV init script of the same

 name (with the .service suffix removed).

 SysV runlevel link farm directory

 The location of the SysV runlevel link farm directory varies

 between distributions. systemd will take the link farm into account

 when figuring out whether a service shall be enabled. Note that a

 service unit with a native unit configuration file cannot be

 started by activating it in the SysV runlevel link farm.

SIGNALS

 SIGTERM

 Upon receiving this signal the systemd system manager serializes

 its state, reexecutes itself and deserializes the saved state

 again. This is mostly equivalent to systemctl daemon-reexec. Page 7/23

 systemd user managers will start the exit.target unit when this

 signal is received. This is mostly equivalent to systemctl --user

 start exit.target --job-mode=replace-irreversibly.

 SIGINT

 Upon receiving this signal the systemd system manager will start

 the ctrl-alt-del.target unit. This is mostly equivalent to

 systemctl start ctrl-alt-del.target

 --job-mode=replace-irreversibly. If this signal is received more

 than 7 times per 2s, an immediate reboot is triggered. Note that

 pressing Ctrl+Alt+Del on the console will trigger this signal.

 Hence, if a reboot is hanging, pressing Ctrl+Alt+Del more than 7

 times in 2 seconds is a relatively safe way to trigger an immediate

 reboot.

 systemd user managers treat this signal the same way as SIGTERM.

 SIGWINCH

 When this signal is received the systemd system manager will start

 the kbrequest.target unit. This is mostly equivalent to systemctl

 start kbrequest.target.

 This signal is ignored by systemd user managers.

 SIGPWR

 When this signal is received the systemd manager will start the

 sigpwr.target unit. This is mostly equivalent to systemctl start

 sigpwr.target.

 SIGUSR1

 When this signal is received the systemd manager will try to

 reconnect to the D-Bus bus.

 SIGUSR2

 When this signal is received the systemd manager will log its

 complete state in human-readable form. The data logged is the same

 as printed by systemd-analyze dump.

 SIGHUP

 Reloads the complete daemon configuration. This is mostly

 equivalent to systemctl daemon-reload. Page 8/23

 SIGRTMIN+0

 Enters default mode, starts the default.target unit. This is mostly

 equivalent to systemctl isolate default.target.

 SIGRTMIN+1

 Enters rescue mode, starts the rescue.target unit. This is mostly

 equivalent to systemctl isolate rescue.target.

 SIGRTMIN+2

 Enters emergency mode, starts the emergency.service unit. This is

 mostly equivalent to systemctl isolate emergency.service.

 SIGRTMIN+3

 Halts the machine, starts the halt.target unit. This is mostly

 equivalent to systemctl start halt.target

 --job-mode=replace-irreversibly.

 SIGRTMIN+4

 Powers off the machine, starts the poweroff.target unit. This is

 mostly equivalent to systemctl start poweroff.target

 --job-mode=replace-irreversibly.

 SIGRTMIN+5

 Reboots the machine, starts the reboot.target unit. This is mostly

 equivalent to systemctl start reboot.target

 --job-mode=replace-irreversibly.

 SIGRTMIN+6

 Reboots the machine via kexec, starts the kexec.target unit. This

 is mostly equivalent to systemctl start kexec.target

 --job-mode=replace-irreversibly.

 SIGRTMIN+13

 Immediately halts the machine.

 SIGRTMIN+14

 Immediately powers off the machine.

 SIGRTMIN+15

 Immediately reboots the machine.

 SIGRTMIN+16

 Immediately reboots the machine with kexec. Page 9/23

 SIGRTMIN+20

 Enables display of status messages on the console, as controlled

 via systemd.show_status=1 on the kernel command line.

 SIGRTMIN+21

 Disables display of status messages on the console, as controlled

 via systemd.show_status=0 on the kernel command line.

 SIGRTMIN+22

 Sets the service manager's log level to "debug", in a fashion

 equivalent to systemd.log_level=debug on the kernel command line.

 SIGRTMIN+23

 Restores the log level to its configured value. The configured

 value is derived from ? in order of priority ? the value specified

 with systemd.log-level= on the kernel command line, or the value

 specified with LogLevel= in the configuration file, or the built-in

 default of "info".

 SIGRTMIN+24

 Immediately exits the manager (only available for --user

 instances).

