
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getpriority.2' command

$ man getpriority.2

GETPRIORITY(2) Linux Programmer's Manual GETPRIORITY(2)

NAME

 getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

 #include <sys/time.h>

 #include <sys/resource.h>

 int getpriority(int which, id_t who);

 int setpriority(int which, id_t who, int prio);

DESCRIPTION

 The scheduling priority of the process, process group, or user, as in?

 dicated by which and who is obtained with the getpriority() call and

 set with the setpriority() call. The process attribute dealt with by

 these system calls is the same attribute (also known as the "nice"

 value) that is dealt with by nice(2).

 The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and

 who is interpreted relative to which (a process identifier for

 PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for

 PRIO_USER). A zero value for who denotes (respectively) the calling

 process, the process group of the calling process, or the real user ID

 of the calling process.

 The prio argument is a value in the range -20 to 19 (but see NOTES be?

 low). with -20 being the highest priority and 19 being the lowest pri?

 ority. Attempts to set a priority outside this range are silently Page 1/4

 clamped to the range. The default priority is 0; lower values give a

 process a higher scheduling priority.

 The getpriority() call returns the highest priority (lowest numerical

 value) enjoyed by any of the specified processes. The setpriority()

 call sets the priorities of all of the specified processes to the spec?

 ified value.

 Traditionally, only a privileged process could lower the nice value

 (i.e., set a higher priority). However, since Linux 2.6.12, an unpriv?

 ileged process can decrease the nice value of a target process that has

 a suitable RLIMIT_NICE soft limit; see getrlimit(2) for details.

RETURN VALUE

 On success, getpriority() returns the calling thread's nice value,

 which may be a negative number. On error, it returns -1 and sets errno

 to indicate the cause of the error.

 Since a successful call to getpriority() can legitimately return the

 value -1, it is necessary to clear the external variable errno prior to

 the call, then check errno afterward to determine if -1 is an error or

 a legitimate value.

 setpriority() returns 0 on success. On error, it returns -1 and sets

 errno to indicate the cause of the error.

ERRORS

 EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

 ESRCH No process was located using the which and who values specified.

 In addition to the errors indicated above, setpriority() may fail if:

 EACCES The caller attempted to set a lower nice value (i.e., a higher

 process priority), but did not have the required privilege (on

 Linux: did not have the CAP_SYS_NICE capability).

 EPERM A process was located, but its effective user ID did not match

 either the effective or the real user ID of the caller, and was

 not privileged (on Linux: did not have the CAP_SYS_NICE capabil?

 ity). But see NOTES below.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (these interfaces first ap? Page 2/4

 peared in 4.2BSD).

NOTES

 For further details on the nice value, see sched(7).

 Note: the addition of the "autogroup" feature in Linux 2.6.38 means

 that the nice value no longer has its traditional effect in many cir?

 cumstances. For details, see sched(7).

 A child created by fork(2) inherits its parent's nice value. The nice

 value is preserved across execve(2).

 The details on the condition for EPERM depend on the system. The above

 description is what POSIX.1-2001 says, and seems to be followed on all

 System V-like systems. Linux kernels before 2.6.12 required the real

 or effective user ID of the caller to match the real user of the

 process who (instead of its effective user ID). Linux 2.6.12 and later

 require the effective user ID of the caller to match the real or effec?

 tive user ID of the process who. All BSD-like systems (SunOS 4.1.3,

 Ultrix 4.2, 4.3BSD, FreeBSD 4.3, OpenBSD-2.5, ...) behave in the same

 manner as Linux 2.6.12 and later.

 Including <sys/time.h> is not required these days, but increases porta?

 bility. (Indeed, <sys/resource.h> defines the rusage structure with

 fields of type struct timeval defined in <sys/time.h>.)

 C library/kernel differences

 Within the kernel, nice values are actually represented using the range

 40..1 (since negative numbers are error codes) and these are the values

 employed by the setpriority() and getpriority() system calls. The

 glibc wrapper functions for these system calls handle the translations

 between the user-land and kernel representations of the nice value ac?

 cording to the formula unice = 20 - knice. (Thus, the kernel's 40..1

 range corresponds to the range -20..19 as seen by user space.)

BUGS

 According to POSIX, the nice value is a per-process setting. However,

 under the current Linux/NPTL implementation of POSIX threads, the nice

 value is a per-thread attribute: different threads in the same process

 can have different nice values. Portable applications should avoid re? Page 3/4

 lying on the Linux behavior, which may be made standards conformant in

 the future.

SEE ALSO

 nice(1), renice(1), fork(2), capabilities(7), sched(7)

 Documentation/scheduler/sched-nice-design.txt in the Linux kernel

 source tree (since Linux 2.6.23)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 GETPRIORITY(2)

Page 4/4

