
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getdents64.2' command

$ man getdents64.2

GETDENTS(2) Linux Programmer's Manual GETDENTS(2)

NAME

 getdents, getdents64 - get directory entries

SYNOPSIS

 long getdents(unsigned int fd, struct linux_dirent *dirp,

 unsigned int count);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <dirent.h>

 ssize_t getdents64(int fd, void *dirp, size_t count);

 Note: There is no glibc wrapper for getdents(); see NOTES.

DESCRIPTION

 These are not the interfaces you are interested in. Look at readdir(3)

 for the POSIX-conforming C library interface. This page documents the

 bare kernel system call interfaces.

 getdents()

 The system call getdents() reads several linux_dirent structures from

 the directory referred to by the open file descriptor fd into the buf?

 fer pointed to by dirp. The argument count specifies the size of that

 buffer.

 The linux_dirent structure is declared as follows:

 struct linux_dirent {

 unsigned long d_ino; /* Inode number */

 unsigned long d_off; /* Offset to next linux_dirent */ Page 1/6

 unsigned short d_reclen; /* Length of this linux_dirent */

 char d_name[]; /* Filename (null-terminated) */

 /* length is actually (d_reclen - 2 -

 offsetof(struct linux_dirent, d_name)) */

 /*

 char pad; // Zero padding byte

 char d_type; // File type (only since Linux

 // 2.6.4); offset is (d_reclen - 1)

 */

 }

 d_ino is an inode number. d_off is the distance from the start of the

 directory to the start of the next linux_dirent. d_reclen is the size

 of this entire linux_dirent. d_name is a null-terminated filename.

 d_type is a byte at the end of the structure that indicates the file

 type. It contains one of the following values (defined in <dirent.h>):

 DT_BLK This is a block device.

 DT_CHR This is a character device.

 DT_DIR This is a directory.

 DT_FIFO This is a named pipe (FIFO).

 DT_LNK This is a symbolic link.

 DT_REG This is a regular file.

 DT_SOCK This is a UNIX domain socket.

 DT_UNKNOWN The file type is unknown.

 The d_type field is implemented since Linux 2.6.4. It occupies a space

 that was previously a zero-filled padding byte in the linux_dirent

 structure. Thus, on kernels up to and including 2.6.3, attempting to

 access this field always provides the value 0 (DT_UNKNOWN).

 Currently, only some filesystems (among them: Btrfs, ext2, ext3, and

 ext4) have full support for returning the file type in d_type. All ap?

 plications must properly handle a return of DT_UNKNOWN.

 getdents64()

 The original Linux getdents() system call did not handle large filesys?

 tems and large file offsets. Consequently, Linux 2.4 added get? Page 2/6

 dents64(), with wider types for the d_ino and d_off fields. In addi?

 tion, getdents64() supports an explicit d_type field.

 The getdents64() system call is like getdents(), except that its second

 argument is a pointer to a buffer containing structures of the follow?

 ing type:

 struct linux_dirent64 {

 ino64_t d_ino; /* 64-bit inode number */

 off64_t d_off; /* 64-bit offset to next structure */

 unsigned short d_reclen; /* Size of this dirent */

 unsigned char d_type; /* File type */

 char d_name[]; /* Filename (null-terminated) */

 };

RETURN VALUE

 On success, the number of bytes read is returned. On end of directory,

 0 is returned. On error, -1 is returned, and errno is set appropri?

 ately.

ERRORS

 EBADF Invalid file descriptor fd.

 EFAULT Argument points outside the calling process's address space.

 EINVAL Result buffer is too small.

 ENOENT No such directory.

 ENOTDIR

 File descriptor does not refer to a directory.

CONFORMING TO

 SVr4.

NOTES

 Library support for getdents64() was added in glibc 2.30; there is no

 glibc wrapper for getdents(). Calling getdents() (or getdents64() on

 earlier glibc versions) requires the use of syscall(2). In that case

 you will need to define the linux_dirent or linux_dirent64 structure

 yourself.

 Probably, you want to use readdir(3) instead of these system calls.

 These calls supersede readdir(2). Page 3/6

EXAMPLES

 The program below demonstrates the use of getdents(). The following

 output shows an example of what we see when running this program on an

 ext2 directory:

 $./a.out /testfs/

 --------------- nread=120 ---------------

 inode# file type d_reclen d_off d_name

 2 directory 16 12 .

 2 directory 16 24 ..

 11 directory 24 44 lost+found

 12 regular 16 56 a

 228929 directory 16 68 sub

 16353 directory 16 80 sub2

 130817 directory 16 4096 sub3

 Program source

 #define _GNU_SOURCE

 #include <dirent.h> /* Defines DT_* constants */

 #include <fcntl.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <sys/stat.h>

 #include <sys/syscall.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 struct linux_dirent {

 unsigned long d_ino;

 off_t d_off;

 unsigned short d_reclen;

 char d_name[];

 };

 #define BUF_SIZE 1024 Page 4/6

 int

 main(int argc, char *argv[])

 {

 int fd;

 long nread;

 char buf[BUF_SIZE];

 struct linux_dirent *d;

 char d_type;

 fd = open(argc > 1 ? argv[1] : ".", O_RDONLY | O_DIRECTORY);

 if (fd == -1)

 handle_error("open");

 for (;;) {

 nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);

 if (nread == -1)

 handle_error("getdents");

 if (nread == 0)

 break;

 printf("--------------- nread=%d ---------------\n", nread);

 printf("inode# file type d_reclen d_off d_name\n");

 for (long bpos = 0; bpos < nread;) {

 d = (struct linux_dirent *) (buf + bpos);

 printf("%8ld ", d->d_ino);

 d_type = *(buf + bpos + d->d_reclen - 1);

 printf("%-10s ", (d_type == DT_REG) ? "regular" :

 (d_type == DT_DIR) ? "directory" :

 (d_type == DT_FIFO) ? "FIFO" :

 (d_type == DT_SOCK) ? "socket" :

 (d_type == DT_LNK) ? "symlink" :

 (d_type == DT_BLK) ? "block dev" :

 (d_type == DT_CHR) ? "char dev" : "???");

 printf("%4d %10jd %s\n", d->d_reclen,

 (intmax_t) d->d_off, d->d_name);

 bpos += d->d_reclen; Page 5/6

 }

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 readdir(2), readdir(3), inode(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 GETDENTS(2)

Page 6/6