 SIGRTMIN+25

 Upon receiving this signal the systemd manager will reexecute

 itself. This is mostly equivalent to systemctl daemon-reexec except

 that it will be done asynchronously.

 The systemd system manager treats this signal the same way as

 SIGTERM.

 SIGRTMIN+26

 Restores the log target to its configured value. The configured

 value is derived from ? in order of priority ? the value specified

 with systemd.log-target= on the kernel command line, or the value

 specified with LogTarget= in the configuration file, or the

 built-in default.

 SIGRTMIN+27, SIGRTMIN+28

 Sets the log target to "console" on SIGRTMIN+27 (or "kmsg" on

 SIGRTMIN+28), in a fashion equivalent to systemd.log_target=console Page 10/23

 (or systemd.log_target=kmsg on SIGRTMIN+28) on the kernel command

 line.

ENVIRONMENT

 The environment block for the system manager is initially set by the

 kernel. (In particular, "key=value" assignments on the kernel command

 line are turned into environment variables for PID 1). For the user

 manager, the system manager sets the environment as described in the

 "Environment Variables in Spawned Processes" section of

 systemd.exec(5). The DefaultEnvironment= setting in the system manager

 applies to all services including user@.service. Additional entries may

 be configured (as for any other service) through the Environment= and

 EnvironmentFile= settings for user@.service (see systemd.exec(5)).

 Also, additional environment variables may be set through the

 ManagerEnvironment= setting in systemd-system.conf(5) and systemd-

 user.conf(5).

 Some of the variables understood by systemd:

 $SYSTEMD_LOG_LEVEL

 The maximum log level of emitted messages (messages with a higher

 log level, i.e. less important ones, will be suppressed). Either

 one of (in order of decreasing importance) emerg, alert, crit, err,

 warning, notice, info, debug, or an integer in the range 0...7. See

 syslog(3) for more information.

 This can be overridden with --log-level=.

 $SYSTEMD_LOG_COLOR

 A boolean. If true, messages written to the tty will be colored

 according to priority.

 This can be overridden with --log-color=.

 $SYSTEMD_LOG_TIME

 A boolean. If true, console log messages will be prefixed with a

 timestamp.

 This can be overridden with --log-time=.

 $SYSTEMD_LOG_LOCATION

 A boolean. If true, messages will be prefixed with a filename and Page 11/23

 line number in the source code where the message originates.

 This can be overridden with --log-location=.

 $SYSTEMD_LOG_TID

 A boolean. If true, messages will be prefixed with the current

 numerical thread ID (TID).

 $SYSTEMD_LOG_TARGET

 The destination for log messages. One of console (log to the

 attached tty), console-prefixed (log to the attached tty but with

 prefixes encoding the log level and "facility", see syslog(3), kmsg

 (log to the kernel circular log buffer), journal (log to the

 journal), journal-or-kmsg (log to the journal if available, and to

 kmsg otherwise), auto (determine the appropriate log target

 automatically, the default), null (disable log output).

 This can be overridden with --log-target=.

 $XDG_CONFIG_HOME, $XDG_CONFIG_DIRS, $XDG_DATA_HOME, $XDG_DATA_DIRS

 The systemd user manager uses these variables in accordance to the

 XDG Base Directory specification[6] to find its configuration.

 $SYSTEMD_UNIT_PATH, $SYSTEMD_GENERATOR_PATH,

 $SYSTEMD_ENVIRONMENT_GENERATOR_PATH

 Controls where systemd looks for unit files and generators.

 These variables may contain a list of paths, separated by colons

 (":"). When set, if the list ends with an empty component ("...:"),

 this list is prepended to the usual set of paths. Otherwise, the

 specified list replaces the usual set of paths.

 $SYSTEMD_PAGER

 Pager to use when --no-pager is not given; overrides $PAGER. If

 neither $SYSTEMD_PAGER nor $PAGER are set, a set of well-known

 pager implementations are tried in turn, including less(1) and

 more(1), until one is found. If no pager implementation is

 discovered no pager is invoked. Setting this environment variable

 to an empty string or the value "cat" is equivalent to passing

 --no-pager.

 Note: if $SYSTEMD_PAGERSECURE is not set, $SYSTEMD_PAGER (as well Page 12/23

 as $PAGER) will be silently ignored.

 $SYSTEMD_LESS

 Override the options passed to less (by default "FRSXMK").

