
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getgroups32.2' command

$ man getgroups32.2

GETGROUPS(2) Linux Programmer's Manual GETGROUPS(2)

NAME

 getgroups, setgroups - get/set list of supplementary group IDs

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int getgroups(int size, gid_t list[]);

 #include <grp.h>

 int setgroups(size_t size, const gid_t *list);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 setgroups():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE

DESCRIPTION

 getgroups() returns the supplementary group IDs of the calling process

 in list. The argument size should be set to the maximum number of

 items that can be stored in the buffer pointed to by list. If the

 calling process is a member of more than size supplementary groups,

 then an error results.

 It is unspecified whether the effective group ID of the calling process

 is included in the returned list. (Thus, an application should also Page 1/4

 call getegid(2) and add or remove the resulting value.)

 If size is zero, list is not modified, but the total number of supple?

 mentary group IDs for the process is returned. This allows the caller

 to determine the size of a dynamically allocated list to be used in a

 further call to getgroups().

 setgroups() sets the supplementary group IDs for the calling process.

 Appropriate privileges are required (see the description of the EPERM

 error, below). The size argument specifies the number of supplementary

 group IDs in the buffer pointed to by list. A process can drop all of

 its supplementary groups with the call:

 setgroups(0, NULL);

RETURN VALUE

 On success, getgroups() returns the number of supplementary group IDs.

 On error, -1 is returned, and errno is set appropriately.

 On success, setgroups() returns 0. On error, -1 is returned, and errno

 is set appropriately.

ERRORS

 EFAULT list has an invalid address.

 getgroups() can additionally fail with the following error:

 EINVAL size is less than the number of supplementary group IDs, but is

 not zero.

 setgroups() can additionally fail with the following errors:

 EINVAL size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536

 since Linux 2.6.4).

 ENOMEM Out of memory.

 EPERM The calling process has insufficient privilege (the caller does

 not have the CAP_SETGID capability in the user namespace in

 which it resides).

 EPERM (since Linux 3.19)

 The use of setgroups() is denied in this user namespace. See

 the description of /proc/[pid]/setgroups in user_namespaces(7).

CONFORMING TO

 getgroups(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008. Page 2/4

 setgroups(): SVr4, 4.3BSD. Since setgroups() requires privilege, it is

 not covered by POSIX.1.

NOTES

 A process can have up to NGROUPS_MAX supplementary group IDs in addi?

 tion to the effective group ID. The constant NGROUPS_MAX is defined in

 <limits.h>. The set of supplementary group IDs is inherited from the

 parent process, and preserved across an execve(2).

 The maximum number of supplementary group IDs can be found at run time

 using sysconf(3):

 long ngroups_max;

 ngroups_max = sysconf(_SC_NGROUPS_MAX);

 The maximum return value of getgroups() cannot be larger than one more

 than this value. Since Linux 2.6.4, the maximum number of supplemen?

 tary group IDs is also exposed via the Linux-specific read-only file,

 /proc/sys/kernel/ngroups_max.

 The original Linux getgroups() system call supported only 16-bit group

 IDs. Subsequently, Linux 2.4 added getgroups32(), supporting 32-bit

 IDs. The glibc getgroups() wrapper function transparently deals with

 the variation across kernel versions.

 C library/kernel differences

 At the kernel level, user IDs and group IDs are a per-thread attribute.

 However, POSIX requires that all threads in a process share the same

 credentials. The NPTL threading implementation handles the POSIX re?

 quirements by providing wrapper functions for the various system calls

 that change process UIDs and GIDs. These wrapper functions (including

 the one for setgroups()) employ a signal-based technique to ensure that

 when one thread changes credentials, all of the other threads in the

 process also change their credentials. For details, see nptl(7).

SEE ALSO

 getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3),

 capabilities(7), credentials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 3/4

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 GETGROUPS(2)

Page 4/4

