
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'fuse.4' command

$ man fuse.4

FUSE(4) Linux Programmer's Manual FUSE(4)

NAME

 fuse - Filesystem in Userspace (FUSE) device

SYNOPSIS

 #include <linux/fuse.h>

DESCRIPTION

 This device is the primary interface between the FUSE filesystem driver

 and a user-space process wishing to provide the filesystem (referred to

 in the rest of this manual page as the filesystem daemon). This manual

 page is intended for those interested in understanding the kernel in?

 terface itself. Those implementing a FUSE filesystem may wish to make

 use of a user-space library such as libfuse that abstracts away the

 low-level interface.

 At its core, FUSE is a simple client-server protocol, in which the

 Linux kernel is the client and the daemon is the server. After obtain?

 ing a file descriptor for this device, the daemon may read(2) requests

 from that file descriptor and is expected to write(2) back its replies.

 It is important to note that a file descriptor is associated with a

 unique FUSE filesystem. In particular, opening a second copy of this

 device, will not allow access to resources created through the first

 file descriptor (and vice versa).

 The basic protocol

 Every message that is read by the daemon begins with a header described Page 1/11

 by the following structure:

 struct fuse_in_header {

 uint32_t len; /* Total length of the data,

 including this header */

 uint32_t opcode; /* The kind of operation (see below) */

 uint64_t unique; /* A unique identifier for this request */

 uint64_t nodeid; /* ID of the filesystem object

 being operated on */

 uint32_t uid; /* UID of the requesting process */

 uint32_t gid; /* GID of the requesting process */

 uint32_t pid; /* PID of the requesting process */

 uint32_t padding;

 };

 The header is followed by a variable-length data portion (which may be

 empty) specific to the requested operation (the requested operation is

 indicated by opcode).

 The daemon should then process the request and if applicable send a re?

 ply (almost all operations require a reply; if they do not, this is

 documented below), by performing a write(2) to the file descriptor.

 All replies must start with the following header:

 struct fuse_out_header {

 uint32_t len; /* Total length of data written to

 the file descriptor */

 int32_t error; /* Any error that occurred (0 if none) */

 uint64_t unique; /* The value from the

 corresponding request */

 };

 This header is also followed by (potentially empty) variable-sized data

 depending on the executed request. However, if the reply is an error

 reply (i.e., error is set), then no further payload data should be

 sent, independent of the request.

 Exchanged messages

 This section should contain documentation for each of the messages in Page 2/11

 the protocol. This manual page is currently incomplete, so not all

 messages are documented. For each message, first the struct sent by

 the kernel is given, followed by a description of the semantics of the

 message.

 FUSE_INIT

 struct fuse_init_in {

 uint32_t major;

 uint32_t minor;

 uint32_t max_readahead; /* Since protocol v7.6 */

 uint32_t flags; /* Since protocol v7.6 */

 };

 This is the first request sent by the kernel to the daemon. It

 is used to negotiate the protocol version and other filesystem

 parameters. Note that the protocol version may affect the lay?

 out of any structure in the protocol (including this structure).

 The daemon must thus remember the negotiated version and flags

 for each session. As of the writing of this man page, the high?

 est supported kernel protocol version is 7.26.

 Users should be aware that the descriptions in this manual page

 may be incomplete or incorrect for older or more recent protocol

 versions.

 The reply for this request has the following format:

 struct fuse_init_out {

 uint32_t major;

 uint32_t minor;

 uint32_t max_readahead; /* Since v7.6 */

 uint32_t flags; /* Since v7.6; some flags bits

 were introduced later */

 uint16_t max_background; /* Since v7.13 */

 uint16_t congestion_threshold; /* Since v7.13 */

 uint32_t max_write; /* Since v7.5 */

 uint32_t time_gran; /* Since v7.6 */

 uint32_t unused[9]; Page 3/11

 };

 If the major version supported by the kernel is larger than that

 supported by the daemon, the reply shall consist of only

 uint32_t major (following the usual header), indicating the

 largest major version supported by the daemon. The kernel will

 then issue a new FUSE_INIT request conforming to the older ver?

 sion. In the reverse case, the daemon should quietly fall back

 to the kernel's major version.