 Users might want to change two options in particular:

 K

 This option instructs the pager to exit immediately when Ctrl+C

 is pressed. To allow less to handle Ctrl+C itself to switch

 back to the pager command prompt, unset this option.

 If the value of $SYSTEMD_LESS does not include "K", and the

 pager that is invoked is less, Ctrl+C will be ignored by the

 executable, and needs to be handled by the pager.

 X

 This option instructs the pager to not send termcap

 initialization and deinitialization strings to the terminal. It

 is set by default to allow command output to remain visible in

 the terminal even after the pager exits. Nevertheless, this

 prevents some pager functionality from working, in particular

 paged output cannot be scrolled with the mouse.

 See less(1) for more discussion.

 $SYSTEMD_LESSCHARSET

 Override the charset passed to less (by default "utf-8", if the

 invoking terminal is determined to be UTF-8 compatible).

 $SYSTEMD_PAGERSECURE

 Takes a boolean argument. When true, the "secure" mode of the pager

 is enabled; if false, disabled. If $SYSTEMD_PAGERSECURE is not set

 at all, secure mode is enabled if the effective UID is not the same

 as the owner of the login session, see geteuid(2) and

 sd_pid_get_owner_uid(3). In secure mode, LESSSECURE=1 will be set

 when invoking the pager, and the pager shall disable commands that

 open or create new files or start new subprocesses. When

 $SYSTEMD_PAGERSECURE is not set at all, pagers which are not known

 to implement secure mode will not be used. (Currently only less(1)

 implements secure mode.) Page 13/23

 Note: when commands are invoked with elevated privileges, for

 example under sudo(8) or pkexec(1), care must be taken to ensure

 that unintended interactive features are not enabled. "Secure" mode

 for the pager may be enabled automatically as describe above.

 Setting SYSTEMD_PAGERSECURE=0 or not removing it from the inherited

 environment allows the user to invoke arbitrary commands. Note that

 if the $SYSTEMD_PAGER or $PAGER variables are to be honoured,

 $SYSTEMD_PAGERSECURE must be set too. It might be reasonable to

 completely disable the pager using --no-pager instead.

 $SYSTEMD_COLORS

 Takes a boolean argument. When true, systemd and related utilities

 will use colors in their output, otherwise the output will be

 monochrome. Additionally, the variable can take one of the

 following special values: "16", "256" to restrict the use of colors

 to the base 16 or 256 ANSI colors, respectively. This can be

 specified to override the automatic decision based on $TERM and

 what the console is connected to.

 $SYSTEMD_URLIFY

 The value must be a boolean. Controls whether clickable links

 should be generated in the output for terminal emulators supporting

 this. This can be specified to override the decision that systemd

 makes based on $TERM and other conditions.

 $LISTEN_PID, $LISTEN_FDS, $LISTEN_FDNAMES

 Set by systemd for supervised processes during socket-based

 activation. See sd_listen_fds(3) for more information.

 $NOTIFY_SOCKET

 Set by systemd for supervised processes for status and start-up

 completion notification. See sd_notify(3) for more information.

 For further environment variables understood by systemd and its various

 components, see Known Environment Variables[7].

KERNEL COMMAND LINE

 When run as the system instance, systemd parses a number of options

 listed below. They can be specified as kernel command line arguments Page 14/23

 which are parsed from a number of sources depending on the environment

 in which systemd is executed. If run inside a Linux container, these

 options are parsed from the command line arguments passed to systemd

 itself, next to any of the command line options listed in the Options

 section above. If run outside of Linux containers, these arguments are

 parsed from /proc/cmdline and from the "SystemdOptions" EFI variable

 (on EFI systems) instead. Options from /proc/cmdline have higher

 priority. The following variables are understood:

 systemd.unit=, rd.systemd.unit=

 Overrides the unit to activate on boot. Defaults to default.target.

