
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'inet_net_ntop.3' command

$ man inet_net_ntop.3

INET_NET_PTON(3) Linux Programmer's Manual INET_NET_PTON(3)

NAME

 inet_net_pton, inet_net_ntop - Internet network number conversion

SYNOPSIS

 #include <arpa/inet.h>

 int inet_net_pton(int af, const char *pres,

 void *netp, size_t nsize);

 char *inet_net_ntop(int af, const void *netp, int bits,

 char *pres, size_t psize);

 Link with -lresolv.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 inet_net_pton(), inet_net_ntop():

 Since glibc 2.20:

 _DEFAULT_SOURCE

 Before glibc 2.20:

 _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 These functions convert network numbers between presentation (i.e.,

 printable) format and network (i.e., binary) format.

 For both functions, af specifies the address family for the conversion;

 the only supported value is AF_INET.

 inet_net_pton()

 The inet_net_pton() function converts pres, a null-terminated string Page 1/7

 containing an Internet network number in presentation format to network

 format. The result of the conversion, which is in network byte order,

 is placed in the buffer pointed to by net. (The netp argument typi?

 cally points to an in_addr structure.) The nsize argument specifies

 the number of bytes available in netp.

 On success, inet_net_pton() returns the number of bits in the network

 number field of the result placed in netp. For a discussion of the in?

 put presentation format and the return value, see NOTES.

 Note: the buffer pointed to by netp should be zeroed out before calling

 inet_net_pton(), since the call writes only as many bytes as are re?

 quired for the network number (or as are explicitly specified by pres),

 which may be less than the number of bytes in a complete network ad?

 dress.

 inet_net_ntop()

 The inet_net_ntop() function converts the network number in the buffer

 pointed to by netp to presentation format; *netp is interpreted as a

 value in network byte order. The bits argument specifies the number of

 bits in the network number in *netp.

 The null-terminated presentation-format string is placed in the buffer

 pointed to by pres. The psize argument specifies the number of bytes

 available in pres. The presentation string is in CIDR format: a dot?

 ted-decimal number representing the network address, followed by a

 slash, and the size of the network number in bits.

RETURN VALUE

 On success, inet_net_pton() returns the number of bits in the network

 number. On error, it returns -1, and errno is set to indicate the

 cause of the error.

 On success, inet_net_ntop() returns pres. On error, it returns NULL,

 and errno is set to indicate the cause of the error.

ERRORS

 EAFNOSUPPORT

 af specified a value other than AF_INET.

 EMSGSIZE Page 2/7

 The size of the output buffer was insufficient.

 ENOENT (inet_net_pton()) pres was not in correct presentation format.

CONFORMING TO

 The inet_net_pton() and inet_net_ntop() functions are nonstandard, but

 widely available.

NOTES

 Input presentation format for inet_net_pton()

 The network number may be specified either as a hexadecimal value or in

 dotted-decimal notation.

 Hexadecimal values are indicated by an initial "0x" or "0X". The hexa?

 decimal digits populate the nibbles (half octets) of the network number

 from left to right in network byte order.

 In dotted-decimal notation, up to four octets are specified, as decimal

 numbers separated by dots. Thus, any of the following forms are ac?

 cepted:

 a.b.c.d

 a.b.c

 a.b

 a

 Each part is a number in the range 0 to 255 that populates one byte of

 the resulting network number, going from left to right, in network-byte

 (big endian) order. Where a part is omitted, the resulting byte in the

 network number is zero.

 For either hexadecimal or dotted-decimal format, the network number can

 optionally be followed by a slash and a number in the range 0 to 32,

 which specifies the size of the network number in bits.

 Return value of inet_net_pton()

 The return value of inet_net_pton() is the number of bits in the net?

 work number field. If the input presentation string terminates with a

 slash and an explicit size value, then that size becomes the return

 value of inet_net_pton(). Otherwise, the return value, bits, is in?

 ferred as follows:

 * If the most significant byte of the network number is greater than Page 3/7

 or equal to 240, then bits is 32.

 * Otherwise, if the most significant byte of the network number is

 greater than or equal to 224, then bits is 4.

