
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'glob.7' command

$ man glob.7

GLOB(7) Linux Programmer's Manual GLOB(7)

NAME

 glob - globbing pathnames

DESCRIPTION

 Long ago, in UNIX V6, there was a program /etc/glob that would expand

 wildcard patterns. Soon afterward this became a shell built-in.

 These days there is also a library routine glob(3) that will perform

 this function for a user program.

 The rules are as follows (POSIX.2, 3.13).

 Wildcard matching

 A string is a wildcard pattern if it contains one of the characters

 '?', '*' or '['. Globbing is the operation that expands a wildcard

 pattern into the list of pathnames matching the pattern. Matching is

 defined by:

 A '?' (not between brackets) matches any single character.

 A '*' (not between brackets) matches any string, including the empty

 string.

 Character classes

 An expression "[...]" where the first character after the leading '['

 is not an '!' matches a single character, namely any of the characters

 enclosed by the brackets. The string enclosed by the brackets cannot

 be empty; therefore ']' can be allowed between the brackets, provided

 that it is the first character. (Thus, "[][!]" matches the three char? Page 1/4

 acters '[', ']' and '!'.)

 Ranges

 There is one special convention: two characters separated by '-' denote

 a range. (Thus, "[A-Fa-f0-9]" is equivalent to "[ABCDE?

 Fabcdef0123456789]".) One may include '-' in its literal meaning by

 making it the first or last character between the brackets. (Thus,

 "[]-]" matches just the two characters ']' and '-', and "[--0]" matches

 the three characters '-', '.', '0', since '/' cannot be matched.)

 Complementation

 An expression "[!...]" matches a single character, namely any character

 that is not matched by the expression obtained by removing the first

 '!' from it. (Thus, "[!]a-]" matches any single character except ']',

 'a' and '-'.)

 One can remove the special meaning of '?', '*' and '[' by preceding

 them by a backslash, or, in case this is part of a shell command line,

 enclosing them in quotes. Between brackets these characters stand for

 themselves. Thus, "[[?*\]" matches the four characters '[', '?', '*'

 and '\'.

 Pathnames

 Globbing is applied on each of the components of a pathname separately.

 A '/' in a pathname cannot be matched by a '?' or '*' wildcard, or by a

 range like "[.-0]". A range containing an explicit '/' character is

 syntactically incorrect. (POSIX requires that syntactically incorrect

 patterns are left unchanged.)

 If a filename starts with a '.', this character must be matched explic?

 itly. (Thus, rm * will not remove .profile, and tar c * will not ar?

 chive all your files; tar c . is better.)

 Empty lists

 The nice and simple rule given above: "expand a wildcard pattern into

 the list of matching pathnames" was the original UNIX definition. It

 allowed one to have patterns that expand into an empty list, as in

 xv -wait 0 *.gif *.jpg

 where perhaps no *.gif files are present (and this is not an error). Page 2/4

 However, POSIX requires that a wildcard pattern is left unchanged when

 it is syntactically incorrect, or the list of matching pathnames is

 empty. With bash one can force the classical behavior using this com?

 mand:

 shopt -s nullglob

 (Similar problems occur elsewhere. For example, where old scripts have

 rm `find . -name "*~"`

 new scripts require

 rm -f nosuchfile `find . -name "*~"`

 to avoid error messages from rm called with an empty argument list.)

NOTES

 Regular expressions

 Note that wildcard patterns are not regular expressions, although they

 are a bit similar. First of all, they match filenames, rather than

 text, and secondly, the conventions are not the same: for example, in a

 regular expression '*' means zero or more copies of the preceding

 thing.

 Now that regular expressions have bracket expressions where the nega?

 tion is indicated by a '^', POSIX has declared the effect of a wildcard

 pattern "[^...]" to be undefined.

 Character classes and internationalization

 Of course ranges were originally meant to be ASCII ranges, so that

 "[-%]" stands for "[!"#$%]" and "[a-z]" stands for "any lowercase

 letter". Some UNIX implementations generalized this so that a range

 X-Y stands for the set of characters with code between the codes for X

 and for Y. However, this requires the user to know the character cod?

 ing in use on the local system, and moreover, is not convenient if the

 collating sequence for the local alphabet differs from the ordering of

 the character codes. Therefore, POSIX extended the bracket notation

 greatly, both for wildcard patterns and for regular expressions. In

 the above we saw three types of items that can occur in a bracket ex?

 pression: namely (i) the negation, (ii) explicit single characters, and

 (iii) ranges. POSIX specifies ranges in an internationally more useful Page 3/4

 way and adds three more types:

 (iii) Ranges X-Y comprise all characters that fall between X and Y (in?

 clusive) in the current collating sequence as defined by the LC_COLLATE

 category in the current locale.

 (iv) Named character classes, like

 [:alnum:] [:alpha:] [:blank:] [:cntrl:]

 [:digit:] [:graph:] [:lower:] [:print:]

 [:punct:] [:space:] [:upper:] [:xdigit:]

 so that one can say "[[:lower:]]" instead of "[a-z]", and have things

 work in Denmark, too, where there are three letters past 'z' in the al?

 phabet. These character classes are defined by the LC_CTYPE category

 in the current locale.

 (v) Collating symbols, like "[.ch.]" or "[.a-acute.]", where the string

 between "[." and ".]" is a collating element defined for the current

 locale. Note that this may be a multicharacter element.

 (vi) Equivalence class expressions, like "[=a=]", where the string be?

 tween "[=" and "=]" is any collating element from its equivalence

 class, as defined for the current locale. For example, "[[=a=]]" might

 be equivalent to "[a?a??]", that is, to "[a[.a-acute.][.a-grave.][.a-

 umlaut.][.a-circumflex.]]".

SEE ALSO

 sh(1), fnmatch(3), glob(3), locale(7), regex(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 GLOB(7)

Page 4/4