 This may be used to temporarily boot into a different boot unit,

 for example rescue.target or emergency.service. See

 systemd.special(7) for details about these units. The option

 prefixed with "rd." is honored only in the initrd, while the one

 that is not prefixed only in the main system.

 systemd.dump_core

 Takes a boolean argument or enables the option if specified without

 an argument. If enabled, the systemd manager (PID 1) dumps core

 when it crashes. Otherwise, no core dump is created. Defaults to

 enabled.

 systemd.crash_chvt

 Takes a positive integer, or a boolean argument. Can be also

 specified without an argument, with the same effect as a positive

 boolean. If a positive integer (in the range 1?63) is specified,

 the system manager (PID 1) will activate the specified virtual

 terminal when it crashes. Defaults to disabled, meaning that no

 such switch is attempted. If set to enabled, the virtual terminal

 the kernel messages are written to is used instead.

 systemd.crash_shell

 Takes a boolean argument or enables the option if specified without

 an argument. If enabled, the system manager (PID 1) spawns a shell

 when it crashes, after a 10s delay. Otherwise, no shell is spawned.

 Defaults to disabled, for security reasons, as the shell is not Page 15/23

 protected by password authentication.

 systemd.crash_reboot

 Takes a boolean argument or enables the option if specified without

 an argument. If enabled, the system manager (PID 1) will reboot the

 machine automatically when it crashes, after a 10s delay.

 Otherwise, the system will hang indefinitely. Defaults to disabled,

 in order to avoid a reboot loop. If combined with

 systemd.crash_shell, the system is rebooted after the shell exits.

 systemd.confirm_spawn

 Takes a boolean argument or a path to the virtual console where the

 confirmation messages should be emitted. Can be also specified

 without an argument, with the same effect as a positive boolean. If

 enabled, the system manager (PID 1) asks for confirmation when

 spawning processes using /dev/console. If a path or a console name

 (such as "ttyS0") is provided, the virtual console pointed to by

 this path or described by the give name will be used instead.

 Defaults to disabled.

 systemd.service_watchdogs=

 Takes a boolean argument. If disabled, all service runtime

 watchdogs (WatchdogSec=) and emergency actions (e.g. OnFailure= or

 StartLimitAction=) are ignored by the system manager (PID 1); see

 systemd.service(5). Defaults to enabled, i.e. watchdogs and failure

 actions are processed normally. The hardware watchdog is not

 affected by this option.

 systemd.show_status

 Takes a boolean argument or the constants error and auto. Can be

 also specified without an argument, with the same effect as a

 positive boolean. If enabled, the systemd manager (PID 1) shows

 terse service status updates on the console during bootup. With

 error, only messages about failures are shown, but boot is

 otherwise quiet. auto behaves like false until there is a

 significant delay in boot. Defaults to enabled, unless quiet is

 passed as kernel command line option, in which case it defaults to Page 16/23

 error. If specified overrides the system manager configuration file

 option ShowStatus=, see systemd-system.conf(5).

 systemd.status_unit_format=

 Takes name, description or combined as the value. If name, the

 system manager will use unit names in status messages. If combined,

 the system manager will use unit names and description in status

 messages. When specified, overrides the system manager

 configuration file option StatusUnitFormat=, see systemd-

 system.conf(5).

 systemd.log_color, systemd.log_level=, systemd.log_location,

 systemd.log_target=, systemd.log_time, systemd.log_tid

 Controls log output, with the same effect as the

 $SYSTEMD_LOG_COLOR, $SYSTEMD_LOG_LEVEL, $SYSTEMD_LOG_LOCATION,

 $SYSTEMD_LOG_TARGET, $SYSTEMD_LOG_TIME, and $SYSTEMD_LOG_TID

 environment variables described above. systemd.log_color,

 systemd.log_location, systemd.log_time, and systemd.log_tid= can be

 specified without an argument, with the same effect as a positive

 boolean.

 systemd.default_standard_output=, systemd.default_standard_error=

 Controls default standard output and error output for services and

 sockets. That is, controls the default for StandardOutput= and

 StandardError= (see systemd.exec(5) for details). Takes one of

 inherit, null, tty, journal, journal+console, kmsg, kmsg+console.

 If the argument is omitted systemd.default-standard-output=

 defaults to journal and systemd.default-standard-error= to inherit.

 systemd.setenv=

 Takes a string argument in the form VARIABLE=VALUE. May be used to

 set default environment variables to add to forked child processes.

 May be used more than once to set multiple variables.

 systemd.machine_id=

 Takes a 32 character hex value to be used for setting the

 machine-id. Intended mostly for network booting where the same

 machine-id is desired for every boot. Page 17/23

 systemd.set_credential=

 Sets a system credential, which can then be propagated to system

 services using the LoadCredential= setting, see systemd.exec(5) for

 details. Takes a pair of credential name and value, separated by a

 colon. Note that the kernel command line is typically accessible by

 unprivileged programs in /proc/cmdline. Thus, this mechanism is not

 suitable for transferring sensitive data. Use it only for data that

 is not sensitive (e.g. public keys/certificates, rather than

 private keys), or in testing/debugging environments.

