
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getpgid.2' command

$ man getpgid.2

SETPGID(2) Linux Programmer's Manual SETPGID(2)

NAME

 setpgid, getpgid, setpgrp, getpgrp - set/get process group

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int setpgid(pid_t pid, pid_t pgid);

 pid_t getpgid(pid_t pid);

 pid_t getpgrp(void); /* POSIX.1 version */

 pid_t getpgrp(pid_t pid); /* BSD version */

 int setpgrp(void); /* System V version */

 int setpgrp(pid_t pid, pid_t pgid); /* BSD version */

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getpgid():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 setpgrp() (POSIX.1):

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _SVID_SOURCE

 setpgrp() (BSD), getpgrp() (BSD):

 [These are available only before glibc 2.19]

 _BSD_SOURCE && Page 1/5

 ! (_POSIX_SOURCE || _POSIX_C_SOURCE || _XOPEN_SOURCE ||

 _GNU_SOURCE || _SVID_SOURCE)

DESCRIPTION

 All of these interfaces are available on Linux, and are used for get?

 ting and setting the process group ID (PGID) of a process. The pre?

 ferred, POSIX.1-specified ways of doing this are: getpgrp(void), for

 retrieving the calling process's PGID; and setpgid(), for setting a

 process's PGID.

 setpgid() sets the PGID of the process specified by pid to pgid. If

 pid is zero, then the process ID of the calling process is used. If

 pgid is zero, then the PGID of the process specified by pid is made the

 same as its process ID. If setpgid() is used to move a process from

 one process group to another (as is done by some shells when creating

 pipelines), both process groups must be part of the same session (see

 setsid(2) and credentials(7)). In this case, the pgid specifies an ex?

 isting process group to be joined and the session ID of that group must

 match the session ID of the joining process.

 The POSIX.1 version of getpgrp(), which takes no arguments, returns the

 PGID of the calling process.

 getpgid() returns the PGID of the process specified by pid. If pid is

 zero, the process ID of the calling process is used. (Retrieving the

 PGID of a process other than the caller is rarely necessary, and the

 POSIX.1 getpgrp() is preferred for that task.)

 The System V-style setpgrp(), which takes no arguments, is equivalent

 to setpgid(0, 0).

 The BSD-specific setpgrp() call, which takes arguments pid and pgid, is

 a wrapper function that calls

 setpgid(pid, pgid)

 Since glibc 2.19, the BSD-specific setpgrp() function is no longer ex?

 posed by <unistd.h>; calls should be replaced with the setpgid() call

 shown above.

 The BSD-specific getpgrp() call, which takes a single pid argument, is

 a wrapper function that calls Page 2/5

 getpgid(pid)

 Since glibc 2.19, the BSD-specific getpgrp() function is no longer ex?

 posed by <unistd.h>; calls should be replaced with calls to the POSIX.1

 getpgrp() which takes no arguments (if the intent is to obtain the

 caller's PGID), or with the getpgid() call shown above.

RETURN VALUE

 On success, setpgid() and setpgrp() return zero. On error, -1 is re?

 turned, and errno is set appropriately.

 The POSIX.1 getpgrp() always returns the PGID of the caller.

 getpgid(), and the BSD-specific getpgrp() return a process group on

 success. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES An attempt was made to change the process group ID of one of the

 children of the calling process and the child had already per?

 formed an execve(2) (setpgid(), setpgrp()).

 EINVAL pgid is less than 0 (setpgid(), setpgrp()).

 EPERM An attempt was made to move a process into a process group in a

 different session, or to change the process group ID of one of

 the children of the calling process and the child was in a dif?

 ferent session, or to change the process group ID of a session

 leader (setpgid(), setpgrp()).

 ESRCH For getpgid(): pid does not match any process. For setpgid():

 pid is not the calling process and not a child of the calling

 process.

CONFORMING TO

 setpgid() and the version of getpgrp() with no arguments conform to

 POSIX.1-2001.

 POSIX.1-2001 also specifies getpgid() and the version of setpgrp() that

 takes no arguments. (POSIX.1-2008 marks this setpgrp() specification

 as obsolete.)

 The version of getpgrp() with one argument and the version of setpgrp()

 that takes two arguments derive from 4.2BSD, and are not specified by

 POSIX.1. Page 3/5

NOTES

 A child created via fork(2) inherits its parent's process group ID.

 The PGID is preserved across an execve(2).

 Each process group is a member of a session and each process is a mem?

 ber of the session of which its process group is a member. (See cre?

 dentials(7).)

 A session can have a controlling terminal. At any time, one (and only

 one) of the process groups in the session can be the foreground process

 group for the terminal; the remaining process groups are in the back?

 ground. If a signal is generated from the terminal (e.g., typing the

 interrupt key to generate SIGINT), that signal is sent to the fore?

 ground process group. (See termios(3) for a description of the charac?

 ters that generate signals.) Only the foreground process group may

 read(2) from the terminal; if a background process group tries to

 read(2) from the terminal, then the group is sent a SIGTTIN signal,

 which suspends it. The tcgetpgrp(3) and tcsetpgrp(3) functions are

 used to get/set the foreground process group of the controlling termi?

 nal.

 The setpgid() and getpgrp() calls are used by programs such as bash(1)

 to create process groups in order to implement shell job control.

 If the termination of a process causes a process group to become or?

 phaned, and if any member of the newly orphaned process group is

 stopped, then a SIGHUP signal followed by a SIGCONT signal will be sent

 to each process in the newly orphaned process group. An orphaned

 process group is one in which the parent of every member of process

 group is either itself also a member of the process group or is a mem?

 ber of a process group in a different session (see also creden?

 tials(7)).

SEE ALSO

 getuid(2), setsid(2), tcgetpgrp(3), tcsetpgrp(3), termios(3), creden?

 tials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 4/5

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SETPGID(2)

Page 5/5

