
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ftw.3' command

$ man ftw.3

FTW(3) Linux Programmer's Manual FTW(3)

NAME

 ftw, nftw - file tree walk

SYNOPSIS

 #include <ftw.h>

 int nftw(const char *dirpath,

 int (*fn) (const char *fpath, const struct stat *sb,

 int typeflag, struct FTW *ftwbuf),

 int nopenfd, int flags);

 #include <ftw.h>

 int ftw(const char *dirpath,

 int (*fn) (const char *fpath, const struct stat *sb,

 int typeflag),

 int nopenfd);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 nftw(): _XOPEN_SOURCE >= 500

DESCRIPTION

 nftw() walks through the directory tree that is located under the di?

 rectory dirpath, and calls fn() once for each entry in the tree. By

 default, directories are handled before the files and subdirectories

 they contain (preorder traversal).

 To avoid using up all of the calling process's file descriptors,

 nopenfd specifies the maximum number of directories that nftw() will Page 1/8

 hold open simultaneously. When the search depth exceeds this, nftw()

 will become slower because directories have to be closed and reopened.

 nftw() uses at most one file descriptor for each level in the directory

 tree.

 For each entry found in the tree, nftw() calls fn() with four argu?

 ments: fpath, sb, typeflag, and ftwbuf. fpath is the pathname of the

 entry, and is expressed either as a pathname relative to the calling

 process's current working directory at the time of the call to nftw(),

 if dirpath was expressed as a relative pathname, or as an absolute

 pathname, if dirpath was expressed as an absolute pathname. sb is a

 pointer to the stat structure returned by a call to stat(2) for fpath.

 The typeflag argument passed to fn() is an integer that has one of the

 following values:

 FTW_F fpath is a regular file.

 FTW_D fpath is a directory.

 FTW_DNR

 fpath is a directory which can't be read.

 FTW_DP fpath is a directory, and FTW_DEPTH was specified in flags. (If

 FTW_DEPTH was not specified in flags, then directories will al?

 ways be visited with typeflag set to FTW_D.) All of the files

 and subdirectories within fpath have been processed.

 FTW_NS The stat(2) call failed on fpath, which is not a symbolic link.

 The probable cause for this is that the caller had read permis?

 sion on the parent directory, so that the filename fpath could

 be seen, but did not have execute permission, so that the file

 could not be reached for stat(2). The contents of the buffer

 pointed to by sb are undefined.

 FTW_SL fpath is a symbolic link, and FTW_PHYS was set in flags.

 FTW_SLN

 fpath is a symbolic link pointing to a nonexistent file. (This

 occurs only if FTW_PHYS is not set.) In this case the sb argu?

 ment passed to fn() contains information returned by performing

 lstat(2) on the "dangling" symbolic link. (But see BUGS.) Page 2/8

 The fourth argument (ftwbuf) that nftw() supplies when calling fn() is

 a pointer to a structure of type FTW:

 struct FTW {

 int base;

 int level;

 };

 base is the offset of the filename (i.e., basename component) in the

 pathname given in fpath. level is the depth of fpath in the directory

 tree, relative to the root of the tree (dirpath, which has depth 0).

 To stop the tree walk, fn() returns a nonzero value; this value will

 become the return value of nftw(). As long as fn() returns 0, nftw()

 will continue either until it has traversed the entire tree, in which

 case it will return zero, or until it encounters an error (such as a

 malloc(3) failure), in which case it will return -1.

 Because nftw() uses dynamic data structures, the only safe way to exit

 out of a tree walk is to return a nonzero value from fn(). To allow a

 signal to terminate the walk without causing a memory leak, have the

 handler set a global flag that is checked by fn(). Don't use

 longjmp(3) unless the program is going to terminate.

 The flags argument of nftw() is formed by ORing zero or more of the

 following flags:

 FTW_ACTIONRETVAL (since glibc 2.3.3)

 If this glibc-specific flag is set, then nftw() handles the re?

 turn value from fn() differently. fn() should return one of the

 following values:

 FTW_CONTINUE

 Instructs nftw() to continue normally.

 FTW_SKIP_SIBLINGS

 If fn() returns this value, then siblings of the current

 entry will be skipped, and processing continues in the

 parent.

 FTW_SKIP_SUBTREE

 If fn() is called with an entry that is a directory Page 3/8

 (typeflag is FTW_D), this return value will prevent ob?

 jects within that directory from being passed as argu?

 ments to fn(). nftw() continues processing with the next

 sibling of the directory.

 FTW_STOP

 Causes nftw() to return immediately with the return value

 FTW_STOP.

 Other return values could be associated with new actions in the

 future; fn() should not return values other than those listed

 above.

 The feature test macro _GNU_SOURCE must be defined (before in?

 cluding any header files) in order to obtain the definition of

 FTW_ACTIONRETVAL from <ftw.h>.