 The negotiated minor version is considered to be the minimum of

 the minor versions provided by the daemon and the kernel and

 both parties should use the protocol corresponding to said minor

 version.

 FUSE_GETATTR

 struct fuse_getattr_in {

 uint32_t getattr_flags;

 uint32_t dummy;

 uint64_t fh; /* Set only if

 (getattr_flags & FUSE_GETATTR_FH)

 };

 The requested operation is to compute the attributes to be re?

 turned by stat(2) and similar operations for the given filesys?

 tem object. The object for which the attributes should be com?

 puted is indicated either by header->nodeid or, if the

 FUSE_GETATTR_FH flag is set, by the file handle fh. The latter

 case of operation is analogous to fstat(2).

 For performance reasons, these attributes may be cached in the

 kernel for a specified duration of time. While the cache time?

 out has not been exceeded, the attributes will be served from

 the cache and will not cause additional FUSE_GETATTR requests.

 The computed attributes and the requested cache timeout should

 then be returned in the following structure:

 struct fuse_attr_out {

 /* Attribute cache duration (seconds + nanoseconds) */ Page 4/11

 uint64_t attr_valid;

 uint32_t attr_valid_nsec;

 uint32_t dummy;

 struct fuse_attr {

 uint64_t ino;

 uint64_t size;

 uint64_t blocks;

 uint64_t atime;

 uint64_t mtime;

 uint64_t ctime;

 uint32_t atimensec;

 uint32_t mtimensec;

 uint32_t ctimensec;

 uint32_t mode;

 uint32_t nlink;

 uint32_t uid;

 uint32_t gid;

 uint32_t rdev;

 uint32_t blksize;

 uint32_t padding;

 } attr;

 };

 FUSE_ACCESS

 struct fuse_access_in {

 uint32_t mask;

 uint32_t padding;

 };

 If the default_permissions mount options is not used, this re?

 quest may be used for permissions checking. No reply data is

 expected, but errors may be indicated as usual by setting the

 error field in the reply header (in particular, access denied

 errors may be indicated by returning -EACCES).

 FUSE_OPEN and FUSE_OPENDIR Page 5/11

 struct fuse_open_in {

 uint32_t flags; /* The flags that were passed

 to the open(2) */

 uint32_t unused;

 };

 The requested operation is to open the node indicated by

 header->nodeid. The exact semantics of what this means will de?

 pend on the filesystem being implemented. However, at the very

 least the filesystem should validate that the requested flags

 are valid for the indicated resource and then send a reply with

 the following format:

 struct fuse_open_out {

 uint64_t fh;

 uint32_t open_flags;

 uint32_t padding;

 };

 The fh field is an opaque identifier that the kernel will use to

 refer to this resource The open_flags field is a bit mask of any

 number of the flags that indicate properties of this file handle

 to the kernel:

 FOPEN_DIRECT_IO Bypass page cache for this open file.

 FOPEN_KEEP_CACHE Don't invalidate the data cache on open.

 FOPEN_NONSEEKABLE The file is not seekable.

 FUSE_READ and FUSE_READDIR

 struct fuse_read_in {

 uint64_t fh;

 uint64_t offset;

 uint32_t size;

 uint32_t read_flags;

 uint64_t lock_owner;

 uint32_t flags;

 uint32_t padding;

 }; Page 6/11

 The requested action is to read up to size bytes of the file or

 directory, starting at offset. The bytes should be returned di?

 rectly following the usual reply header.

 FUSE_INTERRUPT

 struct fuse_interrupt_in {

 uint64_t unique;

 };

 The requested action is to cancel the pending operation indi?

 cated by unique. This request requires no response. However,

 receipt of this message does not by itself cancel the indicated

 operation. The kernel will still expect a reply to said opera?

 tion (e.g., an EINTR error or a short read). At most one

 FUSE_INTERRUPT request will be issued for a given operation.

 After issuing said operation, the kernel will wait uninterrupt?

 ibly for completion of the indicated request.

