
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gie.1' command

$ man gie.1

GIE(1) PROJ GIE(1)

NAME

 gie - The Geospatial Integrity Investigation Environment

SYNOPSIS

 gie [-hovql [args]] file[s]

DESCRIPTION

 gie, the Geospatial Integrity Investigation Environment, is a regres?

 sion testing environment for the PROJ transformation library. Its pri?

 mary design goal is to be able to perform regression testing of code

 that are a part of PROJ, while not requiring any other kind of tooling

 than the same C compiler already employed for compiling the library.

 -h, --help

 Print usage information

 -o <file>, --output <file>

 Specify output file name

 -v, --verbose

 Verbose: Provide non-essential informational output. Repeat -v

 for more verbosity (e.g. -vv)

 -q, --quiet

 Quiet: Opposite of verbose. In quiet mode not even errors are

 reported. Only interaction is through the return code (0 on suc?

 cess, non-zero indicates number of FAILED tests)

 -l, --list Page 1/9

 List the PROJ internal system error codes

 --version

 Print version number

 Tests for gie are defined in simple text files. Usually having the ex?

 tension .gie. Test for gie are written in the purpose-build command

 language for gie. The basic functionality of the gie command language

 is implemented through just 3 command verbs: operation, which defines

 the PROJ operation to test, accept, which defines the input coordinate

 to read, and expect, which defines the result to expect.

 A sample test file for gie that uses the three above basic commands

 looks like:

 <gie>

 --

 Test output of the UTM projection

 --

 operation +proj=utm +zone=32 +ellps=GRS80

 --

 accept 12 55

 expect 691_875.632_14 6_098_907.825_05

 </gie>

 Parsing of a gie file starts at <gie> and ends when </gie> is reached.

 Anything before <gie> and after </gie> is not considered. Test cases

 are created by defining an operation which accept an input coordinate

 and expect an output coordinate.

 Because gie tests are wrapped in the <gie>/</gie> tags it is also pos?

 sible to add test cases to custom made init files. The tests will be

 ignore by PROJ when reading the init file with +init and gie ignores

 anything not wrapped in <gie>/</gie>.

 gie tests are defined by a set of commands like operation, accept and

 expect in the example above. Together the commands make out the gie

 command language. Any line in a gie file that does not start with a

 command is ignored. In the example above it is seen how this can be

 used to add comments and styling to gie test files in order to make Page 2/9

 them more readable as well as documenting what the purpose of the vari?

 ous tests are.

 Below the gie command language is explained in details.

EXAMPLES

 1. Run all tests in a file with all debug information turned on

 gie -vvvv corner-cases.gie

 2. Run all tests in several files

 gie foo bar

GIE COMMAND LANGUAGE

 operation <+args>

 Define a PROJ operation to test. Example:

 operation proj=utm zone=32 ellps=GRS80

 # test 4D function

 accept 12 55 0 0

 expect 691875.63214 6098907.82501 0 0

 # test 2D function

 accept 12 56

 expect 687071.4391 6210141.3267

 accept <x y [z [t]]>

 Define the input coordinate to read. Takes test coordinate. The

 coordinate can be defined by either 2, 3 or 4 values, where the

 first two values are the x- and y-components, the 3rd is the

 z-component and the 4th is the time component. The number of

 components in the coordinate determines which version of the op?

 eration is tested (2D, 3D or 4D). Many coordinates can be ac?

 cepted for one operation. For each accept an accompanying expect

 is needed.

 Note that gie accepts the underscore (_) as a thousands separa?

 tor. It is not required (in fact, it is entirely ignored by the

 input routine), but it significantly improves the readability of

 the very long strings of numbers typically required in projected

 coordinates.

 See operation for an example. Page 3/9

 expect <x y [z [t]]> | <error code>

 Define the expected coordinate that will be returned from ac?

 cepted coordinate passed though an operation. The expected coor?

 dinate can be defined by either 2, 3 or 4 components, similarly

 to accept. Many coordinates can be expected for one operation.

 For each expect an accompanying accept is needed.

 See operation for an example.

 In addition to expecting a coordinate it is also possible to ex?

 pect a PROJ error code in case an operation can't be created.

 This is useful when testing that errors are caught and handled

 correctly. Below is an example of that tests that the pipeline

 operator fails correctly when a non-invertible pipeline is con?

 structed.

 operation proj=pipeline step

 proj=urm5 n=0.5 inv

 expect failure pjd_err_malformed_pipeline

 See gie --list for a list of error codes that can be expected.

 tolerance <tolerance>

 The tolerance command controls how much accepted coordinates can

 deviate from the expected coordinate. This is handy to test that

 an operation meets a certain numerical tolerance threshold. Some

 operations are expected to be accurate within millimeters where

 others might only be accurate within a few meters. tolerance

 should

 operation proj=merc

 # test coordinate as returned by ```echo 12 55 | proj +proj=merc``

 tolerance 1 cm

 accept 12 55

 expect 1335833.89 7326837.72

 # test that the same coordinate with a 50 m false easting as determined

 # by ``echo 12 55 |proj +proj=merc +x_0=50`` is still within a 100 m

 # tolerance of the unaltered coordinate from proj=merc

 tolerance 100 m Page 4/9

 accept 12 55

 expect 1335883.89 7326837.72

 The default tolerance is 0.5 mm. See proj -lu for a list of pos?

 sible units.

 roundtrip <n> <tolerance>

 Do a roundtrip test of an operation. roundtrip needs a operation

 and a accept command to function. The accepted coordinate is

 passed to the operation first in it's forward mode, then the

 output from the forward operation is passed back to the inverse

 operation. This procedure is done n times. If the resulting co?

 ordinate is within the set tolerance of the initial coordinate,

 the test is passed.

