
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getifaddrs.3' command

$ man getifaddrs.3

GETIFADDRS(3) Linux Programmer's Manual GETIFADDRS(3)

NAME

 getifaddrs, freeifaddrs - get interface addresses

SYNOPSIS

 #include <sys/types.h>

 #include <ifaddrs.h>

 int getifaddrs(struct ifaddrs **ifap);

 void freeifaddrs(struct ifaddrs *ifa);

DESCRIPTION

 The getifaddrs() function creates a linked list of structures describ?

 ing the network interfaces of the local system, and stores the address

 of the first item of the list in *ifap. The list consists of ifaddrs

 structures, defined as follows:

 struct ifaddrs {

 struct ifaddrs *ifa_next; /* Next item in list */

 char *ifa_name; /* Name of interface */

 unsigned int ifa_flags; /* Flags from SIOCGIFFLAGS */

 struct sockaddr *ifa_addr; /* Address of interface */

 struct sockaddr *ifa_netmask; /* Netmask of interface */

 union {

 struct sockaddr *ifu_broadaddr;

 /* Broadcast address of interface */

 struct sockaddr *ifu_dstaddr; Page 1/6

 /* Point-to-point destination address */

 } ifa_ifu;

 #define ifa_broadaddr ifa_ifu.ifu_broadaddr

 #define ifa_dstaddr ifa_ifu.ifu_dstaddr

 void *ifa_data; /* Address-specific data */

 };

 The ifa_next field contains a pointer to the next structure on the

 list, or NULL if this is the last item of the list.

 The ifa_name points to the null-terminated interface name.

 The ifa_flags field contains the interface flags, as returned by the

 SIOCGIFFLAGS ioctl(2) operation (see netdevice(7) for a list of these

 flags).

 The ifa_addr field points to a structure containing the interface ad?

 dress. (The sa_family subfield should be consulted to determine the

 format of the address structure.) This field may contain a null

 pointer.

 The ifa_netmask field points to a structure containing the netmask as?

 sociated with ifa_addr, if applicable for the address family. This

 field may contain a null pointer.

 Depending on whether the bit IFF_BROADCAST or IFF_POINTOPOINT is set in

 ifa_flags (only one can be set at a time), either ifa_broadaddr will

 contain the broadcast address associated with ifa_addr (if applicable

 for the address family) or ifa_dstaddr will contain the destination ad?

 dress of the point-to-point interface.

 The ifa_data field points to a buffer containing address-family-spe?

 cific data; this field may be NULL if there is no such data for this

 interface.

 The data returned by getifaddrs() is dynamically allocated and should

 be freed using freeifaddrs() when no longer needed.

RETURN VALUE

 On success, getifaddrs() returns zero; on error, -1 is returned, and

 errno is set appropriately.

ERRORS Page 2/6

 getifaddrs() may fail and set errno for any of the errors specified for

 socket(2), bind(2), getsockname(2), recvmsg(2), sendto(2), malloc(3),

 or realloc(3).

VERSIONS

 The getifaddrs() function first appeared in glibc 2.3, but before glibc

 2.3.3, the implementation supported only IPv4 addresses; IPv6 support

 was added in glibc 2.3.3. Support of address families other than IPv4

 is available only on kernels that support netlink.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getifaddrs(), freeifaddrs() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 Not in POSIX.1. This function first appeared in BSDi and is present on

 the BSD systems, but with slightly different semantics documented?re?

 turning one entry per interface, not per address. This means ifa_addr

 and other fields can actually be NULL if the interface has no address,

 and no link-level address is returned if the interface has an IP ad?

 dress assigned. Also, the way of choosing either ifa_broadaddr or

 ifa_dstaddr differs on various systems.

NOTES

 The addresses returned on Linux will usually be the IPv4 and IPv6 ad?

 dresses assigned to the interface, but also one AF_PACKET address per

 interface containing lower-level details about the interface and its

 physical layer. In this case, the ifa_data field may contain a pointer

 to a struct rtnl_link_stats, defined in <linux/if_link.h> (in Linux 2.4

 and earlier, struct net_device_stats, defined in <linux/netdevice.h>),

 which contains various interface attributes and statistics.

EXAMPLES Page 3/6

 The program below demonstrates the use of getifaddrs(), freeifaddrs(),

 and getnameinfo(3). Here is what we see when running this program on

 one system:

 $./a.out

 lo AF_PACKET (17)

 tx_packets = 524; rx_packets = 524

 tx_bytes = 38788; rx_bytes = 38788

 wlp3s0 AF_PACKET (17)

 tx_packets = 108391; rx_packets = 130245

 tx_bytes = 30420659; rx_bytes = 94230014

 em1 AF_PACKET (17)

 tx_packets = 0; rx_packets = 0

 tx_bytes = 0; rx_bytes = 0

 lo AF_INET (2)

 address: <127.0.0.1>

 wlp3s0 AF_INET (2)

 address: <192.168.235.137>

 lo AF_INET6 (10)

 address: <::1>

 wlp3s0 AF_INET6 (10)

 address: <fe80::7ee9:d3ff:fef5:1a91%wlp3s0>

 Program source

 #define _GNU_SOURCE /* To get defns of NI_MAXSERV and NI_MAXHOST */

 #include <arpa/inet.h>

 #include <sys/socket.h>

 #include <netdb.h>

 #include <ifaddrs.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <linux/if_link.h>

 int main(int argc, char *argv[])

 { Page 4/6

 struct ifaddrs *ifaddr;

 int family, s;

 char host[NI_MAXHOST];

 if (getifaddrs(&ifaddr) == -1) {

 perror("getifaddrs");

 exit(EXIT_FAILURE);

 }

 /* Walk through linked list, maintaining head pointer so we

 can free list later */

 for (struct ifaddrs *ifa = ifaddr; ifa != NULL;

 ifa = ifa->ifa_next) {

 if (ifa->ifa_addr == NULL)

 continue;

 family = ifa->ifa_addr->sa_family;

 /* Display interface name and family (including symbolic

 form of the latter for the common families) */

 printf("%-8s %s (%d)\n",

 ifa->ifa_name,

 (family == AF_PACKET) ? "AF_PACKET" :

 (family == AF_INET) ? "AF_INET" :

 (family == AF_INET6) ? "AF_INET6" : "???",

 family);

 /* For an AF_INET* interface address, display the address */

 if (family == AF_INET || family == AF_INET6) {

 s = getnameinfo(ifa->ifa_addr,

 (family == AF_INET) ? sizeof(struct sockaddr_in) :

 sizeof(struct sockaddr_in6),

 host, NI_MAXHOST,

 NULL, 0, NI_NUMERICHOST);

 if (s != 0) {

 printf("getnameinfo() failed: %s\n", gai_strerror(s));

 exit(EXIT_FAILURE);

 } Page 5/6

 printf("\t\taddress: <%s>\n", host);

 } else if (family == AF_PACKET && ifa->ifa_data != NULL) {

 struct rtnl_link_stats *stats = ifa->ifa_data;

 printf("\t\ttx_packets = %10u; rx_packets = %10u\n"

 "\t\ttx_bytes = %10u; rx_bytes = %10u\n",

 stats->tx_packets, stats->rx_packets,

 stats->tx_bytes, stats->rx_bytes);

 }

 }

 freeifaddrs(ifaddr);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 bind(2), getsockname(2), socket(2), packet(7), ifconfig(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETIFADDRS(3)

Page 6/6