 FUSE_LOOKUP

 Directly following the header is a filename to be looked up in

 the directory indicated by header->nodeid. The expected reply

 is of the form:

 struct fuse_entry_out {

 uint64_t nodeid; /* Inode ID */

 uint64_t generation; /* Inode generation */

 uint64_t entry_valid;

 uint64_t attr_valid;

 uint32_t entry_valid_nsec;

 uint32_t attr_valid_nsec;

 struct fuse_attr attr;

 };

 The combination of nodeid and generation must be unique for the

 filesystem's lifetime.

 The interpretation of timeouts and attr is as for FUSE_GETATTR.

 FUSE_FLUSH

 struct fuse_flush_in { Page 7/11

 uint64_t fh;

 uint32_t unused;

 uint32_t padding;

 uint64_t lock_owner;

 };

 The requested action is to flush any pending changes to the in?

 dicated file handle. No reply data is expected. However, an

 empty reply message still needs to be issued once the flush op?

 eration is complete.

 FUSE_RELEASE and FUSE_RELEASEDIR

 struct fuse_release_in {

 uint64_t fh;

 uint32_t flags;

 uint32_t release_flags;

 uint64_t lock_owner;

 };

 These are the converse of FUSE_OPEN and FUSE_OPENDIR respec?

 tively. The daemon may now free any resources associated with

 the file handle fh as the kernel will no longer refer to it.

 There is no reply data associated with this request, but a reply

 still needs to be issued once the request has been completely

 processed.

 FUSE_STATFS

 This operation implements statfs(2) for this filesystem. There

 is no input data associated with this request. The expected re?

 ply data has the following structure:

 struct fuse_kstatfs {

 uint64_t blocks;

 uint64_t bfree;

 uint64_t bavail;

 uint64_t files;

 uint64_t ffree;

 uint32_t bsize; Page 8/11

 uint32_t namelen;

 uint32_t frsize;

 uint32_t padding;

 uint32_t spare[6];

 };

 struct fuse_statfs_out {

 struct fuse_kstatfs st;

 };

 For the interpretation of these fields, see statfs(2).

ERRORS

 E2BIG Returned from read(2) operations when the kernel's request is

 too large for the provided buffer and the request was FUSE_SETX?

 ATTR.

 EINVAL Returned from write(2) if validation of the reply failed. Not

 all mistakes in replies will be caught by this validation. How?

 ever, basic mistakes, such as short replies or an incorrect

 unique value, are detected.

 EIO Returned from read(2) operations when the kernel's request is

 too large for the provided buffer.

 Note: There are various ways in which incorrect use of these in?

 terfaces can cause operations on the provided filesystem's files

 and directories to fail with EIO. Among the possible incorrect

 uses are:

 * changing mode & S_IFMT for an inode that has previously been

 reported to the kernel; or

 * giving replies to the kernel that are shorter than what the

 kernel expected.

 ENODEV Returned from read(2) and write(2) if the FUSE filesystem was

 unmounted.

 EPERM Returned from operations on a /dev/fuse file descriptor that has

 not been mounted.

CONFORMING TO

 The FUSE filesystem is Linux-specific. Page 9/11

NOTES

 The following messages are not yet documented in this manual page:

 FUSE_BATCH_FORGET

 FUSE_BMAP

 FUSE_CREATE

 FUSE_DESTROY

 FUSE_FALLOCATE

 FUSE_FORGET

 FUSE_FSYNC

 FUSE_FSYNCDIR

 FUSE_GETLK

 FUSE_GETXATTR

 FUSE_IOCTL

 FUSE_LINK

 FUSE_LISTXATTR

 FUSE_LSEEK

 FUSE_MKDIR

 FUSE_MKNOD

 FUSE_NOTIFY_REPLY

 FUSE_POLL

 FUSE_READDIRPLUS

 FUSE_READLINK

 FUSE_REMOVEXATTR

 FUSE_RENAME

 FUSE_RENAME2

 FUSE_RMDIR

 FUSE_SETATTR

 FUSE_SETLK

 FUSE_SETLKW

 FUSE_SYMLINK

 FUSE_UNLINK

 FUSE_WRITE

SEE ALSO Page 10/11

 fusermount(1), mount.fuse(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2018-02-02 FUSE(4)

Page 11/11