 Example with the default 100 iterations and the default toler?

 ance:

 operation proj=merc

 accept 12 55

 roundtrip

 Example with count and default tolerance:

 operation proj=merc

 accept 12 55

 roundtrip 10000

 Example with count and tolerance:

 operation proj=merc

 accept 12 55

 roundtrip 10000 5 mm

 direction <direction>

 The direction command specifies in which direction an operation

 is performed. This can either be forward or inverse. An example

 of this is seen below where it is tested that a symmetrical

 transformation pipeline returns the same results in both direc?

 tions.

 operation proj=pipeline zone=32 step

 proj=utm ellps=GRS80 step Page 5/9

 proj=utm ellps=GRS80 inv

 tolerance 0.1 mm

 accept 12 55 0 0

 expect 12 55 0 0

 # Now the inverse direction (still same result: the pipeline is symmetrical)

 direction inverse

 expect 12 55 0 0

 The default direction is "forward".

 ignore <error code>

 This is especially useful in test cases that rely on a grid that

 is not guaranteed to be available. Below is an example of that

 situation.

 operation proj=hgridshift +grids=nzgd2kgrid0005.gsb ellps=GRS80

 tolerance 1 mm

 ignore pjd_err_failed_to_load_grid

 accept 172.999892181021551 -45.001620431954613

 expect 173 -45

 See gie --list for a list of error codes that can be ignored.

 require_grid <grid_name>

 Checks the availability of the grid <grid_name>. If it is not

 found, then all accept/expect pairs until the next operation

 will be skipped. require_grid can be repeated several times to

 specify several grids whose presence is required.

 echo <text>

 Add user defined text to the output stream. See the example be?

 low.

 <gie>

 echo ** Mercator projection tests **

 operation +proj=merc

 accept 0 0

 expect 0 0

 </gie>

 which returns Page 6/9

 Reading file 'test.gie'

 ** Mercator projection test **

 total: 1 tests succeeded, 0 tests skipped, 0 tests failed.

 skip Skip any test after the first occurrence of skip. In the example

 below only the first test will be performed. The second test is

 skipped. This feature is mostly relevant for debugging when

 writing new test cases.

 <gie>

 operation proj=merc

 accept 0 0

 expect 0 0

 skip

 accept 0 1

 expect 0 110579.9

 </gie>

STRICT MODE

 New in version 7.1.

 A stricter variant of normal gie syntax can be used by wrapping gie

 commands between <gie-strict> and </gie-strict>. In strict mode, com?

 ment lines must start with a sharp character. Unknown commands will be

 considered as an error. A command can still be split on several lines,

 but intermediate lines must end with the space character followed by

 backslash to mark the continuation.

 <gie-strict>

 # This is a comment. The following line with multiple repeated characters too

 # A command on several lines must use " \" continuation

 operation proj=hgridshift +grids=nzgd2kgrid0005.gsb \

 ellps=GRS80

 tolerance 1 mm Page 7/9

 ignore pjd_err_failed_to_load_grid

 accept 172.999892181021551 -45.001620431954613

 expect 173 -45

 </gie-strict>

BACKGROUND

 More importantly than being an acronym for "Geospatial Integrity Inves?

 tigation Environment", gie were also the initials, user id, and USGS

 email address of Gerald Ian Evenden (1935--2016), the geospatial vi?

 sionary, who, already in the 1980s, started what was to become the PROJ

 of today.

 Gerald's clear vision was that map projections are just special func?

 tions. Some of them rather complex, most of them of two variables, but

 all of them just special functions, and not particularly more special

 than the sin(), cos(), tan(), and hypot() already available in the C

 standard library.

 And hence, according to Gerald, they should not be particularly much

 harder to use, for a programmer, than the sin()'s, tan()'s and hy?

 pot()'s so readily available.

 Gerald's ingenuity also showed in the implementation of the vision,

 where he devised a comprehensive, yet simple, system of key-value pairs

 for parameterising a map projection, and the highly flexible PJ struct,

 storing run-time compiled versions of those key-value pairs, hence mak?

 ing a map projection function call, pj_fwd(PJ, point), as easy as a

 traditional function call like hypot(x,y).

 While today, we may have more formally well defined metadata systems

 (most prominent the OGC WKT2 representation), nothing comes close being

 as easily readable ("human compatible") as Gerald's key-value system.

 This system in particular, and the PROJ system in general, was Gerald's

 great gift to anyone using and/or communicating about geodata.

 It is only reasonable to name a program, keeping an eye on the integ?

 rity of the PROJ system, in honour of Gerald.

 So in honour, and hopefully also in the spirit, of Gerald Ian Evenden

 (1935--2016), this is the Geospatial Integrity Investigation Environ? Page 8/9

 ment.

SEE ALSO

 proj(1), cs2cs(1), cct(1), geod(1), projinfo(1), projsync(1)

BUGS

 A list of known bugs can be found at

 https://github.com/OSGeo/PROJ/issues where new bug reports can be sub?

 mitted to.

HOME PAGE

 https://proj.org/

AUTHOR

 Thomas Knudsen

COPYRIGHT

 1983-2021

8.2.0 Nov 1, 2021 GIE(1)

Page 9/9