 FTW_CHDIR

 If set, do a chdir(2) to each directory before handling its con?

 tents. This is useful if the program needs to perform some ac?

 tion in the directory in which fpath resides. (Specifying this

 flag has no effect on the pathname that is passed in the fpath

 argument of fn.)

 FTW_DEPTH

 If set, do a post-order traversal, that is, call fn() for the

 directory itself after handling the contents of the directory

 and its subdirectories. (By default, each directory is handled

 before its contents.)

 FTW_MOUNT

 If set, stay within the same filesystem (i.e., do not cross

 mount points).

 FTW_PHYS

 If set, do not follow symbolic links. (This is what you want.)

 If not set, symbolic links are followed, but no file is reported

 twice.

 If FTW_PHYS is not set, but FTW_DEPTH is set, then the function

 fn() is never called for a directory that would be a descendant Page 4/8

 of itself.

 ftw()

 ftw() is an older function that offers a subset of the functionality of

 nftw(). The notable differences are as follows:

 * ftw() has no flags argument. It behaves the same as when nftw() is

 called with flags specified as zero.

 * The callback function, fn(), is not supplied with a fourth argument.

 * The range of values that is passed via the typeflag argument sup?

 plied to fn() is smaller: just FTW_F, FTW_D, FTW_DNR, FTW_NS, and

 (possibly) FTW_SL.

RETURN VALUE

 These functions return 0 on success, and -1 if an error occurs.

 If fn() returns nonzero, then the tree walk is terminated and the value

 returned by fn() is returned as the result of ftw() or nftw().

 If nftw() is called with the FTW_ACTIONRETVAL flag, then the only non?

 zero value that should be used by fn() to terminate the tree walk is

 FTW_STOP, and that value is returned as the result of nftw().

VERSIONS

 nftw() is available under glibc since version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?nftw() ? Thread safety ? MT-Safe cwd ?

 ??

 ?ftw() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, SUSv1. POSIX.1-2008 marks ftw() as

 obsolete.

NOTES Page 5/8

 POSIX.1-2008 notes that the results are unspecified if fn does not pre?

 serve the current working directory.

 The function nftw() and the use of FTW_SL with ftw() were introduced in

 SUSv1.

 In some implementations (e.g., glibc), ftw() will never use FTW_SL, on

 other systems FTW_SL occurs only for symbolic links that do not point

 to an existing file, and again on other systems ftw() will use FTW_SL

 for each symbolic link. If fpath is a symbolic link and stat(2)

 failed, POSIX.1-2008 states that it is undefined whether FTW_NS or

 FTW_SL is passed in typeflag. For predictable results, use nftw().

BUGS

 According to POSIX.1-2008, when the typeflag argument passed to fn()

 contains FTW_SLN, the buffer pointed to by sb should contain informa?

 tion about the dangling symbolic link (obtained by calling lstat(2) on

 the link). Early glibc versions correctly followed the POSIX specifi?

 cation on this point. However, as a result of a regression introduced

 in glibc 2.4, the contents of the buffer pointed to by sb were unde?

 fined when FTW_SLN is passed in typeflag. (More precisely, the con?

 tents of the buffer were left unchanged in this case.) This regression

 was eventually fixed in glibc 2.30, so that the glibc implementation

 (once more) follows the POSIX specification.

EXAMPLES

 The following program traverses the directory tree under the path named

 in its first command-line argument, or under the current directory if

 no argument is supplied. It displays various information about each

 file. The second command-line argument can be used to specify charac?

 ters that control the value assigned to the flags argument when calling

 nftw().

 Program source

 #define _XOPEN_SOURCE 500

 #include <ftw.h>

 #include <stdio.h>

 #include <stdlib.h> Page 6/8

 #include <string.h>

 #include <stdint.h>

 static int

 display_info(const char *fpath, const struct stat *sb,

 int tflag, struct FTW *ftwbuf)

 {

 printf("%-3s %2d ",

 (tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :

 (tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ? "f" :

 (tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :

 (tflag == FTW_SLN) ? "sln" : "???",

 ftwbuf->level);

 if (tflag == FTW_NS)

 printf("-------");

 else

 printf("%7jd", (intmax_t) sb->st_size);

 printf(" %-40s %d %s\n",

 fpath, ftwbuf->base, fpath + ftwbuf->base);

 return 0; /* To tell nftw() to continue */

 }

 int

 main(int argc, char *argv[])

 {

 int flags = 0;

 if (argc > 2 && strchr(argv[2], 'd') != NULL)

 flags |= FTW_DEPTH;

 if (argc > 2 && strchr(argv[2], 'p') != NULL)

 flags |= FTW_PHYS;

 if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags)

 == -1) {

 perror("nftw");

 exit(EXIT_FAILURE);

 } Page 7/8

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 stat(2), fts(3), readdir(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 FTW(3)

Page 8/8