 For further information see System and Service Credentials[8]

 documentation.

 systemd.import_credentials=

 Takes a boolean argument. If false disables importing credentials

 from the kernel command line, the DMI/SMBIOS OEM string table, the

 qemu_fw_cfg subsystem or the EFI kernel stub.

 quiet

 Turn off status output at boot, much like systemd.show_status=no

 would. Note that this option is also read by the kernel itself and

 disables kernel log output. Passing this option hence turns off the

 usual output from both the system manager and the kernel.

 debug

 Turn on debugging output. This is equivalent to

 systemd.log_level=debug. Note that this option is also read by the

 kernel itself and enables kernel debug output. Passing this option

 hence turns on the debug output from both the system manager and

 the kernel.

 emergency, rd.emergency, -b

 Boot into emergency mode. This is equivalent to

 systemd.unit=emergency.target or rd.systemd.unit=emergency.target,

 respectively, and provided for compatibility reasons and to be

 easier to type.

 rescue, rd.rescue, single, s, S, 1

 Boot into rescue mode. This is equivalent to Page 18/23

 systemd.unit=rescue.target or rd.systemd.unit=rescue.target,

 respectively, and provided for compatibility reasons and to be

 easier to type.

 2, 3, 4, 5

 Boot into the specified legacy SysV runlevel. These are equivalent

 to systemd.unit=runlevel2.target, systemd.unit=runlevel3.target,

 systemd.unit=runlevel4.target, and systemd.unit=runlevel5.target,

 respectively, and provided for compatibility reasons and to be

 easier to type.

 locale.LANG=, locale.LANGUAGE=, locale.LC_CTYPE=, locale.LC_NUMERIC=,

 locale.LC_TIME=, locale.LC_COLLATE=, locale.LC_MONETARY=,

 locale.LC_MESSAGES=, locale.LC_PAPER=, locale.LC_NAME=,

 locale.LC_ADDRESS=, locale.LC_TELEPHONE=, locale.LC_MEASUREMENT=,

 locale.LC_IDENTIFICATION=

 Set the system locale to use. This overrides the settings in

 /etc/locale.conf. For more information, see locale.conf(5) and

 locale(7).

 For other kernel command line parameters understood by components of

 the core OS, please refer to kernel-command-line(7).

OPTIONS

 systemd is only very rarely invoked directly, since it is started early

 and is already running by the time users may interact with it.

 Normally, tools like systemctl(1) are used to give commands to the

 manager. Since systemd is usually not invoked directly, the options

 listed below are mostly useful for debugging and special purposes.

 Introspection and debugging options

 Those options are used for testing and introspection, and systemd may

 be invoked with them at any time:

 --dump-configuration-items

 Dump understood unit configuration items. This outputs a terse but

 complete list of configuration items understood in unit definition

 files.

 --dump-bus-properties Page 19/23

 Dump exposed bus properties. This outputs a terse but complete list

 of properties exposed on D-Bus.

 --test

 Determine the initial start-up transaction (i.e. the list of jobs

 enqueued at start-up), dump it and exit ? without actually

 executing any of the determined jobs. This option is useful for

 debugging only. Note that during regular service manager start-up

 additional units not shown by this operation may be started,

 because hardware, socket, bus or other kinds of activation might

 add additional jobs as the transaction is executed. Use --system to

 request the initial transaction of the system service manager (this

 is also the implied default), combine with --user to request the

 initial transaction of the per-user service manager instead.

 --system, --user

 When used in conjunction with --test, selects whether to calculate

 the initial transaction for the system instance or for a per-user

 instance. These options have no effect when invoked without --test,

 as during regular (i.e. non---test) invocations the service manager

 will automatically detect whether it shall operate in system or

 per-user mode, by checking whether the PID it is run as is 1 or

 not. Note that it is not supported booting and maintaining a system

 with the service manager running in --system mode but with a PID

 other than 1.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

 Options that duplicate kernel command line settings

 Those options correspond directly to options listed above in "Kernel

 Command Line". Both forms may be used equivalently for the system

 manager, but it is recommended to use the forms listed above in this

 context, because they are properly namespaced. When an option is

 specified both on the kernel command line and as a normal command line Page 20/23

 argument, the latter has higher precedence.

