
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getwd.3' command

$ man getwd.3

GETCWD(3) Linux Programmer's Manual GETCWD(3)

NAME

 getcwd, getwd, get_current_dir_name - get current working directory

SYNOPSIS

 #include <unistd.h>

 char *getcwd(char *buf, size_t size);

 char *getwd(char *buf);

 char *get_current_dir_name(void);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 get_current_dir_name():

 _GNU_SOURCE

 getwd():

 Since glibc 2.12:

 (_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)

 || /* Glibc since 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 Before glibc 2.12:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

 These functions return a null-terminated string containing an absolute

 pathname that is the current working directory of the calling process.

 The pathname is returned as the function result and via the argument

 buf, if present. Page 1/5

 The getcwd() function copies an absolute pathname of the current work?

 ing directory to the array pointed to by buf, which is of length size.

 If the length of the absolute pathname of the current working direc?

 tory, including the terminating null byte, exceeds size bytes, NULL is

 returned, and errno is set to ERANGE; an application should check for

 this error, and allocate a larger buffer if necessary.

 As an extension to the POSIX.1-2001 standard, glibc's getcwd() allo?

 cates the buffer dynamically using malloc(3) if buf is NULL. In this

 case, the allocated buffer has the length size unless size is zero,

 when buf is allocated as big as necessary. The caller should free(3)

 the returned buffer.

 get_current_dir_name() will malloc(3) an array big enough to hold the

 absolute pathname of the current working directory. If the environment

 variable PWD is set, and its value is correct, then that value will be

 returned. The caller should free(3) the returned buffer.

 getwd() does not malloc(3) any memory. The buf argument should be a

 pointer to an array at least PATH_MAX bytes long. If the length of the

 absolute pathname of the current working directory, including the ter?

 minating null byte, exceeds PATH_MAX bytes, NULL is returned, and errno

 is set to ENAMETOOLONG. (Note that on some systems, PATH_MAX may not

 be a compile-time constant; furthermore, its value may depend on the

 filesystem, see pathconf(3).) For portability and security reasons,

 use of getwd() is deprecated.

RETURN VALUE

 On success, these functions return a pointer to a string containing the

 pathname of the current working directory. In the case of getcwd() and

 getwd() this is the same value as buf.

 On failure, these functions return NULL, and errno is set to indicate

 the error. The contents of the array pointed to by buf are undefined

 on error.

ERRORS

 EACCES Permission to read or search a component of the filename was de?

 nied. Page 2/5

 EFAULT buf points to a bad address.

 EINVAL The size argument is zero and buf is not a null pointer.

 EINVAL getwd(): buf is NULL.

 ENAMETOOLONG

 getwd(): The size of the null-terminated absolute pathname

 string exceeds PATH_MAX bytes.

 ENOENT The current working directory has been unlinked.

 ENOMEM Out of memory.

 ERANGE The size argument is less than the length of the absolute path?

 name of the working directory, including the terminating null

 byte. You need to allocate a bigger array and try again.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?getcwd(), getwd() ? Thread safety ? MT-Safe ?

 ???

 ?get_current_dir_name() ? Thread safety ? MT-Safe env ?

 ???

CONFORMING TO

 getcwd() conforms to POSIX.1-2001. Note however that POSIX.1-2001

 leaves the behavior of getcwd() unspecified if buf is NULL.

 getwd() is present in POSIX.1-2001, but marked LEGACY. POSIX.1-2008

 removes the specification of getwd(). Use getcwd() instead.

 POSIX.1-2001 does not define any errors for getwd().

 get_current_dir_name() is a GNU extension.

NOTES

 Under Linux, these functions make use of the getcwd() system call

 (available since Linux 2.1.92). On older systems they would query

 /proc/self/cwd. If both system call and proc filesystem are missing, a

 generic implementation is called. Only in that case can these calls Page 3/5

 fail under Linux with EACCES.

 These functions are often used to save the location of the current

 working directory for the purpose of returning to it later. Opening

 the current directory (".") and calling fchdir(2) to return is usually

 a faster and more reliable alternative when sufficiently many file de?

 scriptors are available, especially on platforms other than Linux.

 C library/kernel differences

 On Linux, the kernel provides a getcwd() system call, which the func?

 tions described in this page will use if possible. The system call

 takes the same arguments as the library function of the same name, but

 is limited to returning at most PATH_MAX bytes. (Before Linux 3.12,

 the limit on the size of the returned pathname was the system page

 size. On many architectures, PATH_MAX and the system page size are

 both 4096 bytes, but a few architectures have a larger page size.) If

 the length of the pathname of the current working directory exceeds

 this limit, then the system call fails with the error ENAMETOOLONG. In

 this case, the library functions fall back to a (slower) alternative

 implementation that returns the full pathname.

 Following a change in Linux 2.6.36, the pathname returned by the

 getcwd() system call will be prefixed with the string "(unreachable)"

 if the current directory is not below the root directory of the current

 process (e.g., because the process set a new filesystem root using ch?

 root(2) without changing its current directory into the new root).

 Such behavior can also be caused by an unprivileged user by changing

 the current directory into another mount namespace. When dealing with

 pathname from untrusted sources, callers of the functions described in

 this page should consider checking whether the returned pathname starts

 with '/' or '(' to avoid misinterpreting an unreachable path as a rela?

 tive pathname.

BUGS

 Since the Linux 2.6.36 change that added "(unreachable)" in the circum?

 stances described above, the glibc implementation of getcwd() has

 failed to conform to POSIX and returned a relative pathname when the Page 4/5

 API contract requires an absolute pathname. With glibc 2.27 onwards

 this is corrected; calling getcwd() from such a pathname will now re?

 sult in failure with ENOENT.

SEE ALSO

 pwd(1), chdir(2), fchdir(2), open(2), unlink(2), free(3), malloc(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2018-04-30 GETCWD(3)

Page 5/5