 * Otherwise, if the most significant byte of the network number is

 greater than or equal to 192, then bits is 24.

 * Otherwise, if the most significant byte of the network number is

 greater than or equal to 128, then bits is 16.

 * Otherwise, bits is 8.

 If the resulting bits value from the above steps is greater than or

 equal to 8, but the number of octets specified in the network number

 exceed bits/8, then bits is set to 8 times the number of octets actu?

 ally specified.

EXAMPLES

 The program below demonstrates the use of inet_net_pton() and

 inet_net_ntop(). It uses inet_net_pton() to convert the presentation

 format network address provided in its first command-line argument to

 binary form, displays the return value from inet_net_pton(). It then

 uses inet_net_ntop() to convert the binary form back to presentation

 format, and displays the resulting string.

 In order to demonstrate that inet_net_pton() may not write to all bytes

 of its netp argument, the program allows an optional second command-

 line argument, a number used to initialize the buffer before

 inet_net_pton() is called. As its final line of output, the program

 displays all of the bytes of the buffer returned by inet_net_pton() al?

 lowing the user to see which bytes have not been touched by

 inet_net_pton().

 An example run, showing that inet_net_pton() infers the number of bits

 in the network number:

 $./a.out 193.168

 inet_net_pton() returned: 24

 inet_net_ntop() yielded: 193.168.0/24

 Raw address: c1a80000

 Demonstrate that inet_net_pton() does not zero out unused bytes in its Page 4/7

 result buffer:

 $./a.out 193.168 0xffffffff

 inet_net_pton() returned: 24

 inet_net_ntop() yielded: 193.168.0/24

 Raw address: c1a800ff

 Demonstrate that inet_net_pton() will widen the inferred size of the

 network number, if the supplied number of bytes in the presentation

 string exceeds the inferred value:

 $./a.out 193.168.1.128

 inet_net_pton() returned: 32

 inet_net_ntop() yielded: 193.168.1.128/32

 Raw address: c1a80180

 Explicitly specifying the size of the network number overrides any in?

 ference about its size (but any extra bytes that are explicitly speci?

 fied will still be used by inet_net_pton(): to populate the result buf?

 fer):

 $./a.out 193.168.1.128/24

 inet_net_pton() returned: 24

 inet_net_ntop() yielded: 193.168.1/24

 Raw address: c1a80180

 Program source

 /* Link with "-lresolv" */

 #include <arpa/inet.h>

 #include <stdio.h>

 #include <stdlib.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 char buf[100];

 struct in_addr addr;

 int bits; Page 5/7

 if (argc < 2) {

 fprintf(stderr,

 "Usage: %s presentation-form [addr-init-value]\n",

 argv[0]);

 exit(EXIT_FAILURE);

 }

 /* If argv[2] is supplied (a numeric value), use it to initialize

 the output buffer given to inet_net_pton(), so that we can see

 that inet_net_pton() initializes only those bytes needed for

 the network number. If argv[2] is not supplied, then initialize

 the buffer to zero (as is recommended practice). */

 addr.s_addr = (argc > 2) ? strtod(argv[2], NULL) : 0;

 /* Convert presentation network number in argv[1] to binary */

 bits = inet_net_pton(AF_INET, argv[1], &addr, sizeof(addr));

 if (bits == -1)

 errExit("inet_net_ntop");

 printf("inet_net_pton() returned: %d\n", bits);

 /* Convert binary format back to presentation, using 'bits'

 returned by inet_net_pton() */

 if (inet_net_ntop(AF_INET, &addr, bits, buf, sizeof(buf)) == NULL)

 errExit("inet_net_ntop");

 printf("inet_net_ntop() yielded: %s\n", buf);

 /* Display 'addr' in raw form (in network byte order), so we can

 see bytes not displayed by inet_net_ntop(); some of those bytes

 may not have been touched by inet_net_ntop(), and so will still

 have any initial value that was specified in argv[2]. */

 printf("Raw address: %x\n", htonl(addr.s_addr));

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 inet(3), networks(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 6/7

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 INET_NET_PTON(3)

Page 7/7