 When systemd is used as a user manager, the kernel command line is

 ignored and only the options described below are understood.

 Nevertheless, systemd is usually started in this mode through the

 user@.service(5) service, which is shared between all users. It may be

 more convenient to use configuration files to modify settings (see

 systemd-user.conf(5)), or environment variables. See the "Environment"

 section above for a discussion of how the environment block is set.

 --unit=

 Set default unit to activate on startup. If not specified, defaults

 to default.target. See systemd.unit= above.

 --dump-core

 Enable core dumping on crash. This switch has no effect when

 running as user instance. Same as systemd.dump_core= above.

 --crash-vt=VT

 Switch to a specific virtual console (VT) on crash. This switch has

 no effect when running as user instance. Same as

 systemd.crash_chvt= above (but not the different spelling!).

 --crash-shell

 Run a shell on crash. This switch has no effect when running as

 user instance. See systemd.crash_shell= above.

 --crash-reboot

 Automatically reboot the system on crash. This switch has no effect

 when running as user instance. See systemd.crash_reboot above.

 --confirm-spawn

 Ask for confirmation when spawning processes. This switch has no

 effect when run as user instance. See systemd.confirm_spawn above.

 --show-status

 Show terse unit status information on the console during boot-up

 and shutdown. See systemd.show_status above.

 --log-color

 Highlight important log messages. See systemd.log_color above.

 --log-level= Page 21/23

 Set log level. See systemd.log_level above.

 --log-location

 Include code location in log messages. See systemd.log_location

 above.

 --log-target=

 Set log target. See systemd.log_target above.

 --log-time=

 Prefix console messages with timestamp. See systemd.log_time above.

 --machine-id=

 Override the machine-id set on the hard drive. See

 systemd.machine_id= above.

 --service-watchdogs

 Globally enable/disable all service watchdog timeouts and emergency

 actions. See systemd.service_watchdogs above.

 --default-standard-output=, --default-standard-error=

 Sets the default output or error output for all services and

 sockets, respectively. See systemd.default_standard_output= and

 systemd.default_standard_error= above.

SOCKETS AND FIFOS

 /run/systemd/notify

 Daemon status notification socket. This is an AF_UNIX datagram

 socket and is used to implement the daemon notification logic as

 implemented by sd_notify(3).

 /run/systemd/private

 Used internally as communication channel between systemctl(1) and

 the systemd process. This is an AF_UNIX stream socket. This

 interface is private to systemd and should not be used in external

 projects.

 /dev/initctl

 Limited compatibility support for the SysV client interface, as

 implemented by the systemd-initctl.service unit. This is a named

 pipe in the file system. This interface is obsolete and should not

 be used in new applications. Page 22/23

HISTORY

 systemd 252

 Kernel command-line arguments systemd.unified_cgroup_hierarchy and

 systemd.legacy_systemd_cgroup_controller were deprecated. Please

 switch to the unified cgroup hierarchy.

SEE ALSO

 The systemd Homepage[9], systemd-system.conf(5), locale.conf(5),

 systemctl(1), journalctl(1), systemd-notify(1), daemon(7), sd-

 daemon(3), org.freedesktop.systemd1(5), systemd.unit(5),

 systemd.special(7), pkg-config(1), kernel-command-line(7), bootup(7),

 systemd.directives(7)

NOTES

 1. Control Groups v2

 https://docs.kernel.org/admin-guide/cgroup-v2.html

 2. Original Design Document

 http://0pointer.de/blog/projects/systemd.html

 3. Interface Portability and Stability Promise

 https://systemd.io/PORTABILITY_AND_STABILITY/

 4. Container Interface

 https://systemd.io/CONTAINER_INTERFACE

 5. initrd Interface

 https://systemd.io/INITRD_INTERFACE/

 6. XDG Base Directory specification

 https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

 7. Known Environment Variables

 https://systemd.io/ENVIRONMENT

 8. System and Service Credentials

 https://systemd.io/CREDENTIALS

 9. systemd Homepage

 https://systemd.io/

systemd 252 SYSTEMD(1)

Page 23/23

